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Abstract. In this paper, we discuss measure theoretic some characterizations of the notion of
Cauchy dual for Lambert conditional operators in some operator classes on L2(Σ) such as, n -
normal, n -quasi-normal, n -power † -normal, n -power †-quasi-normal. Moreover, the relations
between these classes and some basic properties of these operators are studied. Finally, using the
matrix representation, some examples are provided to illustrate the obtained results.

1. Introduction

Let (X ,Σ,μ) be a complete σ -finite measure space. For any complete σ -finite
subalgebra A ⊆ Σ the Hilbert space L2(X ,A ,μ|A ) is abbreviated to L2(A ) where
μ|A is the restriction of μ to A . We denote the linear space of all complex-valued Σ-
measurable functions on X by L0(Σ) and L0

+(Σ) = { f ∈ L0(Σ) : f � 0} . The support
of a measurable function f is defined by σ( f ) = {x ∈ X : f (x) �= 0} . All sets and
functions statements are to be interpreted as being valid almost everywhere with respect
to μ . For each nonnegative f ∈ L0(Σ) or f ∈ L2(Σ) , by the Radon-Nikodym theorem,
there exists a unique A -measurable function EA ( f ) such that∫

A
f dμ =

∫
A
EA ( f )dμ ,

where A is any A -measurable set for which
∫
A f dμ exists. Now associated with every

complete σ -finite subalgebra A ⊆ Σ , the mapping EA : L2(Σ) → L2(A ) uniquely
defined by the assignment f �→ EA ( f ) , is called the conditional expectation operator
with respect to A . Put E = EA . The mapping E is a linear orthogonal projection.
Note that D(E) , the domain of E , contains L2(Σ)∪{ f ∈ L0(Σ) : f � 0} . This operator
will play a major role in our work. A detailed discussion and verification of most of the
properties may be found in [15, 21, 26]. Those properties of E used in our discussion
are summarized below.
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• If f is an A -measurable function, then E( f g) = f E(g).
• If f � 0 then E( f ) � 0. If f > 0 then E( f ) > 0.
• σ(E(| f |)) is the smallest A -measurable set containing σ( f ).
• σ( f ) ⊆ σ(E( f )) , for each nonnegative f ∈ L2(Σ).
• E(| f |2) = |E( f )|2 if and only if f ∈ L(A ).

The products of conditional expectation and multiplication operators appear more
often in the service of the study of other operators rather than being the object of study
in and of themselves. Weighted Lambert conditional operators in L2(Σ)-spaces turn out
to be interesting objects of measure and operator theory. The class of these operators
includes multiplication operators, integral operators and their adjoints. Throughout
the paper, we assume that the measure spaces under consideration are complete and
that the corresponding Lambert conditional operators are densely defined. From now
on we assume that (u,w,uw) ∈ D(E) . Operators of the form MwEMu( f ) = wE(u f )
acting in L2(Σ) with D(MwEMu) = { f wE(u f ) : wE(u f )wE(u f )} are called Lambert
conditional operator. Several aspects of this operator were studied in ([8, 11, 19]).

PROPOSITION 1. [17] Let T : L2(Σ) → L0(Σ) defined by T = MwEMu is a Lam-
bert multiplication operator.

(a) T ∈ B(L2(Σ)) if and only if E(|w|2)E(|u|2) ∈ L∞(A ) , and in this case ‖T‖ =
‖E(|w|2)E(|u|2)‖1/2

∞ .

(b) Let T ∈ B(L2(Σ)) , 0 � u ∈ L0(Σ) and υ = u(E(|w|2)) 1
2 . If E(υ) � δ on

σ(υ) , then T has closed range.

(c) Let T ∈ B(L2(Σ)) , 0 � u ∈ L0(Σ) and υ = u(E(|w|2)) 1
2 . If E(υ) � δ on

σ(υ) , then T has closed range.

Given a complex separable Hilbert space H , let B(H ) denotes the linear space
of all bounded linear operators on H . N (T ) and R(T ) denote the null-space and
range of an operator T , respectively. Recall that for T ∈ B(H ) , there is a unique
factorization T = U |T | , where N (T ) = N (U) = N (|T |) , U is a partial isometry;
i.e. UU∗U = U and |T | =√(T ∗T ) is a positive operator. This factorization is called
the polar decomposition of T . If T = U |T | is the polar decomposition of T ∈ B(H ) ,
then T̃ =

√|T |U√|T | is called the Aluthge transformation of T .
LetBC(H ) be the set of all bounded linear operators on H with closed range. For

T ∈ BC(H ) , the Moore-Penrose inverse of T , denoted by T † , is the unique bounded
operator T † that satisfies following:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

The Moore-Penrose inverse of an operator T may always be defined as a densely de-
fined and closed operator. The condition T ∈ BC(H ) guarantees that T † is bounded.
The Moore-Penrose inverse is designed as a measure for the invertibility of an opera-
tor. If T = U |T | is invertible, then T−1 = T † , U is unitary and so |T | =√(T ∗T ) is
invertible. For other important properties of T † see [2, 6].

From now on, we assume that u,w ∈ L0
+(Σ) , Q = σ(E(uw)) and K := S∩G ,

where G = σ(E(w)) and S = σ(E(u)) .
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PROPOSITION 2. [17] Let T = MwEMu ∈ BC(L2(Σ)) with u,w � 0 . Then

T † = M χK
E(u2)E(w2)

T ∗.

The Cauchy dual of left-invertible operators is introduced in [25] as a powerful
tool in the model theory of left-invertible operators. To be precise, if T is left invertible,
it is easy to see that T ∗T is invertible and the operator given by LT := (T ∗T )−1T ∗ is a
canonical left inverse of T . The Cauchy dual of T is then defined as

ω(T ) := T (T ∗T )−1 = L∗
T ,

which is a right inverse of T ∗ . For more details on the properties of Cauchy dual see
[1, 3, 12, 25, 27].

We introduce now the notion of Cauchy dual for Moore–Penrose inverse.

2. Cauchy dual and conditional type operators

DEFINITION 1. Let T ∈ BC(H ) . The Cauchy dual T is is defined as

ω(T ) = T (T ∗T )†.

Conditional operators and the various types of generalized inverse have been widely
used in practice. In this section, first we review some basic results on the Cauchy dual
of Lambert conditional operator MwEMu on L2(Σ) . Moreover, we discuss the mea-
sure theoretic characterizations of the notion of Cauchy dual for Lambert conditional
operators in some operator classes on L2(Σ) . Finally, some examples are provided to
illustrate the obtained results.

PROPOSITION 3. Let T = MwEMu ∈ BC(L2(Σ)) . We have
(a) ω(T ) = M χK

E(u2)E(w2)
T, ω(T )† = T ∗ ;

(b) ω(T ∗) = M χK
E(u2)E(w2)

T ∗ = ω(T )∗ ;

(c) ω(T †) = M χK
(E(u2)E(w2))2

T ∗ = M χK
E(u2)E(w2)

ω(T )∗ ;

(d) ω(T )∗ω(T ) = M uχK
(E(u2))2E(w2)

EMu, ω(T )ω(T )∗ = M wχK
E(u2)(E(w2 ))2

EMw ;

(e) ω(T †)ω(T ) = M uχK
(E(u2))3(E(w2))2

EMu, ω(T )ω(T †) = M wχK
(E(u2))2(E(w2))3

EMw ;

(f) ω(ω(T )) = M χK
(E(u2)E(w2))2

T.

Proof. (a) Direct computations show that (T ∗T ) f = MuE(w2)EMu . Then by Propo-

sition 2 we get that (T ∗T )† = M uχK
(E(u2))2E(w2)

EMu . Hence,

ω(T ) = T (T ∗T )† = M wχK
E(u2)E(w2)

EMu = M χK
E(u2)E(w2)

T.
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Also by Proposition 2, it is easy to check that

ω(T )† = T ∗.

Parts (b) and (c) are obtained by similar calculations.
(d) We have

ω(T )∗ω(T ) = M χK
(E(u2)E(w2))2

T ∗T = M uχK
(E(u2))2E(w2)

EMu

and also,

ω(T )ω(T )∗ = M χK
(E(u2)E(w2))2

TT ∗ = M wχK
E(u2)(E(w2 ))2

EMw.

(e) This assertion Is similar to the previous part.
(f) With simple calculations, we get that

ω(ω(T )) = M χK
E(u2)E(w2)

ω(T ) = M χK
(E(u2)E(w2))2

T. �

LEMMA 1. [16] Let ω ∈L0(Σ) , 0 � v∈L0(A ) and let A := MvωEMω ∈B(L2(Σ)) .
Then for each p ∈ (0,∞) and f ∈ L2(Σ) , Ap( f ) = vpωE(ω2)p−1E(ω f ) .

PROPOSITION 4. Let T = MwEMu ∈ BC(H ) and let ω(T ) = U |ω(T )| be the
polar decomposition of ω(T ) . Then

|ω(T )| = M uχK√
(E(u2))3E(w2)

EMu;

U = M wχK√
E(u2)E(w2)

EMu.

Proof. Let f ∈ L2(Σ) . Then |ω(T )|2 = ω(T )∗ω(T ) = M uχK
(E(u2))2E(w2)

EMu.

Now |ω(T )| follows from Lemma 1. Moreover, it is easy to check that ω(T ) =
U |ω(T )| , UU∗U = U and N (U) = N (ω(T )∗) = N (|ω(T )|) . This completes the
proof. �

LEMMA 2. [18] Let 0 � u,w ∈ D(E) . E(uw)2 = E(u2)E(w2) if and only if
w = gu for some g ∈ L0(A ) .

DEFINITION 2. Let T ∈ B(H ) . For n ∈ N , T is said to be n -normal operator if
TnT ∗. = T ∗Tn and T is n -quasi-normal operator if Tn(T ∗T ) = (T ∗T )Tn

PROPOSITION 5. Let T = MwEMu ∈ BC(L2(Σ)) . The following statements are
equivalent

(a) ω(T ) is n-normal;
(b) (E(uw))2 = E(u2)E(w2) , on Q;
(c) ω(T ) is n-quasi-normal.
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Proof. (a)⇔ (b) Let n ∈ N , f ∈ L2(Σ) . Then by induction we obtain

(ω(T ))n( f ) =
w(E(uw))n−1

(E(u2))n(E(w2))n E(u f ).

Then,

(ω(T ))nω(T )∗( f ) =
wE(u2)(E(uw))n−1

(E(u2))n(E(w2))n+1 E(wf ).

Also,

ω(T )∗(ω(T ))n( f ) =
uE(w2)(E(uw))n−1

(E(u2))n(E(w2))n+1 E(u f ).

Thus, ω(T ) is n -normal iff

wE(u2)(E(uw))n−1

(E(u2))n(E(w2))n+1 E(wf ) =
uE(w2)(E(uw))n−1

(E(u2))n(E(w2))n+1 E(u f ). (1)

Since A is σ−finite, there exists {An} ⊆ A such that X = ∪An,An ⊆ An+1 with
0 < μ(An) < ∞ . In this case χAn ↗ χX . Then by simplify and substituting fn =
w
√

E(u2)χAn in (1) and taking limit on n , we obtain

wE(u2)E(w2)(E(uw))n−1
√

E(u2)

= uE(w2)(E(uw))n
√

E(u2), on K.

Equivalently,
wE(u2)χQ = uE(uw). (2)

Now, multiplying both sides of (2) by w and then taking E we get that

(E(uw))2 = E(u2)E(w2).

Consequently, let (E(uw))2 = E(u2)E(w2), then the desired conclusion follows from
Lemma 2.

(b)⇔ (c) Since

(ω(T ))n( f ) =
w(E(uw))n−1

(E(u2))n(E(w2))n E(u f ).

Then, we get that

(ω(T ))nω(T )∗ω(T )( f ) =
wE(uw))n−1

(E(u2))n+1(E(w2))n+1 E(u f ).

Also,

ω(T )∗ω(T )(ω(T ))n( f ) =
u(E(uw))n

(E(u2))n+2(E(w2))n+1 E(u f ).
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Now let E(uw) = E(u2)E(w2). Then by Lemma 2 and above relations ω(T ) is
n -quasi-normal. Conversely, let ω(T ) is n -quasi-normal. Thus

wE(uw))n−1

(E(u2))n+1(E(w2))n+1 E(u f ) =
u(E(uw))n

(E(u2))n+2(E(w2))n+1 E(u f ). (3)

Now by a similar argument used in (a), The proof is complete. �
Recently, the authors M. Dana and R. Yousfi in [4] has introduced the some classes

of operators such as, D-quasi-normal, n -power D-normal, n -power D-quasi-normal.
Like this definitions we introduce the classes of n -power †-normal and n -power †-
quasi-normal associated with a Moore-Penrose invertible operator using its Moore-
Penrose inverse. Also, we discuss measure theoretic characterizations for Cauchy dual
of Lambert conditional operators for these classes.

DEFINITION 3. Let T ∈ BC(H ) . For n∈N , T is said to be n -power †-normal if
(T †)nT ∗. = T ∗(T †)n and T is n -power †-quasi-normal if (T †)n(T ∗T ) = (T ∗T )(T †)n

PROPOSITION 6. Let T = MwEMu ∈ BC(L2(Σ)) . Then the following assertions
hold on Q

(a) ω(T ) is n-power † -normal;
(b) ω(T ) is n-power † -quasi-normal iff (E(uw))2 = E(u2)E(w2).

Proof. (a) Since (ω(T )†)n( f ) = u(E(uw))n−1E(wf ) . Then we have

(ω(T )†)nω(T )∗( f ) =
u(E(uw))n

E(u2)E(w2)
E(wf )

= ω(T )∗(ω(T )†)n( f ).

Therefore, the proof is compleat.
(b) It is easy to check that

(ω(T )†)nω(T )∗ω(T )( f ) =
uE(uw))n

(E(u2))2E(w2)
E(u f );

ω(T )∗ω(T )(ω(T )†)n( f ) =
u(E(uw))n−1

E(u2)E(w2)
E(wf ).

Thus, ω(T ) is n -power †-quasi-normal if and only if

uE(uw))n

(E(u2))2E(w2)
E(u f ) =

u(E(uw))n−1

E(u2)E(w2)
E(wf ). (4)

Put fn = w
√

E(u2)χAn . After substituting fn in (4) and using the similar argument
in Proposition 5, we obtain

(E(uw))2 = E(u2)E(w2). �
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PROPOSITION 7. Let T = MwEMu ∈BC(L2(Σ)) . Then ω(T )n = ω(T ) iff E(uw)=
E(u2)E(w2) .

Proof. Since for f ∈ L2(Σ) , n ∈ N , we have

(ω(T ))n( f ) =
w(E(uw))n−1

(E(u2))n(E(w2))n E(u f );

ω(T )( f ) =
wE(u f )

E(u2)E(w2)
.

Let (ω(T ))n = ω(T ). Put

λ =
{ (E(uw))n−1

(E(u2))n(E(w2))n − 1
E(u2)E(w2)

}
.

Thus Mλ T = 0. Hence

‖Mλ T‖ = ‖|λ |E(u2)
1
2 E(w2)

1
2 ‖∞ = 0.

Therefore, λ = 0, and so E(uw) = E(u2)E(w2).
Now let E(uw) = E(u2)E(w2). In this case clearly, (ω(T ))n = ω(T ). �

PROPOSITION 8. Let T =MwEMu ∈BC(L2(Σ)) . Then ω(T ) is a partial isometry
iff E(u2)E(w2) = 1 on K.

Proof. It is easy to check that ω(T )(ω(T ))∗ω(T )= Mαω(T ) , where α = χK
E(u2)E(w2) .

Then, ω(T ) is a partial isometry iff Mα−1ω(T ) = 0 iff ‖|α − 1|ω(T )‖ = 0. That is
equivalent to E(u2)E(w2) = 1 on K. �

PROPOSITION 9. Let T = MwEMu ∈ BC(L2(Σ)) . Then the following assertions
hold on Q.

(a) ω(Tn) = ω(T )n iff E(u2)E(w2) = 1 ;
(b) (ω(T )∗ω(T ))n = (ω(T )∗)nω(T )n iff (E(uw))2 = E(u2)E(w2);
(c) ω(ω(T )) = T iff E(u2)E(w2) = 1 .

Proof. (a) We have

ω(T )n( f ) =
w(E(uw))n−1

(E(u2))n(E(w2))n E(u f );

ω(Tn)( f ) = w(E(uw))n−1E(u f ).

Thus,
ω(T )n( f ) = ω(Tn)

⇔ w(E(uw))n−1

(E(u2))n(E(w2))n E(u f ) = w(E(uw))n−1E(u f ).
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By using the similar argument in Proposition 5, we get that E(u2)E(w2) = 1.
(b) Direct computations show that,

(ω(T )∗ω(T ))n( f ) =
u(E(u2))n−1

(E(u2))2n(E(w2))n E(u f );

(ω(T )∗)nω(T )n( f ) =
u(E(uw))2n−2E(w2)
(E(u2))2n(E(w2))2n E(wf ).

Thus we have,
(ω(T )∗ω(T ))n( f ) = (ω(T )∗)nω(T )n( f )

⇔ u(E(u2))n−1

(E(u2))2n(E(w2))n E(u f ) =
u(E(uw))2n−2E(w2)
(E(u2))2n(E(w2))2n E(wf ).

Again by similar argument in Proposition 5, the proof is complete.
(c) By using the Lemma 1 and Lemma 2, it is clear. �

We now turn to the computation of ω(T̃ ) and ω̃(T ) .

PROPOSITION 10. Let T, T̃ ∈ BC(L2(Σ)) . Then

(a) ω̃(T ) = M u(E(uw))χK
(E(u2))2E(w2)

EMu ;

(b) ω(T̃ ) = M uχK
E(u2)E(uw)

EMu .

Proof. (a) We know that, if T = MwEMu , then T̃ = MνEMu, where ν = uE(uw)
E(u2) .

It follows that
ω̃(T ) = M u(E(uw))χK

(E(u2))2E(w2)

EMu.

(b) Knowing that T̃ = MuE(uw)
E(u2)

EMu, where ν = uE(uw)
E(u2) . We get that

ω(T̃ ) = M νχK
E(ν2)E(w2)

EMu = M uχK
E(u2)E(uw)

EMu.

This completes the proof. �

COROLLARY 1. Let T, T̃ ∈ BC(L2(Σ)) . Then ω̃(T ) = ω(T̃ ) = ω(T ) if and only
if (E(uw))2 = E(u2)E(w2) .

COROLLARY 2. Let T̃ ∈ BC(L2(Σ)) . Then ˜ω(T̃ ) = ω(T̃ ) .

In the following example by using the matrix representation, we show some appli-
cations of these results.
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EXAMPLE 1. Let X = {1,2,3} , Σ = 2X , μ{n} = 1
3 let A be the σ -algebra

generated by the partition {{1,2},{3}} . Then L2(Σ) ∼= C3 and

E( f ) =
( 1

μ(A1)

∫
A1

f dμ
)

χA1
+
( 1

μ(A2)

∫
A2

f dμ
)

χA2

=
f1 + f2

2
χA1

+ f3χA2
.

Where A1 = {1,2} and A1 = {3} . Then matrix representation of E = EA with
respect to the standard orthonormal basis is

E =

⎡⎢⎢⎣
1
2

1
2 0

1
2

1
2 0

0 0 1

⎤⎥⎥⎦ .

Let w = (w1,w2,w3) and u = (u1,u2,u3) be nonzero elements of C3 . Thus

T = MwEMu =

⎡⎣w1 0 0
0 w2 0
0 0 w3

⎤⎦
⎡⎢⎢⎣

1
2

1
2 0

1
2

1
2 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

u1 0 0

0 u2 0

0 0 u3

⎤⎥⎥⎦

=

⎡⎢⎢⎣
w1u1

2
w1u2

2 0
w2u1

2
w2u2

2 0

0 0 w3u3

⎤⎥⎥⎦ .

Also,

u2 = (u2
1,u

2
2,u

2
3);

w2 = (w2
1,w

2
2,w

2
3);

uw = (u1w1,u2w2,u3w3);

E(u2) =
(u2

1 +u2
2

2
,
u2

1 +u2
2

2
,u2

3

)
;

E(w2) =
(w2

1 +w2
2

2
,
w2

1 +w2
2

2
,w2

3

)
;

E(uw) =
(u1w1 +u2w2

2
,
u1w1 +u2w2

2
,u3w3

)
.

Let ui �= 0, wi �= 0. put a = (u2
1+u2

2)(w
2
1+w2

2)
4 , b = u1w1+u2w2

2 and c = u3w3 . Hence
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E(u2)E(w2) = (a,a,c2) and E(uw) = (b,b,c) . Then we get that

T † = M( 1
a , 1

a , 1
c2

)T
∗ =

⎡⎢⎢⎣
1
a 0 0

0 1
a 0

0 0 1
c2

⎤⎥⎥⎦
⎡⎢⎢⎣

w1u1
2

w2u1
2 0

w1u2
2

w2u2
2 0

0 0 w3u3

⎤⎥⎥⎦

=

⎡⎢⎢⎣
w1u1
2a

w2u1
2a 0

w1u2
2a

w2u2
2a 0

0 0 w3u3
c2

⎤⎥⎥⎦ .

And

ω(T ) = M( 1
a , 1

a , 1
c2

)T =

⎡⎢⎢⎣
w1u1
2a

w1u2
2a 0

w2u1
2a

w2u2
2a 0

0 0 w3u3
c2

⎤⎥⎥⎦ .

Also, since E(u2)E(uw) = (d,d,e) , where d = (u2
1+u2

2)(u1w1+u2w2)
4 and e = u2

3(u3w3).
Thus,

ω(T̃ ) = M( 1
d , 1

d , 1
e )MuEMu =

⎡⎢⎢⎣
1
d 0 0

0 1
d 0

0 0 1
e

⎤⎥⎥⎦
⎡⎢⎢⎣

u2
1
2

u1u2
2 0

u1u2
2

u2
2
2 0

0 0 u2
3

⎤⎥⎥⎦

=

⎡⎢⎢⎣
u2
1

2d
u1u2
2d 0

u1u2
2d

u2
2

2d 0

0 0
u2
3
e

⎤⎥⎥⎦ .

Now, set u = (−2,2,−1) , w = (1,−1,2) . Then E(u2) = (4,4,1) , E(w2) = (1,1,4)
and E(uw) = (−2,−2,−2) . It is easy to check that a = 4, b = −2, c = −2, d = −8,
e = −2 and

T =

⎡⎣−1 1 0
1 −1 0
0 0 −2

⎤⎦ , T † =

⎡⎢⎢⎣
−1
4

1
4 0

1
4

−1
4 0

0 0 −1
2

⎤⎥⎥⎦= ω(T ) = ω(T̃ ).

Also, we have E(u2)E(w2) = E(uw)2 . So, ω(T ) is not partial isometry but it is a n -
normal operator and also it is a n -power †-quasi-normal operator. Note that if in the
abovewe take u=(1,1,−3) , w=(0,1,−1) . Then E(u2) = (1,1,9) , E(w2)= ( 1

2 , 1
2 ,1)

and E(uw) = ( 1
2 , 1

2 ,3) . Direct computations show that

T =

⎡⎢⎢⎣
0 0 0
1
2

1
2 0

0 0 1
3

⎤⎥⎥⎦ , T † =

⎡⎢⎢⎣
0 1 0

0 1 0

0 0 1
3

⎤⎥⎥⎦ ,
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ω(T ) =

⎡⎢⎢⎣
0 0 0

1 1 0

0 0 1
3

⎤⎥⎥⎦ , ω(T̃ ) =

⎡⎢⎢⎣
1 1 0

1 1 0

0 0 1
3

⎤⎥⎥⎦ .

It follows that ω(T ) �= ω(T̃ ) . In this case E(uw)2 �= E(u2)E(w2) . Thus ω(T ) is not
n -normal operator and also it is not a n -power †-quasi-normal operator.

Now, we introduce the class of K (p,n,k) as a generalization of the classes of
p -hyponormal and p -quasihyponormal operators. In addition, we investigate some
characterizations of these classes by ω(T ) on L2(Σ).

DEFINITION 4. Let n ∈ N , k ∈ N∪{0} and let p > 0. We denote by K (p,n,k)
the set of all operators such as T on H that T ∗k(T ∗nTn)pT k � T ∗k(TnT ∗n)pT k .

Note that T ∈K (p,n,0) if and only if T is (p,n)-hyponormal and T ∈K (p,1,k)
if and only if T is (p,k)-quasihyponormal.

PROPOSITION 11. Let T = MwEMu ∈ BC(L2(Σ)) . Then the following assertions
hold on Q.

(a) ω(T ) ∈ K (p,n,0) iff u2E(w2) � w2E(u2) ;
(b) ω(T ) ∈ K (p,1,k) iff (E(uw))2 � E(u2)E(w2).

Proof. (a) Let f ∈ L2(Σ) . Thus by Lemma 1, we obtain

{ω(T )∗nω(T )n}p( f ) =
χK

(E(u2)E(w2))2np uE(uw)(2p−2)n(E(u2))p−1(E(w2))pE(u f );

{ω(T )nω(T )∗n}p( f ) =
χK

(E(u2)E(w2))2np wE(uw)(2p−2)n(E(u2))p(E(w2))p−1E(wf ).

Then ω(T ) ∈ K (p,n,0) iff∫
X

{ uE(uw)(2p−2)nE(u f )
E(u2)(2n−1)p+1E(w2)(2n−1)p −

wE(uw)(2p−2)nE(wf )
E(u2)(2n−1)pE(w2)(2n−1)p+1

}
f dμ � 0. (5)

Put fn = w
√

E(u2)χAn . After substituting fn in (5), we obtain∫
An

{uwE(uw)(2p−2)nE(uw)
√

E(u2)
E(u2)(2n−1)p+1E(w2)(2n−1)p − w2E(uw)(2p−2)nE(w2)

√
E(u2)

E(u2)(2n−1)pE(w2)(2n−1)p+1

}
dμ � 0.

It follows that uwE(uw) � w2E(u2). Also for An ∈ A with 0 < μ(An) < ∞ , put fn =
u
√

E(w2)χAn . Again by similar argument and after substituting fn in (5), we obtain
u2E(w2) � uwE(uw). Consequently u2E(w2) � w2E(u2), on X .

(b) Suppose f ∈ L2(Σ) . It is easy to check that

ω(T )∗k{ω(T )∗ω(T )}pω(T )k( f ) =
χKuE(uw)2p+2k−2(E(u2))p−1(E(w2))p

(E(u2)E(w2))2p+2k E(u f );

ω(T )∗k{ω(T )ω(T )∗}pω(T )k( f ) =
χKuE(uw)2p+2k−4(E(u2))p(E(w2))p+1

(E(u2)E(w2))2p+2k E(u f ).
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Then we obtain

〈(ω(T )∗k{ω(T )∗ω(T )}pω(T )k −ω(T )∗k{ω(T )ω(T )∗}pω(T )k) f , f 〉

=
∫

X

(
χKuE(uw)2p+2k−2 f E(u f )
E(u2)p+2k+1E(w2)p+2k − χKuE(uw)2p+2k−4 f E(u f )

E(u2)p+2kE(w2)p+2k−1

)
dμ

=
∫

K

(
χKE(uw)2p+2k−2

E(u2)p+2k+1E(w2)p+2k −
χKE(uw)2p+2k−4

E(u2)p+2kE(w2)p+2k−1

)
|E(u f )|2dμ .

This implies that if (E(uw))2 � (E(u2))(E(w2)) on K , then ω(T ) ∈ K (p,1,k) .
Conversely, if ω(T ) ∈ K (p,1,k) , then

〈(ω(T )∗k{ω(T )∗ω(T )}pω(T )k −ω(T )∗k{ω(T )ω(T )∗}pω(T )k) f , f 〉 � 0

for all f ∈ L2(Σ) . Let B ∈ A , with B ⊆ K and 0 < μ(B) < ∞ . By replacing f to χB ,
we have∫

B

(
E(uw)2p+2k−2

E(u2)p+2k+1E(w2)p+2k −
E(uw)2p+2k−4

E(u2)p+2kE(w2)p+2k−1

)
(E(u))2dμ � 0.

Since B ∈ A is arbitrary, then (E(uw))2 � E(u2)E(w2) on K . This completes the
proof. �

COROLLARY 3. Let T = MwEMu ∈ BC(L2(Σ)) . Then the following assertions
hold on Q.

(a) ω(T ) is p-hyponormal iff w2E(u2) � u2E(w2) ;
(b) ω(T ) is p-quasihyponormal iff (E(uw))2 � E(u2)E(w2).

EXAMPLE 2. Let X = [0,1] , dμ = dx , Σ be the Lebesgue measurable sets and
let A = { /0,X} . Then T f (x) = w(x)E(u f )(x) = w(x)

∫ 1
0 u(x) f (x)dx and T ∗ f (x) =

u(x)
∫ 1
0 w(x) f (x)dx for all f ∈ L2(Σ). Put u(x) = x

2
√

2
, w(x) = 5x2 +3. Then E(uw) =

11
8
√

2
, E(u2) = 1

24 , E(w2) = 24. Thus, ω(T ) is not n -power †-quasi-normal and also

ω(T ) /∈ K (p,1,k) . But ω(T ) not only is n -power †-normal but it is also a partial
isometry. Moreover, by a direct computation, we get that

(ω(T ) f )(x) =
5x2 +3

2
√

2

∫ 1

0
x f (x)dx = T f (x);

(ω(T̃ ) f )(x) =
48x

11
√

2

∫ 1

0
x f (x)dx;

(ω̃(T ) f )(x) =
33x

8
√

2

∫ 1

0
x f (x)dx.
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EXAMPLE 3. Let X = [−1,1] , dμ = dx , Σ be the Lebesgue sets, and let A ⊆ Σ
be the σ -algebra generated by the symmetric sets about the origin. Let 0 < a � 1 and
f ∈ L2(Σ) . Then ∫ a

−a
E( f )(x)dx =

∫ a

−a
f (x)dx

=
∫ a

−a
{ f (x)+ f (−x)

2
+

f (x)− f (−x)
2

}dx =
∫ a

−a

f (x)+ f (−x)
2

dx.

Thus, E( f )(x) = f (x)+ f (−x)
2 . Let u(x) = 1, w(x) = ex . So E(uw)(x) = cosh(x) and

E(w2)(x) = cosh(2x) , E(u2) = 1. Then ω(T ) /∈ K (p,n,0)∩K (p,1,k) . However if
u(x)= cos(2x) and w(x) = x4 then E(u2)(x) = cos2(2x) , E(w2)(x) = x8 and E(uw)(x)
= x4 cos(2x) . Thus ω(T ) ∈ K (p,n,0)∩K (p,1,k) . Finally, if we take u(x) = x and
w(x) = cos(x) then we have E(u2)(x) = x2 , E(w2)(x) = cos2(x) and E(uw)(x) = 0.
Thus ω(T ) ∈ K (p,n,0)\K (p,1,k) .

Acknowledgement. The author is very grateful to the referee(s) for careful reading
of the paper and for a number of helpful comments and corrections which improved the
presentation of this paper.

RE F ER EN C ES

[1] A. ANAND, S. CHAVAN, Z. J. JABLONSKI AND J. STOCHEL, The Cauchy dual subnormality problem
for cyclic 2-isometries, Advances in Operator Theory, 5 (3), 1061–1077.

[2] A. BEN-ISRAEL AND T. N. E. GREVILLE, Generalized inverses: theory and applications, sec. ed,
Springer, 2003.

[3] S. CHAVAN, On operators Cauchy dual to 2-hyperexpansive operators, Proc. Edinburgh Math. Soc.,
50 (2007), 637–552.

[4] M. DANA AND R. YOUSEFI, On the classes of D-normal operators and D-quasi-normal operators,
Operators and Matrices, vol. 12, no. 2 (2018), 465–487.

[5] J. DING AND W. E. HORNOR, A new approach to Frobenius-Perron operators, J. Math. Anal. Appl.
187 (1994), 1047–1058.
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