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AN INVERSE STURM–LIOUVILLE PROBLEM

FROM PARTS OF THREE SPECTRA
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(Communicated by G. Teschl)

Abstract. Certain parts of the spectra of three Robin boundary value problems are used to find
the potential of the Sturm-Liouville equation on a finite interval. The inverse problem possesses
a unique solution. Conditions are found necessary and sufficient for three sequences to be the
corresponding parts of the three spectra. Different from previous research, this paper emphasizes
the importance of Robin boundary conditions in the study of three spectral inverse problem.

1. Introduction

In this paper, we consider the Sturm-Liouville boundary value problems (BVPs),
denoted by L(q,hi,Hj)(=: Li, j) for i, j = 1,2, consisting of the Sturm-Liouville equa-
tion

− y′′+q(x)y = λ 2y (1.1)

on the interval [0,π ] with the Robin boundary conditions{
y′(0)−hiy(0) =0,

y′(π)+Hjy(π) =0.
(1.2)

We assume throughout this paper that the potential q ∈ L2(0,π) is real-valued and
hi,Hj ∈ R in (1.2).

Denote the spectrums of Li, j by σ(Li, j) , which consists of simple real eigenvalues
{λ 2

n (i, j)}+∞
n=0 , and form the sequence

−∞ < λ 2
0 (i, j) < λ 2

1 (i, j) < λ 2
2 (i, j) < · · · < λ 2

n (i, j) < · · · (1.3)

for i, j = 1,2. It is well known [4, 5] that the eigenvalues λ 2
n (i, j) have the following

asymptotics
λ 2

n (i, j) = n2 +ai, j + αn(i, j), (1.4)
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where {αn(i, j)}∞
n=0 ∈ l2 and

ai, j =
2
π

(
hi +Hj +

1
2

∫ π

0
q(t)dt

)
. (1.5)

Also it is known [11, p. 93] that

λn(i, j) = n+
ai, j

2n
+

d(n)
n

+
α̃n(i, j)

n2 , {α̃n(i, j)}+∞
n=−∞,n �=0 ∈ l2, (1.6)

where

d(n) =
1
2π

∫ π

0
q(t)cos(2nt)dt. (1.7)

Many interesting papers are concerned with inverse spectral problems for Sturm-
Liouville equations. Their research motivation for this problem is both in pure mathe-
matics and physical applications (see, for example, the books [5, 11] and references
therein). Borg [2], Chudov [3], Levitan [9] and Marchenko [11] have shown that
two spectra σ(L1,2) and σ(L2,2) uniquely determine the potential function q and the
boundary condition parameters h1,h2 and H2. Recently, Pivovarchik [13] proved that
given the parts of the Dirichlet–Dirichlet, Neumann–Dirichlet, Dirichlet–Neumann and
Neumann–Neumann spectra are used to find the potential in (1.1).

The aim of the present paper is to solve the analogous inverse problem involved in
three BVPs defined by (1.1)–(1.2). More precisely, we are concerned with the inverse
problem by using the spectrum of L1,2 and the parts of L2,2 and L1,1 spectra in a
suitable situation for a unique determination of the potential q and the coefficients
h1,h2,H1 and H2 of the Robin boundary conditions. Throughout this paper, we always
assume that

h1 > h2, H1 < H2.

We state the main result of this paper as follows.

THEOREM 1.1. Let Λ and Λc be subsets of natural numbers such that Λ∩Λc =
/0 , Λ∪Λc = N . Let three increasing sequences {λ 2

n }+∞
n=0 , {μ2

j } j∈Λ and {μ2
j } j∈Λc be

given, which obey the following conditions:

−∞ < μ2
0 < λ 2

0 < μ2
1 < λ 2

1 < μ2
2 < λ 2

2 < · · · < μ2
n < λ 2

n < · · · , (1.8)

λ 2
n = n2 +a0 + σ1,n, (1.9)

μ2
n = n2 +a′0 + σ2,n, (1.10)

and
μ2

n −λ 2
n = a′0−a0 +

σn

n
, (1.11)

where {μ2
n}+∞

n=0 = {μ2
j } j∈Λ∪{μ2

j } j∈Λc , a0 > a′0 , {σn}+∞
n=0 and {σ j,n}+∞

n=0 ∈ l2 for j =
1,2. Then there exists a unique quintuple (q;h1,h2,H1,H2) ∈ L2(0,π)×R

4 such that

a0−a′0 =
2
π

(h1−h2), H1 = H2 +h2−h1, (1.12)
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a0 = a1,2 , a′0 = a2,2 defined as (1.5), and

{λ 2
n }+∞

n=0 = σ(L1,2), {μ2
j } j∈Λ ⊂ σ(L2,2), {μ2

j } j∈Λc ⊂ σ(L1,1). (1.13)

Conversely, if a quintuple (q;h1,h2,H1,H2)∈L2(0,π)×R4 satisfies (1.12)–(1.13),
then (1.8)–(1.11) all hold.

REMARK 1.2. The above result provides an existence-uniqueness for inverse spec-
tral problems, which can be regarded as a generalization of the results in [12, 13]. The
similar result for the Dirichlet-Robin boundary conditions can be obtained, according
to the line of the paper.

REMARK 1.3. The assumption that the potential is of L2(0,π) is necessary, which
enables us to use interpolation in the Paley-Wiener class using the results of [14].

The technique, used to prove the above theorem, is based on Levitan-Gasymov’s
theorem [6, Theorem 3.4.2] which gives a necessary and sufficient condition for two
sequences of real numbers to be two spectra of BVPs L1,2 and L2,2 , respectively. As
concrete applications of it, for L2 potential q in (1.1), we shall establish a variety of
the theorem for treating our problem.

The paper is organized as follows. In Section 2, we shall give necessary prelimi-
naries. Section 3 is to give the proof of Theorem 1.1.

2. Preliminary

In this section, we shall establish a variety of the existence-uniqueness theorem
of Levitan-Gasymov [6] for inverse Sturm-Liouville problems for the case that q ∈
L2(0,π) . This will be used later to prove our principal result, Theorem 1.1 above, of
this paper.

Throughout this paper, we will denote by

(1) L a the Paley–Wiener class of entire functions of exponential type � a which
belong to L2(−∞,∞) for real λ ;

(2) S a the sine type class of entire functions of exponential type � a which satisfies
that the zeros of f (z) are separated, and there exist positive constants A, B and
H such that

Aea|y| � | f (x+ iy)| � Bea|y|

whenever x and y are real and |y| � H.

From [14, Corollary 1], if f ∈ S a and {zk}k∈Z are its zeros, then

inf
k∈Z0

| ḟ (zk)| > 0.

Moreover, a function of sine type is bounded on the real axis and so must have infinitely
many zeros. The zeros are all simple and lie in a strip parallel to the real axis.
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Let ϕi(x,λ ) be the solutions of the Sturm-Liouville equation (1.1) satisfying the
initial conditions

ϕi(0,λ ) = 1, ϕ ′
i (0,λ ) = hi (2.1)

for i = 1,2. According to [11, pp. 9–14],

ϕi(x,λ ) = cos(λx)+
∫ x

0
Ki(x,t)cos(λ t)dt

= cos(λx)+Ki(x,x)
sin(λx)

λ
− 1

λ

∫ x

0

∂Ki(x,t)
∂ t

sin(λ t)dt,

where

Ki(x, t) = hi + K̃(x,t)+ K̃(x,−t)+hi

∫ x

t

(
K̃(x,s)− K̃(x,−s)

)
ds,

and K̃(x, t) is the solution of the integral equation

K̃(x, t) =
1
2

∫ x+t
2

0
q(s)ds+

∫ x+t
2

0
dα

∫ x−t
2

0
q(α + β )K̃(α + β ,α −β )dβ .

The solution K̃(x, t) possesses partial derivatives of first order each belonging to L2(0,π)
as a function of each of its variables when the other variable is fixed. Moreover,
K̃(x,0) = 0 and

K̃(x,x) =
1
2

∫ x

0
q(t)dt.

Based on the three spectra of the BVPs L1,1 , L1,2 and L2,2 , we have

LEMMA 2.1. If h1 > h2 and H2 > H1 , then, for all n ∈ N , we have

max{λ 2
n (1,1),λ 2

n (2,2)} < λ 2
n (1,2) < min{λ 2

n+1(1,1),λ 2
n+1(2,2)}. (2.2)

Proof. It is known [6, Lemma 3.1.1] that the eigenvalue λ 2
n of the BVP L(q,h,H)

is increasing at H (h)∈R for each fixed n∈N . On the other hand, it is also known that
the eigenvalues of L(q,h j,Hj) are interlaced with that of L(q,h1,H2), where j = 1,2.
These facts imply that (2.2) holds. �

Before proving Theorem 2.3 below, we first recall an elementary result for the set
{λ 2

n ,αn}+∞
n=0 to be the spectral data for a certain boundary value problem L(q,h1,H2)

with q ∈ L2(0,π) , see [4, Theorem 1.5.2].

LEMMA 2.2. For a set {λ 2
n ,αn}+∞

n=0 to be the spectral data for a certain boundary
value problem L(q,h1,H2) with q ∈ L2(0,π) , it is necessary and sufficient that the
following relations are satisfied

λ 2
n = n2 +a0 + εn, αn =

π
2

+
κn

n
,

αn > 0, λ 2
n �= λ 2

m (n �= m),
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where {εn}+∞
n=0 , {κn}+∞

n=0 ∈ l2 , a0 = 2
π

(
h1 +H2 + 1

2

∫ π
0 q(t)dt

)
and αn is the normal-

izing constant corresponding to the eigenvalue λ 2
n (1,2) , which is defined by

αn =
∫ π

0
ϕ2

1 (x,λ 2
n )dx. (2.3)

Here ϕ1(x,λ 2
n ) is the eigenfunction corresponding to eigenvalue λ 2

n , which satisfies
the initial-value conditions (2.1) for i = 1 .

The following theorem is the reformulation of Levitan-Gasymov’s theorem [6,
Theorem 3.4.2] that is used in the proof of Theorem 1.1.

THEOREM 2.3. Let two sequences {λ 2
n }+∞

n=0 and {μ2
n}+∞

n=0 satisfy the following
conditions that

−∞ < μ2
0 < λ 2

0 < μ2
1 < λ 2

1 < μ2
2 < λ 2

2 < · · · < μ2
n < λ 2

n < · · · (2.4)

and

λ 2
n = n2 +a0 + σ1,n, (2.5)

μ2
n = n2 +a′0 + σ2,n (2.6)

with a0 > a′0, where {σ j,n}+∞
n=0 ∈ l2 for j = 1,2. Then necessary and sufficient condi-

tion for sequences {λ 2
n }+∞

n=0 and {μ2
n}+∞

n=0 to be the eigenvalues of two BVPs L(q,h1,H2)
and L(q,h2,H2), respectively, is that

μ2
n −λ 2

n = a′0−a0 +
σn

n
(2.7)

with {σn}+∞
n=0 ∈ l2 and h2 − h1 = π(a′0 − a0)/2, where the tetrad (q;h1,h2,H2) ∈

L2(0,π)×R3.

Proof. Necessity. We construct αn by means of the following formula

αn :=
h2−h1

μ2
n −λ 2

n

+∞

∏
k=0

′
(

1+
λ 2

k − μ2
k

μ2
k −λ 2

n

)
(2.8)

with n∈N, where ∏+∞
k=0

′ means that the factor k = n is absent from the infinite product.
We shall prove that, for all n ∈ N ,

αn =
π
2

+
κn

n
> 0 (2.9)

with {κn}+∞
n=0 ∈ l2 .

By virtue of (2.7) and the assumption of h2−h1 = π(a′0−a0)/2, we have

h2−h1

μ2
n −λ 2

n
=

π
2

+
κ̃n

n
, (2.10)
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where {κ̃n}∞
n=0 ∈ l2 . Let

Ψ(λn) =
+∞

∏
k=0

′
(

1+
λ 2

k − μ2
k

μ2
k −λ 2

n

)
. (2.11)

Now we estimate the asymptotics of Ψ(λn) . Using (2.5)–(2.7), we arrive at

∣∣∣∣λ 2
k − μ2

k

μ2
k −λ 2

n

∣∣∣∣ =
|a′0−a0− σk

k |
|μk + λn| · |μk −λn|

�
|a′0−a0− σk

k |
λn|μk −λn|

� C0

n
< 1 (2.12)

for sufficiently large n and k �= n , where C0 denotes a positive constant. Moreover, by
the hypothesises of Theorem 2.3, we have

1+
λ 2

k − μ2
k

μ2
k −λ 2

n
=

λ 2
k −λ 2

n

μ2
k −λ 2

n
> 0 (2.13)

for all k ∈ N and k �= n . Therefore, in terms of (2.12) and (2.13), the identity (2.11)
can be rewritten as the following form (see also [6, p. 33])

lnΨ(λn) =
+∞

∑
k=0

′
ln

(
1+

λ 2
k − μ2

k

μ2
k −λ 2

n

)

= −
+∞

∑
k=0

′
[

+∞

∑
p=1

(−1)p

p

(
λ 2

k − μ2
k

μ2
k −λ 2

n

)p
]

=
+∞

∑
k=0

′ λ 2
k − μ2

k

μ2
k −λ 2

n
+

+∞

∑
k=0

′ +∞

∑
p=2

(−1)p+1

p

(
λ 2

k − μ2
k

μ2
k −λ 2

n

)p

, (2.14)

where ∑+∞
k=0

′ means that the factor k = n is absent from the sum. Here, we have used
an elementary result

ln(1+ x) =
+∞

∑
k=1

(−1)p+1

p
xp for |x| < 1.

According to [6, Lemma 2.2.1], we obtain

+∞

∑
k=0

′
∣∣∣∣λ 2

k − μ2
k

μ2
k −λ 2

n

∣∣∣∣
p

� M
ap

np (2.15)

for p � 2, where a = max{|μ2
k − λ 2

k |, k ∈ N} , and M denotes a positive constant
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independent of k and n . On the other hand, we have

∣∣∣∣∣
+∞

∑
k=0

′ +∞

∑
p=2

(−1)p+1

p

(
λ 2

k − μ2
k

μ2
k −λ 2

n

)p
∣∣∣∣∣ =

∣∣∣∣∣
+∞

∑
p=2

(−1)p+1

p

+∞

∑
k=0

′
(

λ 2
k − μ2

k

μ2
k −λ 2

n

)p
∣∣∣∣∣

�
+∞

∑
p=2

1
p

+∞

∑
k=0

′
∣∣∣∣λ 2

k − μ2
k

μ2
k −λ 2

n

∣∣∣∣
p

. (2.16)

Substituting (2.15) into the right-hand side of (2.16), we infer that

∣∣∣∣∣
+∞

∑
k=0

′ +∞

∑
p=2

(−1)p

p

(
λ 2

k − μ2
k

μ2
k −λ 2

n

)p
∣∣∣∣∣ �

+∞

∑
p=2

M
p

ap

np � C
+∞

∑
p=2

ap

np

= C
a2

n2

+∞

∑
p=0

ap

np = O

(
1
n2

)
, (2.17)

where C > 0 is a constant. Applying (2.17) to (2.14), we get

lnΨ(λn) =
+∞

∑
k=0

′ λ 2
k − μ2

k

μ2
k −λ 2

n
+O

(
1
n2

)
(2.18)

for sufficiently large n .

We now consider the asymptotics of the sum appearing in the above formula. Us-
ing (2.5) and (2.7), we get

+∞

∑
k=0

′ λ 2
k − μ2

k

μ2
k −λ 2

n
=

λ 2
0 − μ2

0

μ2
0 −λ 2

n
+

+∞

∑
k=1

′ a0−a′0− σk
k

μ2
k −λ 2

n

= (a0−a′0)
+∞

∑
k=1

′ 1

μ2
k −λ 2

n
+

+∞

∑
k=1

′ σk

k(μ2
k −λ 2

n )
+O

(
1
n2

)

= (a0−a′0)
+∞

∑
k=1

′ 1

μ2
k −λ 2

n
+

1
λ 2

n

+∞

∑
k=1

′ σk

k( μ2
k

λ 2
n
−1)

+O

(
1
n2

)
(2.19)

for sufficiently large n. Clearly, the second series in the right-hand side of (2.19) con-
verges. It follows from (2.5) and (2.19) that

+∞

∑
k=0

′ λ 2
k − μ2

k

μ2
k −λ 2

n
= (a0 −a′0)

+∞

∑
k=1

′ 1

μ2
k −λ 2

n
+O

(
1
n2

)
. (2.20)
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By (2.6), we see that

+∞

∑
k=1

′ 1

μ2
k −λ 2

n
=

+∞

∑
k=1

′ 1
k2 +a′0 + σ2,k −λ 2

n

=
+∞

∑
k=1

′ 1

(k2 −λ 2
n )(1+ a′0+σ2,k

k2−λ 2
n

)

=
+∞

∑
k=1

′ 1
k2−λ 2

n
−

+∞

∑
k=1

′ 1
(k2 −λ 2

n )2

⎛
⎝ a′0 + σ2,k

1+ a′0+σ2,k

k2−λ 2
n

⎞
⎠ . (2.21)

Apparently, ∣∣∣∣∣∣
a′0 + σ2,k

1+ a′0+σ2,k

k2−λ 2
n

∣∣∣∣∣∣ � a1

for all k,n ∈ N and k �= n , where a1 > 0 is a constant. Therefore,

+∞

∑
k=1

′ 1
(k2−λ 2

n )2

(
1+

a′0 + σ2,k

k2 −λ 2
n

)
� a1

+∞

∑
k=1

′ 1
(k2 −λ 2

n )2 . (2.22)

Using [6, Lemma 2.2.1] again, we arrive at

+∞

∑
k=1

′ 1
(k2 −λ 2

n )2 = O

(
1
n2

)
.

This together with (2.21) and (2.22) yields that

+∞

∑
k=1

′ 1

μ2
k −λ 2

n
=

+∞

∑
k=1

′ 1
k2 −λ 2

n
+O

(
1
n2

)
. (2.23)

Now let’s consider the asymptotics of the sum appearing in the right-hand side of (2.23).
By (2.5), we see that

λn = n+ εn, εn = O

(
1
n

)
.

According to [6, p. 36], we infer that

+∞

∑
k=1

′ 1
k2 −λ 2

n
=

1
2λ 2

n
−

(
π

2λn
cot(πλn)+

1
n2−λ 2

n

)

=
1

2λ 2
n
−

(
π cosπ(n+ εn)

2(n+ εn)sinπ(n+ εn)
− 1

(2n+ εn)εn

)

=
1

2λ 2
n
− πεn(2n+ εn)cos(πεn)−2(n+ εn)sin(πεn)

2εn(n+ εn)(2n+ εn)sin(πεn)

= O

(
1
n2

)
.
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This together with (2.19), (2.20) and (2.23) yields that

+∞

∑
k=0

′ λ 2
k − μ2

k

μ2
k −λ 2

n
= O

(
1
n2

)
(2.24)

for sufficiently large n . Applying (2.24) to (2.18), we find that

lnΨ(λn) = O

(
1
n2

)
,

i.e.,

Ψ(λn) = 1+O

(
1
n2

)
(2.25)

for sufficiently large n . Substituting (2.10) and (2.25) into the right-hand side of (2.8)
we obtain that the numbers αn have the following asymptotics

αn =
π
2

+
κn

n
(2.26)

with {κn}+∞
n=0 ∈ l2 .

We shall show that αn > 0 for all n∈N . Let z = λ 2 . By (2.4), the zeros and poles
of the function

m1(λ 2) = m1(z) = − 1
h2−h1

+∞

∏
k=0

μ2
k − z

λ 2
k − z

(2.27)

are alternating. Clearly,

m1(z) →− 1
h2−h1

as |z| → +∞ . From (2.8) and (2.27), we get

1
αn

= Resz=λ 2
n
m1(z).

Then according to [1, 7], we have

m1(λ 2) = m1(z) = − 1
h2−h1

+
+∞

∑
n=0

1
αn(λ 2−λ 2

n )
, (2.28)

where all the αn are of the same sign. Due to αn > 0 for sufficiently large n (cf.
(2.26)), and hence we see that αn > 0 for all n ∈ N. This together with (2.26) shows
that (2.9) holds.

By (2.5), (2.9) and Lemma 2.2, the set {λ 2
n ,αn}+∞

n=0 determines the potential q ∈
L2(0,π) and the coefficients h1 and H2 of the Robin boundary conditions uniquely,
such that the set {λ 2

n }+∞
n=0 is the spectrum of L(q,h1,H2) and αn is the normalizing

constant corresponding to the eigenvalue λ 2
n , which is defined by (2.3).
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As in the proof of [6, Theorem 2.3.1], we define the number h2 by the equality

h2 = h1 +
π(a′0−a0)

2
. (2.29)

We shall prove that {μ2
n}+∞

n=0 = σ(L2,2) . Let the set {μ̃2
n}+∞

n=0 be the spectrum of
L(q,h2,H2) . We shall show that μ2

n = μ̃2
n for all n ∈ N . Recall that ϕi(x,λ ) , i = 1,2,

denote the solutions of (1.1) subject to the initial conditions (2.1). Clearly, the poles
and zeros of the function

m(λ ) = −ϕ ′
2(π ,λ )+H2ϕ2(π ,λ )

ϕ ′
1(π ,λ )+H2ϕ1(π ,λ )

coincide with the numbers {λ 2
n }+∞

n=0 and {μ̃2
n}+∞

n=0 , respectively. According to Lemma
2.1, the sequences {λ 2

n }+∞
n=0 and {μ̃2

n}+∞
n=0 are alternating, and

m(λ ) →−1

as |λ | → +∞ . On the other side, by eq. (2.1.13) in [6] (see also [6, p. 39]), we infer
that

1
αn

=
1

h2−h1
Resλ=λ 2

n
m(λ ).

By [1, 7], we can see that

1
h2−h1

m(λ ) = − 1
h2−h1

+
+∞

∑
n=0

1
αn(λ 2−λ 2

n )
.

This together with (2.28) shows that

m1(λ 2) = m1(z) =
1

h2−h1
m(λ ). (2.30)

The relation (2.30) implies that μ2
n = μ̃2

n for all n∈N . Basing on the above discussions,
we conclude that the set {μ2

n}+∞
n=0 is the spectrum of L(q,h2,H2) .

Sufficiency. If there exists (q;h1,h2,H2) ∈ L2(0,π)×R
3 such that {λ 2

n }+∞
n=0 =

σ(L(q;h1,H2)) and {μ2
n}+∞

n=0 = σ(L(q;h2,H2)), then by (1.6)–(1.7) (see also [11, p.
93]), we have

λn =n+
d(1,2)

n
+

d(n)
n

+
δ1,n

n2 , (2.31)

μn =n+
d(2,2)

n
+

d(n)
n

+
δ2,n

n2 , (2.32)

where {δi,n}+∞
n=0 ∈ l2 and

d(i,2) =
1
π

(
hi +H2 +

1
2

∫ π

0
q(t)dt

)
, (2.33)

d(n) =
1
2π

∫ π

0
q(t)cos(2nt)dt (2.34)

for i = 1,2. Using (2.31)–(2.34), we easily see that (2.5)–(2.7) hold.
On the other hand, by Lemma 2.1 and the assumption of h2 > h1 , we arrive at

(2.4). This completes the proof of Theorem 2.3. �
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3. The proof of Theorem 1.1

In this section, based on Theorem 2.3, we give the proof of Theorem 1.1. Recall
that ϕi(x,λ ) are the solutions of the Sturm-Liouville equation (1.1) which satisfy the
initial-value conditions (2.1) for i = 1,2. According to [5], the characteristic functions
fi, j(λ ) := ϕ ′

i (π ,λ )+Hjϕi(π ,λ ) of BVPs Li. j behave asymptotically as follows

fi, j(λ ) = −λ sin(λ π)+
π
2

ai, j cos(λ π)+ αi, j(λ ), (3.1)

where ai, j are defined by (1.5) and αi, j(λ ) ∈ L π for i, j = 1,2. It is well known
[4, p. 6] that the Wronskian ϕ1(x,λ )ϕ ′

2(x,λ )−ϕ2(x,λ )ϕ ′
1(x,λ ) does not depend on

x ∈ [0,π ] . It follows from (2.1) that

h2−h1 =
∣∣∣∣ ϕ1(π ,λ ) ϕ2(π ,λ )
ϕ ′

1(π ,λ ) ϕ ′
2(π ,λ )

∣∣∣∣
=

1
H1−H2

∣∣∣∣ ϕ ′
1(π ,λ )+H1ϕ1(π ,λ ) ϕ ′

1(π ,λ )+H2ϕ1(π ,λ )
ϕ ′

2(π ,λ )+H1ϕ2(π ,λ ) ϕ ′
2(π ,λ )+H2ϕ2(π ,λ )

∣∣∣∣ . (3.2)

This together with (1.12) and (3.1) yields∣∣∣∣ f1,1(λ ) f1,2(λ )
f2,1(λ ) f2,2(λ )

∣∣∣∣ =
π2

4
(a0−a′0)

2. (3.3)

The above identity is crucial in the proof of Theorem 1.1.
We are now in a position to prove Theorem 1.1.

Proof. Let two sequences {λ 2
n }+∞

n=0 and {μ2
n}+∞

n=0 satisfy (2.4)–(2.7). By Theo-
rem 2.3, there exists a unique tetrad (q̂; ĥ1, ĥ2,Ĥ2) ∈ L2(0,π)×R3, such that the set
{λ 2

n }+∞
n=0 is the spectrum of BVP L(q̂, ĥ1,Ĥ2)(=: L̂1,2) and {μ2

n}+∞
n=0 is the spectrum of

BVP L(q̂, ĥ2,Ĥ2)(=: L̂2,2) .
For easy comprehension of the readers, we denote by

λ 2
n = γ2

n (1,2), μ2
n = γ2

n (2,2).

In the following, we shall prove the theorem throughout three steps.

Step 1. Find (q;h1,h2,H2) ∈ L2(0,π)×R3.
Firstly, we need to find the spectrum of σ(L̂1,1) by q̂(x) and ĥ1, ĥ2,Ĥ2 . We

assume that 0 �∈ {γ2
k (2,2)}+∞

k=0 , otherwise, we can shift the spectral parameter λ 2 →
λ 2 + c with c > 0. By using [4, Theorem 1.1.4], we have

f̂2,2(λ ) := π(γ2
0 (2,2)−λ 2)

+∞

∏
k=1

(γ2
k (2,2)−λ 2)

k2 ,

which is the characteristic function of BVP L̂2,2. Let ϕ̂2(π ,λ ) denote the solution of
Eq. (1.1), with replacing q by q̂, subject to the initial conditions (2.1), with replacing
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hi by ĥ2 . Taking [5] into account, we also have

f̂2,2(λ ) =ϕ̂ ′
2(π ,λ )+ Ĥ2ϕ̂2(π ,λ )

=−λ sin(λ π)+ (
π
2

a′0)cos(λ π)+ ψ̂2,2(λ ),

where ψ̂2,2(λ ) ∈ L π and

a′0 =
2
π

(
ĥ2 + Ĥ2 +

1
2

∫ π

0
q̂(t)dt

)
.

Similarly, according to [4, Theorem 1.1.4], we have

f̂1,2(λ ) = π(γ2
0 (1,2)−λ 2)

+∞

∏
k=1

(γ2
k (1,2)−λ 2)

k2 , (3.4)

and

f̂1,2(λ ) = ϕ̂ ′
1(π ,λ )+ Ĥ2ϕ̂1,2(π ,λ )

= −λ sin(λ π)+ (
π
2

a0)cos(λ π)+ ψ̂1,2(λ ), (3.5)

where ψ̂1,2(λ ) ∈ L π and

a0 =
2
π

(
ĥ1 + Ĥ2 +

1
2

∫ π

0
q̂(t)dt

)
.

By (3.2)–(3.3), under the condition that Ĥ1 = ĥ2− ĥ1 + Ĥ2, we have∣∣∣∣ f̂1,1(λ ) f̂1,2(λ )
f̂2,1(λ ) f̂2,2(λ )

∣∣∣∣ =
π2

4
(a0 −a′0)

2, (3.6)

where f̂i, j(λ ) are the characteristic functions of BVPs L̂i, j for i, j = 1,2. By (3.1), we
have

f̂1,1(λ ) = −λ sin(λ π)+ (
π
2

a′0)cos(λ π)+ ψ̂1,1(λ ), (3.7)

where ψ̂1,1(λ ) ∈ L π .
Let us consider an interpolation problem in the Paley-Wiener space L π . We

choose {γ2
k (1,2)}+∞

k=0 as the nodes of interpolation for finding the function ψ̂1,1(λ ) in
(3.7), and the values at the nodes, by (3.6), we find

ψ̂1,1(γk(1,2)) = γk(1,2)sin(γk(1,2)π)− (a′0π/2)cos(γk(1,2)π)− π2(a0−a′0)
2

4 f̂2,2(γk(1,2))
.

(3.8)
Now, we estimate the asymptotics of ψ̂1,1(γk(1,2)) . Using the asymptotics of the eigen-
values (see (1.9)), we get

γk(1,2) = k+
a0

2k
+

α1,k

k
,
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it follows that ⎧⎪⎪⎨
⎪⎪⎩

sin(γk(1,2)π) = (−1)k a0

k
+

δ1,k

k
,

cos(γk(1,2)π) = (−1)k +
δ2,k

k
,

(3.9)

where {α1,k}+∞
k=−∞,k �=0,{δ j,k}+∞

k=−∞,k �=0 ∈ l2 for j = 1,2. From (3.8)–(3.9), we get

{ψ̂1,1(γk(1,2))}+∞
k=−∞,k �=0 ∈ l2. (3.10)

Let

ω(λ ) =
λ f̂1,2(λ )

λ 2− γ2
0 (1,2)

.

Then, by (3.5), the function ω(λ ) is of sine-type. Therefore, taking (3.4) and (3.10)
into account and utilizing Theorem A in [8], we infer

ψ̂1,1(λ ) = ω(λ )
+∞

∑
k=−∞,k �=0

ψ̂1,1(γk(1,2))
dω(λ )

dλ

∣∣∣
λ=γk(1,2)

(λ − γk(1,2))
. (3.11)

According to [8], we mention that the obtained ψ̂1,1(λ ) is the unique solution of
the following interpolation problem: given the nodes {γk(1,2)}+∞

k=−∞,k �=0 and the values

{ψ̂1,1(γk(1,2))}+∞
k=−∞,k �=0 at these nodes, find ψ̂1,1(λ ) .

We substitute (3.11) into (3.7) and find f̂1,1(λ ) . We denote by {γk(1,1)}+∞
k=−∞ the

zeros of f̂1,1(λ ). Then

f̂1,1(λ ) = π(γ2
0 (1,1)−λ 2)

+∞

∏
k=0

(γ2
k (1,1)−λ 2)

k2 , (3.12)

and
γ2
k (1,1) = k2 +a′0 + α̂k, (3.13)

where {α̂k}+∞
k=0 ∈ l2 . By (1.6)–(1.7) and taking Theorem 2.3 into account, we have⎧⎪⎪⎨

⎪⎪⎩
γ2
k (1,1)− γ2

k (1,2) = a′0−a0 +
β̂1,k

k
,

γ2
k (2,2)− γ2

k (1,2) = a′0−a0 +
β̂2,k

k
,

(3.14)

where {β̂ j,k}+∞
k=0 ∈ l2 for j = 1,2. Moreover, by Lemma 2.1, we also obtain the inter-

lacing property as follows

max{γ2
k (1,1),γ2

k (2,2)} < γ2
k (1,2) < min{γ2

k+1(1,1),γ2
k+1(2,2)} < γ2

k+1(1,2),

that is, each of the intervals (γ2
k (1,2),γ2

k+1(1,2)) exactly contains γ2
k+1(1,1) and

γ2
k+1(2,2) . Therefore, we define two sequences {λ 2

k (1,2)}+∞
k=0 and {λ 2

k (2,2)}+∞
k=0 as

follows

λ 2
k (1,2) = γ2

k (1,2) = λ 2
k , k ∈ N,
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λ 2
k (2,2) = γ2

k (2,2) = μ2
k , k ∈ Λ,

λ 2
k (2,2) = γ2

k (1,1), k ∈ Λc.

From (1.9), (1.10) and (3.13)–(3.14), it is easy to see that two sequences {λ 2
k (1,2)}+∞

k=0
and {λ 2

k (2,2)}+∞
k=0 satisfy the conditions

λ 2
k (1,2) = k2 +a0 + σk,1,

λ 2
k (2,2) = k2 +a′0 + σk,2,

and
λ 2

k (1,2)−λ 2
k (2,2) = a0−a′0 +

σk,3

k
,

where {σk, j}+∞
k=0 belong to l2 for j = 1,2,3. Thus, two sequences {λ 2

k (1,2)}+∞
k=0 and

{λ 2
k (2,2)}+∞

k=0 satisfy the conditions of Theorem 2.3. Therefore, there exists a unique
tetrad (q;h1,h2,H2) ∈ L2(0,π)×R3 which generates two Robin BVPs L1,2 and L2,2

with the spectra {λ 2
k (1,2)}+∞

k=0 and {λ 2
k (2,2)}+∞

k=0, respectively. This shows that

{λ 2
k }+∞

k=0 = σ(L1,2), {μ2
j } j∈Λ ⊂ σ(L2,2). (3.15)

Step 2. Prove {μ2
n}n∈Λc ⊂ σ(L1,1).

We check that the set {μ2
k }k∈Λc is a part of spectra of L1,1. From [4, Theorem

1.1.4], we have

f1,2(λ ) = π(λ 2
0 (1,2)−λ 2)

+∞

∏
k=1

(λ 2
k (1,2)−λ 2)

k2 , (3.16)

f2,2(λ ) = π(λ 2
0 (2,2)−λ 2)

+∞

∏
k=1

(λ 2
k (2,2)−λ 2)

k2 . (3.17)

By (3.3) and (3.6) we have∣∣∣∣ f1,1(λ ) f1,2(λ )
f2,1(λ ) f2,2(λ )

∣∣∣∣ =
π2

4
(a0−a′0)

2 =
∣∣∣∣ f̂1,1(λ ) f̂1,2(λ )
f̂2,1(λ ) f̂2,2(λ )

∣∣∣∣ . (3.18)

Using (3.4) and (3.16) we obtain f1,2(λ ) ≡ f̂1,2(λ ) . This together with (3.18) yields

( f1,1 f2,2 − f̂1,1 f̂2,2)(λ ) = f1,2(λ )( f2,1 − f̂2,1)(λ ). (3.19)

From the asymptotic expressions of the f2,1(λ ) and f̂2,1(λ ), we have

( f̂2,1 − f2,1)(λ ) = ϕ0(λ ),

where ϕ0(λ ) ∈ L π .
On the other hand, we also have

f2,2(γ2
k (1,1)) = f̂1,1(γ2

k (1,1)) = 0, k ∈ Λc,

f2,2(μ2
k ) = f̂2,2(μ2

k ) = 0, k ∈ Λ.
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This, together with (3.16), (3.17) and (3.19), implies that f2,1(λ 2
k (2,2))= f̂2,1(λ 2

k (2,2))
for k ∈ N . It follows from [14] that f̂2,1(λ ) = f2,1(λ ) for all λ ∈ C . Therefore, from
(3.19) we get

f1,1(μ2
k ) = 0 for all k ∈ Λc,

since f̂2,2(μ2
k ) = 0. This shows that {μ2

k }k∈Λc ⊂ σ(L1,1).
By the above discussions, we have found a quintuple (q;h1,h2,H1,H2)∈L2(0,π)×

R4 such that (1.12)–(1.13) remain true.

Step 3. Uniqueness. If there exists another quintuple (q̃; h̃1, h̃2,H̃1,H̃2)∈L2(0,π)×
R4 such that (1.12) holds with replacing hi by h̃i , Hj by H̃j for i, j = 1,2 and

{λ 2
n }+∞

n=0 = σ(L̃1,2), {μ2
j } j∈Λ ⊂ σ(L̃2,2), {μ2

j } j∈Λc ⊂ σ(L̃1,1). (3.20)

By (1.12), we easily conclude that h̃1 > h̃2 and H̃1 < H̃2 . Using (3.2), we have∣∣∣∣ f1,1(λ ) f1,2(λ )
f2,1(λ ) f2,2(λ )

∣∣∣∣ =
π2

4
(a0−a′0)

2 =
∣∣∣∣ f̃1,1(λ ) f̃1,2(λ )
f̃2,1(λ ) f̃2,2(λ )

∣∣∣∣ . (3.21)

Note that f1,2(λ ) ≡ f̃1,2(λ ), which together with (3.21) yields

( f1,1 f2,2− f̃1,1 f̃2,2)(λ ) = f1,2(λ )( f2,1 − f̃2,1)(λ ) (3.22)

for all λ ∈ C . Since f2,2(μ2
n ) = f̃2,2(μ2

n ) = 0 for n ∈ Λ and f1,1(μ2
n ) = f̃1,1(μ2

n ) = 0
for n ∈ Λc, it follows that f2,1(μ2

n ) = f̃2,1(μ2
n ) for all n ∈ N . According to [14], we

obtain f2,1(λ ) = f̃2,1(λ ) for all λ ∈ C . Therefore, taking into account (3.22) we have

( f1,1 f2,2 − f̃1,1 f̃2,2)(λ ) ≡ 0,

i.e.,
f1,1(λ ) f2,2(λ ) ≡ f̃1,1(λ ) f̃2,2(λ ). (3.23)

We denote by {λ̃n(i, j)}+∞
n=0 the zeros of f̃i, j(λ ) for i, j = 1,2. By (3.20) and

(3.23), we infer that

{λ 2
n (1,1)}n∈Λ∪{λ 2

n (2,2)}n∈Λc = {λ̃ 2
n (1,1)}n∈Λ ∪{λ̃ 2

n (2,2)}n∈Λc.

Applying Lemma 2.1 to the above equation, we find that

{λ 2
n (1,1)}n∈Λ = {λ̃ 2

n (1,1)}n∈Λ, {λ 2
n (2,2)}n∈Λc = {λ̃ 2

n (2,2)}n∈Λc.

This together with (3.20) shows that f1,1(λ ) ≡ f̃1,1(λ ) and f2,2(λ ) ≡ f̃2,2(λ ). To sum
up, we conclude that fi, j(λ ) = f̃i, j(λ ) for i, j = 1,2. From [10, Corollary 3.3], it de-
cides the uniqueness of the solution of our inverse problem.

Conversely, if the tetrad (q;h1,h2,H2)∈ L2(0,π)×R3 satisfies (1.12)–(1.13), then
from Lemma 2.1 and Theorem 2.3 we easily check that (1.8)–(1.11) all hold. This
completes the proof. �
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