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ON THE Aα SPECTRAL RADIUS OF
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Abstract. Let A(G) and D(G) be the adjacency matrix and the diagonal matrix with outdegrees
of vertices of a digraph G , respectively. In 2017, Nikiforov proposed to study the convex com-
binations of the adjacency matrix and diagonal matrix of the degrees of undirected graphs. In
2019, Liu et al. extended the definition to digraphs. For any real α ∈ [0,1] , the matrix Aα(G)
of a digraph G is defined as Aα (G) = αD(G)+(1−α)A(G). The largest modulus of the eigen-
values of Aα(G) is called the Aα spectral radius of G , denoted by λα (G) . This paper proves
some extremal results about the Aα spectral radius λα (G) that generalize previous results about
λ0(G) and λ 1

2
(G) . We mainly characterize the extremal digraph with the maximum (or min-

imum) Aα spectral radius among all ∞̃ -digraphs and θ̃ -digraphs on n vertices. Furthermore,
we determine the digraphs with the second and the third minimum Aα spectral radius among all
strongly connected bicyclic digraphs. For 0 � α � 1

2 , we also determine the digraphs with the
second, the third and the fourth minimum Aα spectral radius among all strongly connected di-
graphs on n vertices. Finally, we characterize the digraph with the minimum Aα spectral radius
among all strongly connected bipartite digraphs which contain a complete bipartite subdigraph.

1. Introduction

Let G = (V (G),E(G)) be a digraph with vertex set V (G) = {v1,v2, . . . ,vn} and
arc set E(G) . If there is an arc from vi to v j , we indicate this by writing (vi,v j) , call
v j the head of (vi,v j) , and vi the tail of (vi,v j) , respectively. A digraph G is called
strongly connected if for every pair of vertices vi,v j ∈ V (G) , there exists a directed
path from vi to v j and a directed path from v j to vi . For any vertex vi , let N+

i =
{v j ∈ V (G) | (vi,v j) ∈ E(G)} denote the out-neighbors of vi . Let d+

i = |N+
i | denote

the outdegree of the vertex vi in the digraph G . Let Pn and Cn denote the directed

path and the directed cycle on n vertices, respectively. Let
←→
Kn denote the complete

digraph on n vertices in which for any two distinct vertices vi,v j ∈ V (
←→
Kn ) , there are

arcs (vi,v j) and (v j,vi)∈E(
←→
Kn ) . Suppose Pk = v1v2 . . .vk , we call v1 the initial vertex

of the directed path Pk , and vk the terminal vertex of the directed path Pk . All digraphs
considered in this paper are simple digraphs, i.e., without loops and multiple arcs.
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Let G = (V (G),E(G)) be a digraph, if V (G) =U ∪W , U ∩W = /0 and for any arc
(vi,v j) ∈ E(G) , vi ∈U and v j ∈W or vi ∈W and v j ∈U , then the digraph G is called

a bipartite digraph. Let
←→
Kp,q be a complete bipartite digraph obtained from a complete

bipartite undirected graph Kp,q by replacing each edge with a pair of oppositely directed
arcs.

The ∞-digraph [11] is a digraph on n vertices obtained from two directed cycles
Ck+1 and Cl+1 by identifying a vertex of Ck+1 with a vertex of Cl+1 , denoted by
∞(k, l) , 1 � k � l and k+ l +1 = n (see Figure 1 when s = 2). The θ -digraph consists
of three directed paths Pa+2 , Pb+2 , and Pc+2 such that the initial vertex of Pa+2 and
Pb+2 is the terminal vertex of Pc+2 , and the initial vertex of Pc+2 is the terminal vertex
of Pa+2 and Pb+2 , denoted by θ (a,b,c) , where a � b and a+b+c+2= n (see Figure
2 when s = 2 ).

A digraph G is called a strongly connected bicyclic digraph if G is strongly con-
nected and |E(G)|= |V (G)|+1. Note that each strongly connected bicyclic digraph is
either a θ -digraph or a ∞-digraph.

For a digraph G , let A(G) = (ai j)n×n be the adjacency matrix of G , where ai j = 1
whenever (vi,v j) ∈ E(G) , and ai j = 0 otherwise. Let D(G) be the diagonal matrix
with outdegrees of vertices of G . The sum of A(G) and D(G) is called the signless
Laplacian matrix Q(G) , which has been extensively studied since then. More detailed
information about this research see [6, 9, 19, 20], and their references. Nikiforov [16]
proposed to study the convex linear combinations of the adjacency matrix and diagonal
matrix of degrees of undirected graphs, which give a unified theory of adjacency spec-
tral and signless Laplacian spectral theories. Liu et al. [14] extended the definition to
digraphs, they proposed to study the convex combinations Aα(G) of A(G) and D(G)
of the digraph G , which is defined as

Aα(G) = αD(G)+ (1−α)A(G), 0 � α � 1.

Obviously,

A(G) = A0(G), D(G) = A1(G), and Q(G) = 2A 1
2
(G).

Since A 1
2
(G) is essentially equivalent to Q(G) , in this paper we take A 1

2
(G) as an

exact substitute for Q(G) . The spectral radius of Aα(G) , i.e., the largest modulus of
the eigenvalues of Aα(G) , is called the Aα spectral radius of G , denoted by λα(G) .
The Aα spectral radius of undirected graphs has been studied in the literature, see
[13, 15, 17, 18, 22]. Recently, Liu et al. [14] determined the unique digraph which
attains the maximum (resp. minimum) Aα spectral radius among all strongly con-
nected bicyclic digraphs. Xi et al. [21] characterized the digraphs which attain the
maximum or minimum Aα spectral radius among all strongly connected digraphs with
given girth, clique number, vertex connectivity and arc connectivity, respectively. Ganie
and Baghipur [3] obtained some lower and upper bounds on the Aα spectral radius of
digraphs and characterized the extremal digraphs attaining these bounds. We are inter-
ested in the Aα spectral radius of some other strongly connected digraphs.

If α = 1, A1(G) = D(G) the diagonal matrix with outdegrees of vertices of the di-
graph G which is not interesting. So we only consider the cases 0 � α < 1 in the rest of
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this paper. If G is a strongly connected digraph, then it follows from the Perron Frobe-
nius Theorem [5] that λα(G) is an eigenvalue of Aα(G) , and there is a unique positive
unit eigenvector corresponding to λα(G) . The positive unit eigenvector corresponding
to λα(G) is called the Perron vector of Aα(G) .

Spectral graph theory is a fast growing branch of algebraic graph theory. The most
studied problems are those of characterization of extremal graphs, such as determine the
maximum or minimum spectral (signless Laplacian spectral) radius over various fami-
lies of graphs. Recently, in [12], Lin et al. determined the digraphs with the minimum
A0 spectral radius among all strongly connected digraphs with given clique number and
girth. In [8], Lin and Drury gave the extremal digraphs with the maximum A0 spectral
radius among all strongly connected digraphs with given arc connectivity. In [10], Lin
and Shu characterized the digraph which has the maximum A0 spectral radius among
all strongly connected digraphs with given dichromatic number. In [6], Hong and You
determined the digraph which achieves the minimum (or maximum) A 1

2
spectral ra-

dius among all strongly connected digraphs with some given parameters such as clique
number, girth or vertex connectivity. In [20], Xi and Wang determined the extremal
digraph with the maximum A 1

2
spectral radius among all strongly connected digraphs

with given dichromatic number. The main goal of this paper is to extend some results
on maximum or minimum A0 spectral radius and A 1

2
spectral radius for all α ∈ [0,1) .

The rest of the paper is structured as follows. In Section 2, we will determine
the extremal digraphs which achieve the maximum and minimum Aα spectral radius
among all ∞̃ -digraphs and θ̃ -digraphs (their definitions can be found in Section 2). In
Section 3, for 0 � α � 1

2 , we determine the digraphs which achieve the second, the
third and the forth minimum Aα spectral radius of strongly connected digraphs on n
vertices. For general case, we propose a conjecture. In Section 4, we determine the
extremal digraph which attains the minimum Aα spectral radius of strongly connected
bipartite digraphs which contain a complete bipartite subdigraph. The results in our
paper generalize some results in [2, 4, 7, 9, 14].

2. The Aα spectral radius of ∞̃ -digraphs and θ̃ -digraphs

We have known the θ -digraphs and ∞-digraphs. The generalized strongly con-
nected ∞̃ -digraph is a digraph consisting of s (s � 2) directed cycles with just a vertex

in common (as shown in Figure 1), denoted by ∞̃(k1,k2, . . . ,ks) such that
s
∑
i=1

ki +1 = n .

Without loss of generality, let 1 � ki � ki+1 for i = 1,2, . . . ,s− 1. The generalized
strongly connected θ̃ -digraph consists of s+1 (s � 2) directed paths Pk1+2, . . . ,Pks+2

and Pl1+2 such that the initial vertex of Pk1+2, . . . ,Pks+2 is the terminal vertex of Pl1+2 ,
and the initial vertex of Pl1+2 is the terminal vertex of Pk1+2, . . . ,Pks+2 (as shown in

Figure 2), denoted by θ̃ (k1,k2, . . . ,ks, l1) such that
s
∑
i=1

ki + l1 +2 = n . Without loss of

generality, let 0 � ki � ki+1 for i = 1,2, . . . ,s− 1. Note that any θ̃ (k1,k2, . . . ,ks, l1)-
digraph contains s directed cycles.

Guo and Liu [4] characterized the digraph which attains the minimum and max-
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Figure 1: The digraph ∞̃(k1,k2, . . . ,ks) .
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Figure 2: The digraph θ̃(k1,k2, . . . ,ks, l1) .

imum A0 spectral radius among all θ̃ -digraphs and ∞̃ -digraphs on n vertices, re-
spectively. Li et al. [9] determined that the digraph which attains the minimum and
maximum A 1

2
spectral radius among all θ̃ -digraphs and ∞̃ -digraphs on n vertices,

respectively. We generalize their results to 0 � α < 1. Moreover, Li and Zhou [7]
characterized digraphs which achieve the second and the third minimum A 1

2
spectral

radius among all strongly connected bipartite digraphs. We also generalize their results
to 0 � α < 1.

LEMMA 2.1. ([5]) Let M be an n×n nonnegative irreducible matrix with spec-
tral radius ρ(M) and row sums s1,s2, . . . ,sn . Then

min
1�i�n

si � ρ(M) � max
1�i�n

si.

Moreover, one of the equalities holds if and only if the row sums of M are all equal.

LEMMA 2.2. For any p,q ∈ {1,2, . . . ,s} , if 2 � kp � kq , then we have

λα(∞̃(k1,k2, . . . ,kp−1,kp−1,kp+1, . . . ,kq−1,kq +1,kq+1, . . . ,ks))
> λα(∞̃(k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks)).

Proof. Let G = ∞̃(k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks) be a digraph
shown in Figure 1. Suppose X = (xv,x1,1,x1,2, . . . ,x1,k1 ,x2,1,x2,2, . . . ,x2,k2 , . . . ,xs,1,
xs,2, . . . ,xs,ks)

T is the Perron vector of Aα(G) , where xv corresponds to v , xi, j cor-
responds to ui j for i = 1,2, . . . ,s and j = 1,2, . . . ,ki , respectively. Since Aα(G)X =
λα(G)X , one can easily see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λα(G)x1,i1 = αx1,i1 +(1−α)x1,i1+1, i1 = 1,2, . . . ,k1−1,

λα(G)x2,i2 = αx2,i2 +(1−α)x2,i2+1, i2 = 1,2, . . . ,k2−1,
...

λα(G)xs,is = αxs,is +(1−α)xs,is+1, is = 1,2, . . . ,ks−1,

λα(G)xv = αsxv +(1−α)(x1,1 + x2,1 + · · ·+ xs,1),
λα(G)x j,k j = αx j,k j +(1−α)xv, j = 1,2, . . . ,s.
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Then we have

x j,k j =
(

λα(G)−α
1−α

)k j−1

x j,1, j = 1,2, . . . ,s.

Furthermore,

xv =
(

λα(G)−α
1−α

)k j

x j,1, j = 1,2, . . . ,s.

Thus, we have(
λα(G)−αs

1−α

)
xv =

(
λα(G)−α

1−α

)−k1

xv +
(

λα(G)−α
1−α

)−k2

xv

+ · · ·+
(

λα(G)−α
1−α

)−ks

xv.

By the Perron-Frobenius Theorem, we have xv > 0, therefore(
λα(G)− sα

1−α

)(
λα(G)−α

1−α

)n−1

=
s

∑
i=1

(
λα(G)−α

1−α

)n−1−ki

.

Let G′ = θ̃(k1,k2, . . . ,kp−1,kp− 1,kp+1, . . . ,kq−1,kq + 1,kq+1, . . . ,ks) . Similarly, we
have(

λα(G′)− sα
1−α

)(
λα(G′)−α

1−α

)n−1

=
s

∑
i=1,i	=p

i	=q

(
λα(G′)−α

1−α

)n−1−ki

+
(

λα(G′)−α
1−α

)n−kp

+
(

λα(G′)−α
1−α

)n−2−kq

.

Let f (x) =
(

x−sα
1−α

)(
x−α
1−α

)n−1−
s
∑
i=1

(
x−α
1−α

)n−1−ki ,

g(x) =
(

x− sα
1−α

)(
x−α
1−α

)n−1

−
s

∑
i=1,i	=p

i	=q

(
x−α
1−α

)n−1−ki

−
(

x−α
1−α

)n−kp

−
(

x−α
1−α

)n−2−kq

.

It is easy to see that λα(G) is the largest real root of f (x) = 0. Similarly, λα(G′)
is the largest real root of g(x) = 0. Since for all x > 1

f (x)−g(x) =
((

x−α
1−α

)
−1

)((
x−α
1−α

)n−1−kp

−
(

x−α
1−α

)n−2−kq
)

> 0.
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Since the minimum row sum of Aα(G′) is 1, and the row sums of Aα(G′) are not all
equal, by Lemma 2.1, then we have λα(G′) > 1. Hence, we get

λα(∞̃(k1,k2, . . . ,kp−1,kp−1,kp+1, . . . ,kq−1,kq +1,kq+1, . . . ,ks))
> λα(∞̃(k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks)),

which prove the result. �
By Lemma 2.2, we immediately obtain the following theorem.

THEOREM 2.3. Among all ∞̃-digraphs on n vertices, the digraph ∞̃(1,1,1, . . . ,
n−s) is the unique digraph which attains the maximum Aα spectral radius, the digraph
∞̃(a1,a2, . . . ,as) such that ai = 
 n−1

s � and a j = � n−1
s 
 for any i ∈ {1,2, . . . ,s− (n−

1− s
 n−1
s �)} and j ∈ {s− (n− 1− s
 n−1

s �)+ 1, . . . ,s} , is the unique digraph which
attains the minimum Aα spectral radius.

LEMMA 2.4. For any p,q ∈ {1,2, . . . ,s} , if 1 � kp � kq , then we have

λα(θ̃ (k1,k2, . . . ,kp−1,kp−1,kp+1, . . . ,kq−1,kq +1,kq+1, . . . ,ks, l1))

> λα(θ̃ (k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks, l1)).

Proof. Let G = θ̃(k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks, l1) be a di-
graph shown in Figure 2. Similar to the proof of Lemma 2.2, we can know that λα(G)
satisfies the follow equation(

λα(G)− sα
1−α

)(
λα(G)−α

1−α

)n−1

=
s

∑
i=1

(
λα(G)−α

1−α

)n−2−l1−ki

.

Let G′ = θ̃(k1,k2, . . . ,kp−1,kp−1,kp+1, . . . ,kq−1,kq +1,kq+1, . . . ,ks, l1) . Similarly, we
have (

λα(G′)− sα
1−α

)(
λα(G′)−α

1−α

)n−1

=
s

∑
i=1,i	=p

i	=q

(
λα(G′)−α

1−α

)n−2−l1−ki

+
(

λα(G′)−α
1−α

)n−1−l1−kp

+
(

λα(G′)−α
1−α

)n−3−l1−kq

.

Let f (x) =
(

x−sα
1−α

)(
x−α
1−α

)n−1−
s
∑
i=1

(
x−α
1−α

)n−2−l1−ki ,

g(x) =
(

x− sα
1−α

)(
x−α
1−α

)n−1

−
s

∑
i=1,i	=p

i	=q

(
x−α
1−α

)n−2−l1−ki

−
(

x−α
1−α

)n−1−l1−kp

−
(

x−α
1−α

)n−3−l1−kq

.
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It is easy to see that λα(G) is the largest real root of f (x) = 0. Similarly, λα(G′)
is the largest real root of g(x) = 0. Since for all x > 1

f (x)−g(x) =
(

x−α
1−α

)n−1−l1−kp

−
(

x−α
1−α

)n−2−l1−kp

+
(

x−α
1−α

)n−3−l1−kq

−
(

x−α
1−α

)n−2−l1−kq

=
((

x−α
1−α

)
−1

)((
x−α
1−α

)n−2−l1−kp

−
(

x−α
1−α

)n−3−l1−kq
)

> 0.

Since the minimum row sum of Aα(G′) is 1, and the row sums of Aα(G′) are not all
equal, by Lemma 2.1, then we have λα(G′) > 1. Hence, we get

λα(θ̃ (k1,k2, . . . ,kp−1,kp−1,kp+1, . . . ,kq−1,kq +1,kq+1, . . . ,ks, l1))

> λα(θ̃ (k1,k2, . . . ,kp−1,kp,kp+1, . . . ,kq−1,kq,kq+1, . . . ,ks, l1)),

which prove the result. �
Similarly, we have the following lemma.

LEMMA 2.5. If l1 � 1 , then for any p ∈ {1,2, . . . ,s} , we have

λα(θ̃ (k1,k2, . . . ,kp−1,kp +1,kp+1, . . . ,ks, l1−1))

> λα(θ̃ (k1,k2, . . . ,kp−1,kp,kp+1, . . . ,ks, l1)).

By Lemmas 2.4 and 2.5, we immediately obtain the following theorem.

THEOREM 2.6. Among all θ̃ -digraphs on n vertices, the digraph θ̃(0,1,1, . . . ,
n− s,0) is the unique digraph which attains the maximum Aα spectral radius, the
digraph θ̃ (0,1,1, . . . ,1,n− s−1) is the unique digraph which attains the minimum Aα
spectral radius.

LEMMA 2.7. ([21]) Let 0 � α < 1 and G = (V (G),E(G)) be a strongly con-
nected digraph on n vertices, vp,vq be two distinct vertices of V (G) . Suppose that
v1,v2, . . . ,vt ∈ N−vp

\ {N−vq
∪{vq}} , where 1 � t � d−p , and X = (x1,x2, . . . ,xn)T be the

unique positive unit eigenvector corresponding to the Aα spectral radius λα(G) , where
xi corresponds to the vertex vi . Let H = G−{(vi,vp) : i = 1,2 . . . ,t}+ {(vi,vq) : i =
1,2 . . . ,t} . If xq � xp , then λα(H) � λα(G) . Furthermore, if H is strongly connected
and xq > xp , then λα(H) > λα(G) .

LEMMA 2.8. For any θ̃ (k1,k2, . . . ,ks, l1)-digraph, there exists ∞̃(k2,k3, . . . ,ks,
k1 + l1 +1) such that

λα(θ̃ (k1,k2, . . . ,ks, l1)) < λα(∞̃(k2,k3, . . . ,ks,k1 + l1 +1)).
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Proof. Let θ̃ (k1,k2, . . . ,ks, l1) be a digraph shown in Figure 2 and X = (xv,xu,x11,
x12, . . . ,x1k1 ,x21,x22, . . . ,x2k2 , . . . ,xs1,xs2, . . . ,xsks ,y1,y2, . . . ,yl1)

T be the Perron vector

of Aα(θ̃ (k1,k2, . . . ,ks, l1)) , where xu and xv correspond to u and v , respectively,
and xi j correspond to wi j ( i = 1,2, . . . ,s; j = 1,2, . . . ,ki ) and y j correspond to u1 j ,
( j = 1,2, . . . , l1 ) respectively. It is not difficult to see that ∞̃(k2,k3, . . . ,ks,k1 + l1 +
1) ∼= θ̃ (k1,k2, . . . ,ks, l1)−{(w2k2 ,u),(w3k3 ,u), . . . ,(wsks ,u)}+ {(w2k2 ,v),(w3k3 ,v), . . . ,
(wsks ,v)} . Similar to the proof of Lemma 2.2, we have

xv =

(
λα(θ̃ (k1,k2, . . . ,ks, l1))−α

1−α

)l1+1

xu.

Since λα((θ̃ (k1,k2, . . . ,ks, l1)) > 1, we have xv > xu . By Lemma 2.7, we have
λα(∞̃(k2,k3, . . . ,ks,k1 + l1 +1)) > λα(θ̃ (k1,k2, . . . ,ks, l1)) . So we complete the proof.

�

LEMMA 2.9. For any ∞̃(k1,k2, . . . ,ks)-digraph, there exists θ̃ (k1,k2, . . . ,ks−1,
ks−1,0) such that

λα(θ̃ (k1,k2, . . . ,ks−1,ks−1,0)) < λα(∞̃(k1,k2, . . . ,ks)).

Proof. It is not difficult to see that ∞̃(k1,k2, . . . ,ks) ∼= θ̃ (k1,k2, . . . ,ks−1,ks − 1,
0)− {(w1k1 ,u),(w2k2 ,u), . . . ,(ws−1ks−1 ,u)}+ {(w1k1 ,v),(w2k2 ,v), . . . ,(ws−1ks−1 ,v)} .
Similar as the proof of Lemma 2.8, we have λα(∞̃(k1,k2, . . . ,ks−1,ks)) > λα(θ̃ (k1,k2,
. . . ,ks−1,ks−1,0)) . So we complete the proof. �

By Theorems 2.3 and 2.6, Lemmas 2.8 and 2.9, we immediately obtain the follow-
ing theorem.

THEOREM 2.10. Among all θ̃ -digraphs and ∞̃ -digraphs on n vertices, the di-
graph ∞̃(1,1,1, . . . ,n− s) is the unique digraph which attains the maximum Aα spec-
tral radius, the digraph θ̃(0,1,1, . . . ,1,n− s− 1) is the unique digraph which attains
the minimum Aα spectral radius.

REMARK 2.11. If s = 2, then the digraph ∞̃(k1,k2, . . . ,ks) is ∞(k1,k2) , and the
digraph θ̃ (k1,k2, . . . ,ks, l1) is θ (k1,k2, l1) . Liu et al. [14] proved that θ (0,1,n− 3)
and ∞(1,n−2) are the digraphs which attain the minimum and maximum Aα spectral
radii among all strongly connected bicyclic digraphs with order n , respectively. We
generalize their result to s � 2.

We can know that each strongly connected bicyclic digraph is either a θ -digraph
or a ∞-digraph. In the following, we will determine which digraph has the second and
the third minimum Aα spectral radius among all strongly connected bicyclic digraphs,
respectively.



ON THE Aα SPECTRAL RADIUS OF STRONGLY CONNECTED DIGRAPHS 1013

THEOREM 2.12. Among all the strongly connected bicyclic digraphs with order
n � 5 , θ (1,1,n−4) and θ (0,2,n−4) are the unique digraph which achieve the second
and the third minimum Aα spectral radius, respectively.

Proof. Let G be a strongly connected bicyclic digraph with order n � 5 and G 	=
θ (0,1,n−3) . Then G is a θ -digraph or a ∞-digraph. Suppose that G is a θ -digraph,
then G 	= θ (0,1,n−3) , and by Lemmas 2.4 and 2.5, we have λα(G) � λα(θ (0,2,n−
4)) with equality only if G = θ (0,2,n−4) or λα(G) � λα(θ (1,1,n−4)) with equal-
ity only if G = θ (1,1,n−4) . However, by Lemma 2.4, we have λα(θ (0,2,n−4)) >
λα(θ (1,1,n−4)) . Thus if G is a θ -digraph and G 	= θ (1,1,n−4) , λα(G)� λα(θ (0,2,
n− 4)) > λα(θ (1,1,n− 4)) with equality only if G = θ (0,2,n− 4) . If G is a ∞-
digraph, then by Lemma 2.2, λα(G) � λα(∞(
 n−1

2 �,� n−1
2 
)) . If n is odd, n−1

2 � 2,
then by Lemmas 2.9, 2.4 and 2.5, we have λα(∞(
 n−1

2 �,� n−1
2 
)) = λα(∞( n−1

2 , n−1
2 )) >

λα(θ ( n−3
2 , n−1

2 ,0)) > λα(θ (0,2,n−4)) . If n is even, n−2
2 � 2, then by Lemmas 2.9,

2.4 and 2.5, we have λα(∞(
 n−1
2 �,� n−1

2 
)) = λα(∞( n−2
2 , n

2 )) > λα(θ ( n−2
2 , n−2

2 ,0)) >
λα(θ (0,2,n−4)) . Hence, if G is a ∞-digraph, then we have

λα(G) � λα

(
∞
(⌊

n−1
2

⌋
,

⌈
n−1

2

⌉))
> λα(θ (0,2,n−4)).

Therefore, by the second part of Theorem 2.10, we get the result. �

3. The second, the third and the forth minimum Aα spectral radius
of strongly connected digraphs

In the followig, we determine the digraphs which achieve the second, the third and
the forth minimum Aα spectral radius of strongly connected digraphs on n vertices.

Recall that the spectral radius of a nonnegative irreducible matrix B is larger than
that of a principal submatrix of B and it increases when an entry of B increases [1].
Thus we have the following well known lemma.

LEMMA 3.1. Let G be a strongly connected digraph and H be a proper subdi-
graph of G. Then λα(G) > λα(H) .

COROLLARY 3.2. Let G be a strongly connected digraph. Then 1 � λα(G) �
n−1 , λα(G) = 1 if and only if G∼= Cn , and λα(G) = n−1 if and only if G∼=

←→
Kn .

LEMMA 3.3. ([21]) Let 0 � α < 1 and G ( 	= Cn ) be a strongly connected di-
graph with V (G)= {v1,v2, · · · ,vn} , (vi,v j)∈E(G) and w /∈V (G) , Gw = (V (Gw),E(Gw))
with V (Gw)=V (G)∪{w} , E(Gw)= E(G)−{(vi,v j)}+{(vi,w),(w,v j)} . Then λα(G)
� λα(Gw) .

We follow the techniques in [7] to prove the following result.

THEOREM 3.4. Let 0 � α � 1
2 and G be a strongly connected digraph of order

n � 5 that is neither a bicyclic digraph nor Cn , Then λα(G) > λα(θ (0,2,n−4)) .
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Proof. Let C be a shortest directed cycle in G . Obviously, V (C) 	= V (G) . There
is a vertex u ∈ V (G) \V (C) such that there is a arc from u to some vertex, say v on
C . Also, there is a directed path from some vertex on C to u . Let w be a vertex on
C such that the distance from w to u is as small as possible. Let P be such a directed
path. Then P and C have exactly one common vertex w . If w = v , then G has a proper
∞-subdigraph. If w 	= v , then G has a proper θ -subdigraph.

Case 1. If G has a proper ∞-subdigraph, say ∞(k1, l1) with k1 + l1 = n1−1 and
n1 � n , then by Lemma 3.1, the second part of Theorem 2.3, and Theorem 2.12, Lemma
3.3, we have

λα(G) > λα(∞(k1, l1)) � λα

(
∞
(⌊

n1−1
2

⌋
,

⌈
n1−1

2

⌉))
> λα(θ (0,2,n1−4))
� λα(θ (0,2,n−4)).

Case 2. If G has a proper θ -subdigraph, say θ (a1,b1,c1) with a1 + b1 + c1 =
n2−2 and n2 � n .

Subcase 2.1. n2 � n− 1. By Lemma 3.1, the second part of Theorem 2.6 and
Lemma 3.3, we get

λα(G)> λα(θ (a1,b1,c1))� λα(θ (0,1,n2−3))� λα(θ (0,1,n−4))� λα(θ (0,2,n−4)).

Subcase 2.2. n2 = n and θ (a1,b1,c1) 	= θ (0,1,n−3) and θ (a1,b1,c1) 	= θ (1,1,n−
4) . By Lemma 3.1, the second part of Theorem 2.6, and Theorem 2.12, we get

λα(G) > λα(θ (a1,b1,c1)) � λα(θ (0,2,n−4)).

Subcase 2.3. n2 = n and the θ -subdigraph of G can only be θ (0,1,n− 3) or
θ (1,1,n−4) .

Subcase 2.3.1. G has a θ -subdigraph θ (0,1,n−3) . Let wv , wuv and vu1u2 . . .
un−3w be the basic directed paths of the θ -subdigraph θ (0,1,n−3) . We consider the
possible arc(s) in G except the arcs in θ (0,1,n−3) as follows.

(1) (v,w) /∈ E(G) , otherwise, G has a θ -subdigraph θ (0,n− 3,0) , a contradic-
tion.

(2) (v,u) /∈ E(G) and (u,w) /∈ E(G) , otherwise, G has a θ -subdigraph θ (0,n−
2,0) , a contradiction.

(3) (u,uk) /∈ E(G) and (un−k−2,u) /∈ E(G) for 2 � k � n−3, otherwise, G has a
θ -subdigraph θ (0,k,n− k−2) , a contradiction.

(4) (w,uk) /∈ E(G) and (un−k−2,v) /∈ E(G) for 1 � k � n−3, otherwise, G has a
θ -subdigraph θ (0,k+1,n− k−3) , a contradiction.

(5) (uk,w) /∈ E(G) and (v,un−k−2) /∈ E(G) for 1 � k � n−4, otherwise, G has a
θ -subdigraph θ (0,1,k) , a contradiction.

(6) (ul,uk) /∈ E(G) for 1 � k < l � n− 3, otherwise, G has a θ -subdigraph
θ (0,n− l+ k−1, l− k−1) , a contradiction.

(7) (uk,ul) /∈ E(G) for 1 � k < l− 1 � n− 4, otherwise, G has a θ -subdigraph
θ (0,1,n−2+ k− l) , a contradiction.
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(8) {(u,u1),(un−3,u)} /∈ E(G) , otherwise, G has a θ -subdigraph θ (0,1,n− 4) ,
a contradiction.

From (1)–(8), we find that besides these arcs in θ (0,1,n− 3) , G contains one
additional arc (u,u1) or (un−3,u) . Thus G is isomorphic to the digraph G′ obtained
from θ (0,1,n−3) by adding the arcs (u,u1) , as shown in the Figure 3.

vw

u

1u

2u
4nu �

3nu �

Figure 3: The digraph G′ .

Similar to the proofs of Lemmas 2.2 and 2.4, we have λα(G′) is the largest real
root of p(x) = ( x−2α

1−α )2( x−α
1−α )n−2− 2x−3α

1−α − 1 = 0. From the proof of Lemma 2.4, we

know that λα(θ (0,2,n−4)) is the largest real root of q(x)= x−2α
1−α ( x−α

1−α )n−1−( x−α
1−α )2−

1 = 0. Note that

q(x)− p(x) =
x−2α
1−α

(
x−α
1−α

)n−2 α
1−α

−
(

x−α
1−α

)2

+
2x−3α
1−α

.

For 0 � α � 1
2 ,

q(x)− p(x) >
x−2α
1−α

(
x−α
1−α

)
α

1−α
− x2−2x+3α−2α2

(1−α)2

=
αx2−3α2x+2α3

(1−α)3 − (x2−2x+3α−2α2)(1−α)
(1−α)3

=
(2α−1)x2 +(2−2α−3α2)x−3α +5α2

(1−α)3 .

Taking g(x) = (2α − 1)x2 + (2− 2α − 3α2)x− 3α + 5α2 . If α = 1
2 , then g(x) =

1
4(x−1) . Thus g(x) > 0 for all x > 1. Then q(x)− p(x) > 0 for all x > 1. However,
by Lemma 2.1, we have λα(G′) > 1, Then, we get λα(G) = λα(G′) > λα(θ (0,2,n−
4)) . If 0 � α < 1

2 , then 2α − 1 < 0, and g(x)′′ < 0 for 1 < x < 2. Hence g(x) >

min{g(1),g(2)} = min{1− 3α + 2α2,α −α2} � 0 for 0 � α � 1
2 . Hence q(x)−

p(x) > 0 for all 1 < x < 2. However, by Lemma 2.1, we have 1 < λα(G′) < 2. Then,
we have λα(G) = λα(G′) > λα(θ (0,2,n−4)) .

Subcase 2.3.2. G has a θ -subdigraph θ (1,1,n−4) . Let uwv , uw1v and vw′1w
′
2 . . .

w′n−4u be the basic directed paths of the θ -subdigraph θ (1,1,n−4) . We consider the
possible arc(s) in G except the arcs in θ (1,1,n−4) as follows.

(1) (w,u) /∈ E(G) and (v,w) /∈ E(G) , otherwise, G has a θ -subdigraph θ (0,n−
3,0) , a contradiction.
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(2) (w1,u) /∈E(G) and (v,w1) /∈E(G) , otherwise, G has a θ -subdigraph θ (0,n−
3,0) , a contradiction.

(3) (v,u) /∈E(G) , otherwise, G has a θ -subdigraph θ (0,n−4,1) , a contradiction.
(4) (u,v) /∈E(G) , otherwise, G has a θ -subdigraph θ (0,1,n−4) , a contradiction.
(5) (w,w′k) /∈ E(G) and (w′n−k−3,w) /∈ E(G) for 1 � k � n−4, otherwise, G has

a θ -subdigraph θ (0,k,n− k−3) , a contradiction.
(6) (w1,w′k) /∈ E(G) and (w′n−k−3,w1) /∈ E(G) for 1 � k � n− 4, otherwise, G

has a θ -subdigraph θ (0,k,n− k−3) , a contradiction.
(7) (v,w′k) /∈ E(G) for 2 � k � n−4, otherwise, G has a θ -subdigraph θ (0,k−

1,n− k−2) , a contradiction.
(8) (w′k,v) /∈ E(G) for 1 � k � n−4, otherwise, G has a θ -subdigraph θ (0,n−

k−2,k−1) , a contradiction.
(9) (u,w′k) /∈ E(G) for 1 � k � n−4, otherwise, G has a θ -subdigraph θ (0,k+

1,n− k−4) , a contradiction.
(10) (w′k,u) /∈ E(G) for 1 � k � n−5, otherwise, G has a θ -subdigraph θ (0,n−

k−4,k+1) , a contradiction.
(11) (w′l ,w

′
k) /∈ E(G) for 1 � k < l � n− 4, otherwise, G has a θ -subdigraph

θ (0,n− l+ k−2, l− k−1) , a contradiction.
(12) (w′k,w

′
l) /∈ E(G) for 1 � k < l−1 � n−5, otherwise, G has a θ -subdigraph

θ (1,1,n−3+ k− l) , a contradiction.
(13) {(w,w1),(w1,w)} /∈ E(G) , otherwise, G has a θ -subdigraph θ (0,n−2,0) ,

a contradiction.
From (1)–(13), we find that besides these arcs in θ (1,1,n− 4) , G only contains

one additional arc (w,w1) or (w1,w) . Thus G is isomorphic to the digraph G1 or G2 ,
where G1 and G2 as shown in the Figure 4.

v

w

u
1w

'
1w

'
2w'

5nw �

'

4nw �

1G

v

w

u
1w

'
1w

'
2w'

5nw �

'

4nw �

2G

Figure 4: The digraphs G1 and G2 .

If G is isomorphic to the digraph G1 , one can easily get that λα(G1) is the
largest real root of the equation ( x−2α

1−α )2( x−α
1−α )n−2− 2x−3α

1−α − 1 = 0. From the proof
of subcase 2.3.1, we have λα(G1) = λα(G′) > λα(θ (0,2,n− 4)) . Thus we have
λα(G) = λα(G1) = λα(G′) > λα(θ (0,2,n−4)) .

If G is isomorphic to the digraph G2 , note that G2 isomorphic to the digraph G′ as
shown in subcase 2.3.1. Thus we have λα(G) = λα(G2) = λα(G′)> λα(θ (0,2,n−4)) .

Combining the above two cases, we have λα(G) > λα(θ (0,2,n− 4)) , if G is a
strongly connected digraph of order n � 5 that is neither a bicyclic digraph nor Cn . �
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By Corollary 3.2, we know that Cn is the unique strongly connected digraph with
the minimum Aα spectral radius among all the strongly connected digraphs of order n .
Therefore, from Theorems 2.10, 2.12 and 3.4, we have the following theorem.

THEOREM 3.5. Among all the strongly connected digraphs with order n � 5
and 0 � α � 1

2 , θ (0,1,n−3) , θ (1,1,n−4) and θ (0,2,n−4) are the digraphs which
achieve the second, the third and the fourth minimum Aα spectral radius, respectively.

REMARK 3.6. If α = 0, Li and Zhou [7] proved that θ (0,1,n−3) , θ (1,1,n−4)
and θ (0,2,n−4) are the unique digraphs which achieve the second, the third and the
fourth minimum A0 spectral radius among all strongly connected digraphs, respec-
tively. If α = 1

2 , Hong and You [6] determined that θ (0,1,n− 3) , θ (1,1,n− 4) and
θ (0,2,n− 4) also attain the second, the third and the fourth minimum A 1

2
spectral

radius among all strongly connected digraphs, respectively.

For general 0 � α < 1, we propose the following conjecture based on numerical
examples.

CONJECTURE 3.7. Among all the strongly connected digraphs with order n � 5
and 0 � α < 1, θ (0,1,n−3) , θ (1,1,n−4) and θ (0,2,n−4) are the digraphs which
achieve the second, the third and the fourth minimum Aα spectral radius, respectively.

4. The Aα spectral radius of strongly connected bipartite digraphs which contain
a complete bipartite subdigraph

Let
←→
Kp,q be a complete bipartite digraph with V (

←→
Kp,q) = Vp ∪ Vq and |Vp| = p ,

|Vq|= q . Let Gn,p,q denote the set of strongly connected bipartite digraphs on n vertices

which contain a complete bipartite subdigraph
←→
Kp,q . As we all know, if p+q = n , then

Gn,p,q = {←→Kp,q} . It is easy to know that λα(
←→
Kp,q) = α(p+q)+

√
(α(p+q))2−8α pq+4pq

2 . Thus
we only consider the cases when p + q � n− 1 and p � q � 2. In the rest of this
section, we just discuss under this assumption.

Chen et al. [2] proved that if n≡ p+q (mod 2) then B5
n,p,q or B6

n,p,q is the unique
bipartite digraph with the minimum A0 spectral radius among all digraphs in Gn,p,q ,
otherwise, if n 	≡ p + q (mod 2) then B1

n,p,q is the unique bipartite digraph with the
minimum A0 spectral radius among all digraphs in Gn,p,q . We generalize their results
to 0 � α < 1.

Let B1
n,p,q be a digraph obtained by adding a directed path Pn−p−q+2 = v1vp+q+1

vp+q+2 . . . vnvp to a complete bipartite digraph
←→
Kp,q such that V (

←→
Kp,q)∩V (Pn−p−q+2)=

{v1,vp} as shown in Figure 5(a), where V (B1
n,p,q) = {v1,v2, . . . ,vn} . Clearly, if n− p−

q is odd, then B1
n,p,q ∈ Gn,p,q .

Let B2
n,p,q be a digraph obtained by adding a directed path Pn−p−q+2 = vp+1vp+q+1

vp+q+2 . . .vnvp+q to a complete bipartite digraph
←→
Kp,q such that V (

←→
Kp,q)∩V (Pn−p−q+2)
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( )b 2

, ,n p qB
1v

pv

1pv �

p qv �

1

, ,n p qB( )a

nv

1p qv � �

1v

pv

1pv �

p qv �

nv

1p qv � �

Figure 5: B1
n,p,q and B2

n,p,q .

= {vp+1,vp+q} as shown in Figure 5(b), where V (B2
n,p,q) = {v1,v2, . . . ,vn} . Clearly, if

n− p−q is odd, then B2
n,p,q ∈ Gn,p,q .

Let B5
n,p,q be a digraph obtained by adding a directed path Pn−p−q+2 = v1vp+q+1

vp+q+2 . . .vnvp+1 to a complete bipartite digraph
←→
Kp,q such that V (

←→
Kp,q)∩V (Pn−p−q+2)

= {v1,vp+1} as shown in Figure 6(a), where V (B5
n,p,q) = {v1,v2, . . . ,vn} . Clearly, if

n− p−q is even, then B5
n,p,q ∈ Gn,p,q .

Let B6
n,p,q be a digraph obtained by adding a directed path Pn−p−q+2 = vp+1vp+q+1

vp+q+2 . . .vnv1 to a complete bipartite digraph
←→
Kp,q such that V (

←→
Kp,q)∩V (Pn−p−q+2)=

{v1,vp+1} as shown in Figure 6(b), where V (B6
n,p,q) = {v1,v2, . . . ,vn} . Clearly, if

n− p−q is even, then B6
n,p,q ∈ Gn,p,q .

5

, ,n p qB 6

, ,n p qB( )b( )a

1v

pv

1pv �

p qv �

nv1p qv � �

1v

pv

1pv �

p qv �

nv 1p qv � �

Figure 6: B5
n,p,q and B6

n,p,q .

LEMMA 4.1. ([14]) Let 0 � α < 1 and G be a strongly connected digraph. Then
λα(G) > αΔ+ , where Δ+ denotes the maximum outdegree of G.

LEMMA 4.2. Let G be a strongly connected digraph containing two vertices vi,v j

such that (vi,v j) /∈ E(G) and (v j,vi) /∈E(G) , and let X be the Perron vector of Aα(G) ,
where xi corresponds to the vertex vi . If N+

i ⊆ N+
j , then x j � xi . Moreover, if N+

i �

N+
j , then x j > xi , if N+

i = N+
j , then x j = xi .
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Proof. From Aα(G)X = λα(G)X , we have

λα(G)xi = αd+
i xi +(1−α) ∑

vk∈N+
i

xk,

λα(G)x j = αd+
j x j +(1−α) ∑

vk∈N+
j

xk.

Since (vi,v j) /∈ E(G) and (v j,vi) /∈ E(G) , and N+
i ⊆ N+

j , we have d+
i � d+

j . Further-
more, we get (λα(G)−αd+

j )x j � (λα(G)−αd+
i )xi . By Lemma 4.1, λα(G) > αΔ+ .

So x j � xi .
Since v j /∈ N+

i , vi /∈ N+
j , if N+

i � N+
j , then d+

i < d+
j and (λα(G)−αd+

j )x j >

(λα(G)−αd+
i )xi , which implies x j > xi , and if N+

i = N+
j , then d+

i = d+
j and (λα(G)−

αd+
j )x j = (λα(G)−αd+

i )xi , which implies xi = x j . �

THEOREM 4.3. For digraphs B1
n,p,q and B2

n,p,q , as shown in Figure 5,

λα(B2
n,p,q) � λα(B1

n,p,q),

with equality if and only if p = q.

Proof. If p = q , then B2
n,p,q
∼= B1

n,p,q . Hence λα(B1
n,p,q) = λα(B2

n,p,q) . Otherwise
p > q , let G = B1

n,p,q and X = (x1,x2, . . . ,xn)T be the Perron vector corresponding to

λα(G) , where xi corresponds to the vertex vi . By Lemma 4.2, x2 = x3 = · · ·= xp � xp

and xp+1 = xp+2 = · · ·= xp+q � xp+1 . From Aα(G)X = λα(G)X , we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λα(G)x1 = α(q+1)x1 +(1−α)xp+q+1+(1−α)qxp+1,

λα(G)xp = αqxp +(1−α)qxp+1,

λα(G)xp+1 = α pxp+1 +(1−α)x1 +(1−α)(p−1)xp,

λα(G)xi = αxi +(1−α)xi+1, i = p+q+1, . . .,n−1,

λα(G)xn = αxn +(1−α)xp.

Then

xn =
(

λα(G)−α
1−α

)n−p−q−1

xp+q+1,

xp =
(

λα(G)−α
1−α

)
xn =

(
λα(G)−α

1−α

)n−p−q

xp+q+1.

Therefore,

(λα(G)−αq)(λα(G)−α p)xp = (1−α) ·q · (λα(G)−α p)xp+1

= (1−α)2 ·qx1 +(1−α)2 ·q · (p−1)xp.
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Furthermore

(λα(G)−αq) · (λα(G)−α p) · (λα(G)−α(q+1))xp

= (1−α)2 ·q · (λα(G)−α(q+1))x1 +(1−α)2 ·q · (p−1)(λα(G)−α(q+1))xp

= (1−α)2 ·q · ((1−α)xp+q+1+(1−α) ·qxp+1)

+ (1−α)2 ·q · (p−1)(λα(G)−α(q+1))xp

= (1−α)3 ·q · 1(
λα (G)−α

1−α

)n−p−q xp +(1−α)2 ·q · (λα(G)−αq)xp

+(1−α)2 ·q · (p−1) · (λα(G)−α(q+1))xp.

Note that xp > 0. Hence(
λα(G)−α

1−α

)n−p−q

[(λα(G)−αq) · (λα(G)−α p) · (λα(G)−α(q+1))

− (1−α)2 ·q · (λα(G)−αq)− (1−α)2 ·q · (p−1)(λα(G)−α(q+1))]

− (1−α)3q = 0.

Let f (x) =
(

x−α
1−α

)n−p−q [x3−(α p+2αq+α)x2 +(α2q2 +α2pq+2α pq+α2q+
α2p− pq)x−2α2q2p−2α2pq+αq2p+α pq+2α2q−α3q−αq]−(1−α)3q . It is not
difficult to see that λα(B1

n,p,q) is the largest real root of f (x) = 0. Similarly, let g(x) =(
x−α
1−α

)n−p−q [x3− (αq+ 2α p+ α)x2 +(α2p2 + α2pq+ 2α pq+ α2p+ α2q− pq)x−
2α2p2q−2α2pq+ α p2q+ α pq+2α2p−α3p−α p]− (1−α)3p , then λα(B2

n,p,q) is
the largest real root of g(x) = 0. Thus

f (x)−g(x)

=
(

x−α
1−α

)n−p−q

[α(p−q)x2−α2(p−q)(p+q)x+ α(p−q)

−α pq(p−q)+2α2pq(p−q)−2α2(p−q)+ α3(p−q)]+ (1−α)3(p−q)

=
(

x−α
1−α

)n−p−q

·α · (p−q) · [x2−α(p+q)x+1− pq+2α pq−2α + α2]

+ (1−α)3(p−q).

Since λα(
←→
Kp,q) is the the largest real root of the equation x2−α(p+q)x− pq+2α pq=

0, x2−α(p + q)x− pq + 2α pq > 0 for all x > λα(
←→
Kp,q) . Thus x2−α(p + q)x +

1− pq+ 2α pq− 2α + α2 = x2−α(p+ q)x− pq+ 2α pq+(1−α)2 > 0 for all x >

λα(
←→
Kp,q) . Since p > q , f (x)−g(x) > 0 for all x > λα(

←→
Kp,q) > 1. By Lemma 3.1, we

have λα(B2
n,p,q) > λα(

←→
Kp,q) > 1. Hence f (x)−g(x) > 0 for all x � λα(B2

n,p,q) . Then
λα(B2

n,p,q) > λα(B1
n,p,q) .

Therefore, λα(B2
n,p,q) � λα(B1

n,p,q) with equality if and only if p = q . �
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THEOREM 4.4. For digraphs B5
n,p,q and B6

n,p,q , as shown in Figure 6,

λα(B6
n,p,q) � λα(B5

n,p,q),

with equality if and only if p = q or α = 0 .

Proof. If p = q , then B5
n,p,q
∼= B6

n,p,q . Hence λα(B5
n,p,q) = λα(B6

n,p,q) . Otherwise
p > q , let G = B5

n,p,q . Similar to the proof of Theorem 4.3, we can know that λα(G)
satisfies the follow equation(

λα(G)−α
1−α

)n−p−q

[λ 3
α(G)− (α p+2αq+ α)λ 2

α(G)

+ (α2q2 + α2pq+2α pq+ α2q+ α2p− pq)λα(G)−2α2q2p−2α2pq

+ αq2p+ α pq+2α2q−α3q−αq]− (1−α)2(λα(G)−αq) = 0.

Let f (x) =
(

x−α
1−α

)n−p−q [x3−(α p+2αq+α)x2 +(α2q2 +α2pq+2α pq+α2q+
α2p− pq)x− 2α2q2p− 2α2pq + αq2p + α pq + 2α2q− α3q− αq]− (1− α)2(x−
αq) . Then λα(B5

n,p,q) is the largest real root of f (x) = 0. Similarly, let g(x) =(
x−α
1−α

)n−p−q [x3− (αq+ 2α p+ α)x2 +(α2p2 + α2pq+ 2α pq+ α2p+ α2q− pq)x−
2α2p2q−2α2pq+α p2q+α pq+2α2p−α3p−α p]−(1−α)2(x−α p) , then λα(B6

n,p,q)
is the largest real root of g(x) = 0. Thus

f (x)−g(x) =
(

x−α
1−α

)n−p−q

·α · (p−q) · [x2−α(p+q)x− pq+2α pq+(1−α)2]

− (1−α)2α(p−q).

For α = 0, f (x) = g(x) , then λα(B5
n,p,q) = λα(B6

n,p,q) .
For 0 < α < 1. Since λα(

←→
Kp,q) is the largest real root of the equation x2−α(p+

q)x− pq+ 2α pq = 0, x2−α(p + q)x− pq+ 2α pq > 0 for all x > λα(
←→
Kp,q) . Thus

x2−α(p+ q)x− pq+ 2α pq+(1−α)2 > (1−α)2 for all x > λα(
←→
Kp,q) . Since p >

q , f (x)− g(x) >
(

x−α
1−α

)n−p−q (1−α)2α(p− q)− (1−α)2α(p− q) > 0 for all x >

λα(
←→
Kp,q) > 1. By Lemma 3.1, we have λα(B6

n,p,q) > λα(
←→
Kp,q) > 1. Hence f (x)−

g(x) > 0 for all x � λα(B6
n,p,q) . Then λα(B6

n,p,q) > λα(B5
n,p,q) .

Therefore, λα(B6
n,p,q) � λα(B5

n,p,q) with equality if and only if p = q or α =
0. �

THEOREM 4.5. Let B3
n,p,q = B1

n,p,q−{(vn,vp)}+{(vn,v1)} . Then

λα(B3
n,p,q) > λα(B1

n,p,q).

Proof. Clearly B3
n,p,q is strongly connected. Let X = (x1,x2, . . . ,xn)T be the Per-

ron vector corresponding to λα(B1
n,p,q) , where xi corresponds to the vertex vi . By

Lemma 4.2, we get x1 > xp . Thus λα(B3
n,p,q) > λα(B1

n,p,q) by Lemma 2.7. �
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THEOREM 4.6. Let B4
n,p,q = B2

n,p,q−{(vn,vp+q)}+{(vn,vp+1)} . Then

λα(B4
n,p,q) > λα(B2

n,p,q).

Proof. Clearly B4
n,p,q is strongly connected. Let X = (x1,x2, . . . ,xn)T be the Per-

ron vector corresponding to λα(B2
n,p,q) , where xi corresponds to the vertex vi . By

Lemma 4.2, we get xp+1 > xp+q . Thus λα(B4
n,p,q) > λα(B2

n,p,q) by Lemma 2.7. �

THEOREM 4.7. For digraphs B1
n,p,q and B5

n,p,q , as shown in Figures 5 and 6,

λα(B5
n−1,p,q) > λα(B1

n,p,q).

Proof. Since B5
n,p,q = B1

n,p,q−{(vn,vp)}+{(vn,vp+1)} and B5
n,p,q is strongly con-

nected. Let X = (x1,x2, . . . ,xn)T be the Perron vector corresponding to λα(B1
n,p,q) ,

where xi corresponds to the vertex vi . In the following, we will prove xp+1 > xp .
By Lemma 4.2, x2 = x3 = · · · = xp � xp , xp+1 = xp+2 = · · · = xp+q � xp+1 and

x1 > xp . Therefore

λα(B1
n,p,q)xp+1 = α pxp+1 +(1−α)x1 +(1−α)(p−1)xp

> α pxp+1 +(1−α)xp +(1−α)(p−1)xp

= α p(xp+1− xp)+ pxp,

λα(B1
n,p,q)xp = αqxp +(1−α)qxp+1.

Hence

λα(B1
n,p,q)(xp+1− xp) > (α p+ αq−q)(xp+1− xp)+ (p−q)xp.

Furthermore

(λα(B1
n,p,q− (α p+ αq−q))(xp+1− xp) > (p−q)xp � 0.

However, by Lemma 4.1, we get λα(B1
n,p,q) > αΔ+ � α p > α p + αq− q . Thus

xp+1 > xp . Therefore λα(B5
n,p,q)> λα(B1

n,p,q) . By Lemma 3.3, we have λα(B5
n−1,p,q)�

λα(B5
n,p,q) . Then λα(B5

n−1,p,q) > λα(B1
n,p,q) . �

THEOREM 4.8. For digraphs B1
n,p,q and B5

n,p,q , as shown in Figures 5 and 6,

λα(B1
n−1,p,q) � λα(B5

n,p,q).

Proof. Let B5∗
n,p,q = B5

n,p,q−{(vn−1,vn)}+{(vn−1,vp)} . Let X = (x1,x2, . . . ,xn)T

be the Perron vector corresponding to λα(B5
n,p,q) , where xi corresponds to the vertex

vi . By Lemma 4.2, we get xp > xn . Then λα(B5∗
n,p,q) � λα(B5

n,p,q) . Since the in-
degree of vn is 0 in B5∗

n,p,q , B5∗
n,p,q is not strongly connected which contains B1

n−1,p,q



ON THE Aα SPECTRAL RADIUS OF STRONGLY CONNECTED DIGRAPHS 1023

as a induced subdigraph, we have λα(B5∗
n,p,q) = λα(B1

n−1,p,q) . Thus λα(B1
n−1,p,q) �

λα(B5
n,p,q) . �
In the following, we give the main results of this section.

THEOREM 4.9. Let p � q � 2 , p+q � n−1 , n≡ p+q (mod 2) and G∈ Gn,p,q .
Then

(i) For α = 0 , λα(G) � λα(B5
n,p,q) = λα(B6

n,p,q) and the equality holds if and
only if G∼= B5

n,p,q or G∼= B6
n,p,q .

(ii) For 0 < α < 1 , λα(G) � λα(B5
n,p,q) and the equality holds if and only if

G∼= B5
n,p,q .

Proof. Since G ∈ Gn,p,q ,
←→
Kp,q is a proper subdigraph of G . Since G is strongly

connected, it is possible to obtain a digraph H from G by deleting vertices and arcs in
a way such that one has a subdigraph

←→
Kp,q . Therefore

(1) H ∼= B1
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(2) H ∼= B2
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(3) H ∼= B3
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(4) H ∼= B4
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(5) H ∼= B5
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2) or

(6) H ∼= B6
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).

By Lemma 3.1, λα(G) � λα(H) , the equality holds if and only if H ∼= G .
Case (i). H ∼= B1

p+q+k,p,q , (k≡ 1 (mod 2), k � 1).
Insert n− p−q− k−1 vertices into the directed path Pk+2 such that the resulting

bipartite digraph is B1
n−1,p,q , then λα(H) � λα(B1

n−1,p,q) by using Lemma 3.3 repeat-

edly n− p−q−k−1 times, and thus λα(G) > λα(H) � λα(B1
n−1,p,q) � λα(B5

n,p,q) by
Theorem 4.8.

Case (ii). H ∼= B2
p+q+k,p,q , (k≡ 1 (mod 2), k � 1).

Insert n− p−q− k−1 vertices into the directed path Pk+2 such that the resulting
bipartite digraph is B2

n−1,p,q , then λα(H) � λα(B2
n−1,p,q) by using Lemma 3.3 repeat-

edly n− p−q−k−1 times, and thus λα(G) > λα(H)� λα(B2
n−1,p,q)� λα(B1

n−1,p,q)�
λα(B5

n,p,q) by Theorems 4.3 and 4.8.
Case (iii). H ∼= B3

p+q+k,p,q , (k≡ 1 (mod 2), k � 1).
Insert n− p−q−k−1 vertices into the directed cycle Ck+1 such that the resulting

bipartite digraph is B3
n−1,p,q , then λα(H) � λα(B3

n−1,p,q) by using Lemma 3.3 repeat-

edly n− p−q−k−1 times, and thus λα(G) > λα(H)� λα(B3
n−1,p,q)> λα(B1

n−1,p,q)�
λα(B5

n,p,q) by Theorems 4.5 and 4.8.
Case (iv). H ∼= B4

p+q+k,p,q , (k ≡ 1 (mod 2), k � 1).
Insert n− p−q−k−1 vertices into the directed cycle Ck+1 such that the resulting

bipartite digraph is B4
n−1,p,q , then λα(H) � λα(B4

n−1,p,q) by using Lemma 3.3 repeat-

edly n− p−q−k−1 times, and thus λα(G) > λα(H)� λα(B4
n−1,p,q)> λα(B2

n−1,p,q)�
λα(B1

n−1,p,q) � λα(B5
n,p,q) by Theorems 4.6, 4.3 and 4.8.
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Case (v). H ∼= B5
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).

Insert n− p− q− l vertices into the directed path Pl+2 such that the resulting
bipartite digraph is B5

n,p,q , then λα(H) � λα(B5
n,p,q) by using Lemma 3.3 repeatedly

n− p−q− l times. Hence, by Theorem 4.4, we have
(1) For α = 0, λα(G) � λα(H) � λα(B5

n,p,q) = λα(B6
n,p,q) .

(2) For 0 < α < 1, λα(G) � λα(H) � λα(B5
n,p,q) .

Case (vi). H ∼= B6
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).

Insert n− p− q− l vertices into the directed path Pl+2 such that the resulting
bipartite digraph is B6

n,p,q , then λα(H) � λα(B6
n,p,q) by using Lemma 3.3 repeatedly

n− p−q− l times. Hence, by Theorem 4.4, we have
(1) For α = 0, λα(G) � λα(H) � λα(B5

n,p,q) = λα(B6
n,p,q) .

(2) For 0 < α < 1, λα(G) � λα(H) � λα(B6
n,p,q) � λα(B5

n,p,q) .
Combining the above six cases, we have
(1) For α = 0, λα(G) � λα(B5

n,p,q) = λα(B6
n,p,q) and the equality holds if and

only if G∼= B5
n,p,q or G∼= B6

n,p,q .

(2) For 0 < α < 1, λα(G) � λα(B5
n,p,q) and the equality holds if and only if

G∼= B5
n,p,q . �

THEOREM 4.10. Let p � q� 2 , p+q � n−1 , n 	≡ p+q (mod 2) and G∈Gn,p,q .
Then λα(G) � λα(B1

n,p,q) and the equality holds if and only if G∼= B1
n,p,q .

Proof. Since G ∈ Gn,p,q ,
←→
Kp,q is a proper subdigraph of G . Since G is strongly

connected, it is possible to obtain a digraph H from G by deleting vertices and arcs in
a way such that one has a subdigraph

←→
Kp,q . Therefore

(1) H ∼= B1
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(2) H ∼= B2
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(3) H ∼= B3
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(4) H ∼= B4
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1) or

(5) H ∼= B5
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2) or

(6) H ∼= B6
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).

By Lemma 3.1, λα(G) � λα(H) , the equality holds if and only if H ∼= G .
Case (i). H ∼= B1

p+q+k,p,q , (k≡ 1 (mod 2), k � 1).
Insert n− p− q− k vertices into the directed path Pk+2 such that the resulting

bipartite digraph is B1
n,p,q , then λα(H) � λα(B1

n,p,q) by using Lemma 3.3 repeatedly
n− p−q− k times, and thus λα(G) � λα(H) � λα(B1

n,p,q) .
Case (ii). H ∼= B2

p+q+k,p,q , (k≡ 1 (mod 2), k � 1).
Insert n− p− q− k vertices into the directed path Pk+2 such that the resulting

bipartite digraph is B2
n,p,q , then λα(H) � λα(B2

n,p,q) by using Lemma 3.3 repeatedly
n− p−q− k times, and thus λα(G) � λα(H) � λα(B2

n,p,q) � λα(B1
n,p,q) by Theorem

4.3.
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Case (iii). H ∼= B3
p+q+k,p,q , (k≡ 1 (mod 2), k � 1).

Insert n− p− q− k vertices into the directed cycle Ck+1 such that the resulting
bipartite digraph is B3

n,p,q , then λα(H) � λα(B3
n,p,q) by using Lemma 3.3 repeatedly

n− p−q− k times, and thus λα(G) � λα(H) � λα(B3
n,p,q) > λα(B1

n,p,q) by Theorem
4.5.

Case (iv). H ∼= B4
p+q+k,p,q , (k ≡ 1 (mod 2), k � 1).

Insert n− p− q− k vertices into the directed cycle Ck+1 such that the resulting
bipartite digraph is B4

n,p,q , then λα(H) � λα(B4
n,p,q) by using Lemma 3.3 repeatedly

n− p−q− k times, and thus λα(G) � λα(H) � λα(B4
n,p,q) > λα(B2

n,p,q) � λα(B1
n,p,q)

by Theorems 4.6 and 4.3.
Case (v). H ∼= B5

p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).
Insert n− p−q− l−1 vertices into the directed path Pl+2 such that the resulting

bipartite digraph is B5
n−1,p,q , then λα(H) � λα(B5

n−1,p,q) by using Lemma 3.3 repeat-
edly n− p− q− l − 1 times. Hence, by Theorem 4.7, we have λα(G) > λα(H) �
λα(B5

n−1,p,q) > λα(B1
n,p,q) .

Case (vi). H ∼= B6
p+q+l,p,q , ( l ≡ 0 (mod 2), l � 2).

Insert n− p− q− l − 1 vertices into the directed path Pl+2 such that the re-
sulting bipartite digraph is B6

n−1,p,q , then λα(H) � λα(B6
n−1,p,q) by using Lemma

3.3 repeatedly n− p− q− l − 1 times. Hence, by Theorems 4.4 and 4.7, we have
λα(G) > λα(H) � λα(B6

n−1,p,q) � λα(B5
n−1,p,q) > λα(B1

n,p,q) .
Combining the above six cases, we have λα(G) � λα(B1

n,p,q) and the equality
holds if and only if G∼= B1

n,p,q . �
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