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Abstract. The Luenberger observer design problem for non-autonomous semilinear evolution
equations has been the subject of several studies. However, much less interest has been given to
the more general infinite-dimensional systems. In this paper, we investigate the global practical
uniform stability analysis problem for a certain class of non-autonomous semilinear evolution
equations with the associated nominal system is linear and the perturbation term satisfies some
conditions. Moreover, we study the compensator design in the practical sense for two classes of
non-autonomous semilinear evolution equations having a nominal linear part. We propose some
classes of memoryless state linear and nonlinear feedback controllers. We illustrate the theory
with an example of a controlled perturbed heat equation.

1. Introduction

Unlike for linear infinite-dimensional systems, the compensator design does not
generally hold for nonlinear infinite-dimensional systems. Therefore, the output feed-
back control problem for non-autonomous semilinear evolution equations is much more
challenging than stabilization using full-state feedback. It is well known that the Lu-
enberger observer design problem for semilinear evolution equations by itself is quite
challenging. One has to often consider special classes of semilinear evolution equations
to solve the observer design problem as well as the output feedback control problem by
using Lyapunov techniques. For partial differential equations, a systematic approach to
the development of controller and Luenberger observers for infinite-dimensional sys-
tems was given in [4, 6, 7, 8, 9, 15, 17]. Alternative direct state space finite-dimensional
compensator designs can be found in [4, 5]. In [17], the authors give an observer-based
output feedback compensator design for a linear parabolic partial differential equation.
In finite-dimensional systems, one simple way of designing a compensator is to first
construct a state feedback stabilizer and an observer for the system and then combine
the two to design a compensator using the feedback of the observer instead of the state.
This is the so-called separation principle (see [2, 3, 10, 14]) and we shall show that this
also works for our class of infinite-dimensional systems. The authors in [3] established
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a separation principle for two classes of finite-dimensional systems having nominal lin-
ear parts. We will give a compensator design via the separation principle based on
analysis results for nonlinear cascaded systems. In 2016, Damak and Hammami [11]
studied the practical stabilization for a class of abstract differential equations in Hilbert
spaces. However, the asymptotic stability of the solutions of a class of non-autonomous
semilinear evolution equations in Banach spaces has been presented in [12].

Motivated by the existing literature [3, 9, 10], we present in this paper a novel pro-
cedure for constructing stabilizing compensators for two classes of non-autonomous
semilinear evolution equations by using an estimated feedback controller. For the first
one, the perturbed term is uniformly bounded by known functions and for the second
one the perturbation is bounded by a function that could depend on the time and the
output of the system. Thus, based on Lyapunov techniques, we give sufficient condi-
tions to guarantee the global uniform practical stability of the closed-loop systems by
using an estimated feedback controller via a global uniform practical stable observer
for semilinear evolution equations. A practical approach is obtained.

The rest of this paper is organized as follows: Basic definitions and some prelim-
inary results are presented in section 2. In section 3, we present a compensator design
using a state controller for a class of non-autonomous semilinear evolution equations
that is uniformly bounded by known functions. In section 4, we solve this problem
for non-autonomous semilinear evolution equations in the case when the perturbation
is bounded by a known function that could depend on the time and the output of the
system. An example is included in section 5 as an application. Section 6 concludes the
paper.

2. Mathematical preliminaries

We use the following notation throughout the paper. R+ denotes the set of all
non-negative real numbers. H denotes a Hilbert space with the norm ‖ · ‖ and the
inner product 〈·, ·〉. For linear normed spaces X ,Y let L(X ,Y ) be the space of bounded
linear operators from X to Y and L(X) := L(X ,X). A norm in these spaces we denote
by ‖ · ‖. For an operator A, A∗ is the adjoint, Dom(A) is the domain and I is the
identity operator. C(X ,Y ) denotes the space of all continuous functions from X to Y.

Consider the following non-autonomous semilinear evolution equation:{
ẋ(t) = Ax(t)+B(u(t)+F(t,x(t)), x(t0) = x0,

y(t) = Cx(t),
(2.1)

where t � t0 � 0 is the time, x(t) ∈ H is the system state, u(t) ∈ U is the control
input, y(t) ∈ Y is the measured output, A is the infinitesimal generator of an analytic
semigroup S(t), B ∈ L(U,H), and C ∈ L(H,Y ). The operator F : R+ ×H −→ H is
continuous in t and is locally Lipschitz continuous in x, uniformly in t on bounded
intervals.

In this paper, we consider mild solutions of (2.1), i.e. solutions of the integral form

x(t) = S(t− t0)x0 +
∫ t

t0
S(t− s)[Bu(s)+BF(s,x(s))]ds (2.2)
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belonging to the class C([t0,d],H) for some d > t0.
Under the condition that F is locally Lipschitz continuous in x, uniformly in t on

bounded intervals, it is shown in [16, Theorem 1.4] that equation (2.3) has a unique
mild solution on [t0,d]. Moreover, if d < ∞, then lim

t→d
‖x(t)‖ = ∞.

The corresponding system without perturbations, called the nominal system, is
described by

ẋ(t) = Ax(t), x(0) = x0, t � 0. (2.3)

Next, we recall the definition of the generator of an exponentially stable semi-group as
well as that of the exponential stabilizability and detectability, see Curtain and Zwart
[9] for more details.

DEFINITION 2.1. The operator A generates an exponentially stable semigroup
S(t) if the initial value problem (2.3) has a unique solution x(t) = S(t)x0, and ‖S(t)‖�
Me−ωt , for all t � 0 with some positive numbers M and ω .

The ω is called the decay rate.

If S(t) is exponentially stable, then the solution to the abstract Cauchy problem
(2.3) tends to zero exponentially as t −→ ∞.

DEFINITION 2.2. The pair {A,B} is said to be exponentially stabilizable if there
exists a feedback operator D ∈ L(H,U), such that the operator A + BD generates an
exponentially stable semigroup SBD.

DEFINITION 2.3. The pair {A,C} is said to be exponentially detectable if there
exists an output injection operator L∈ L(Y,U), such that the operator A+LC generates
an exponentially stable semigroup SLC.

To study the stability properties of (2.1) with respect to external inputs, we use the
notion of practical stabilizability.

DEFINITION 2.4. ([15, Definition 1]) System (2.1) is practically stabilizable if
there exists a continuous feedback control u : [t0,∞) → U, such that system (2.1) in
closed-loop with u(t) satisfies the following properties:

(i) For any initial condition x0 ∈ H, there exists a unique mild solution x(t) defined
on [t0,∞).

(ii) There exist positive scalars ω ,c,η , such that the solution of the system (2.1)
satisfies

‖x(t)‖ � c‖x0‖e−ω(t−t0) + η , ∀t � t0 � 0. (2.4)

When (i) and (ii) are satisfied for (2.1), we say that (2.1) in closed-loop with u(t)
is globally practically uniformly exponentially stable, see [3] for more details.

REMARK 2.5. The inequality (2.4) implies that the trajectory will be ultimately
bounded. That is the solution is bounded and approach toward a neighborhood of the
origin for sufficiently large t.
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DEFINITION 2.6. Let V : H → R+ be a Lyapunov function. If x(t) is a solution
of (2.1), the time derivative of V (x(t)) is defined by

V̇ (x(t)) = limsup
h→0+

1
t
(V (x(t +h))−V(x(t)).

Recall that a self-adjoint operator P ∈ L(H) is positive if 〈Px,x〉 > 0 holds for
all x ∈ H\{0}. A positive operator P ∈ L(H) is called coercive if there exists k > 0,
such that 〈Px,x〉 � k‖x‖2 , ∀x ∈ Dom(P).

PROPOSITION 2.7. ([9, Theorem 5.1.3]) Suppose that A is the infinitesimal gen-
erator of the C0 -semigroup S(t) on the Hilbert space H. Then, S(t) is exponentially
stable if and only if there exists a coercive positive self-adjoint operator P ∈ L(H),
such that

〈Ax,Px〉+ 〈Px,Ax〉 = −〈x,x〉, ∀x ∈ Dom(A). (2.5)

The following technical lemma will be needed in our investigations.

LEMMA 2.8. ([18, Lemma 2]) Let β , ρ : R+ → R be continuous functions and
y : R+ → R+ is a function, such that

ẏ(t) � β (t)y(t)+ ρ(t), ∀ t � t0.

Then, for any t � t0 � 0, we have

y(t) � y(t0)exp

(∫ t

t0
β (v)dv

)
+

∫ t

t0
exp

(∫ t

s
β (v)dv

)
ρ(s)ds.

3. Compensator design by linear state controller

In this section, we establish a compensator design in the practical sense for (2.1)
via a linear state estimate controller under some restrictions on the nonlinearities. In-
deed, we use the measurements to estimate the full state (the construction of an ob-
server) and apply state feedback on the estimated state.

Let’s consider the following assumptions.

(H1) The pair {A,B} is exponentially stabilizable, that is there exists a constant oper-
ator D ∈ L(H,U) and a coercive positive self-adjoint operator P1

μI � P1 � ‖P1‖I, (3.1)

where μ > 0, which satisfies

〈A∗
Dx,P1x〉+ 〈P1x,ADx〉 = −〈x,x〉, ∀x ∈ Dom(AD),

with AD = A+BD.
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(H2) The operator F(t,x) satisfies F(t,0) = 0, t � 0 and

‖F(t,x)−F(t,y)‖ � χ(t)‖x− y‖+ ψ(t), ∀t � 0, ∀x,y ∈ H, (3.2)

where χ : R+ −→ R+ and ψ : R+ −→ R+ are continuous functions satisfying
∫ ∞

0
χ(s)ds � Mχ < +∞

and ∫ ∞

0
ψ2(s)ds � Mψ < +∞.

3.1. Practical stabilization

In this part, sufficient conditions are presented to guarantee the practical stabi-
lizability of a class of non-autonomous systems modeled by (2.1) using Lyapunov’s
techniques.

THEOREM 3.1. If assumptions (H1) and (H2) are fulfilled, then the system (2.1)
in closed-loop with the linear feedback

u(t) = Dx(t) (3.3)

is globally uniformly practically exponentially stable.

Proof. First, note that under the assumptions of the theorem, it is easy to see that
equation (2.1) has a unique mild solution x ∈C([t0,∞),H) for any x0 ∈ H by applying
the results of Pazy [16, Theorem 1.4] and [13, Theorem 3.1] for any x0 ∈ H and
this mild solution is even a classical solution which satisfies (2.2). We consider the
following Lyapunov function:

V (x(t)) = 〈P1x(t),x(t)〉.

Let us compute the time derivative of V with respect to system (2.1) in closed-loop
with the controller (3.3). For x(t) ∈ Dom(AD) = Dom(A), we have

V̇ (x(t)) = 〈P1ẋ(t),x(t)〉+ 〈P1x(t), ẋ(t)〉
= 〈P1[ADx(t)+BF(t,x(t))],x〉+ 〈P1x(t), [ADx(t)+BF(t,x(t))]〉.

Using (H1) with the help of Cauchy-Schwartz inequality, we obtain

V̇ (x(t)) � −〈x(t),x(t)〉+2‖P1‖‖B‖‖F(t,x(t))‖‖x(t)‖.

It follows by (3.1) and (3.2) that

V̇ (x(t)) �−
(

1
‖P1‖ − 2‖P1‖‖B‖χ(t)

μ

)
V (x(t))+

2‖P1‖‖B‖ψ(t)√μ
√

V (x(t))· (3.4)
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Since A generated an analytic semigroup, we can apply a density argument for the
operator A to prove that (3.4) hold on the whole H. Let

ω(t) =
√

V (x(t)).

The derivative of ω with respect to time is given by

ω̇(t) � −
(

1
2‖P1‖ − ‖P1‖‖B‖χ(t)

μ

)
ω(t)+

‖P1‖‖B‖ψ(t)√μ
. (3.5)

By Lemma 2.8, from (3.5) we have

ω(t) � ω(t0)e
‖P1‖‖B‖Mχ

μ e
− 1

2‖P1‖ (t−t0) +

√
Mψ

μ
‖P1‖ 3

2 ‖B‖e
‖P1‖‖B‖Mχ

μ .

Then, by (3.1), it follows that

‖x(t)‖ �
√

‖P1‖
μ

‖x0‖e
‖P1‖‖B‖Mχ

μ e
− 1

2‖P1‖ (t−t0) +

√
Mψ

μ
‖P1‖ 3

2 ‖B‖e
‖P1‖‖B‖Mχ

μ .

Hence, the system (2.1) in closed-loop with the linear feedback (3.3) is globally uni-
formly practically exponentially stable. �

3.2. Practical Luenberger observer design

Consider the state system (2.1) with state space H, input space U and output
space Y. To design a Luenberger observer, let’s consider the following assumption:

(H3) The pair {A,C} is exponentially detectable, that is there exists a constant opera-
tor L ∈ L(Y,H) and a coercive positive self-adjoint operator P2

νI � P2 � ‖P2‖I, (3.6)

where ν > 0, which satisfies

〈A∗
Lx,P2x〉+ 〈P2x,ALx〉 = −〈x,x〉, ∀x ∈ Dom(AL), (3.7)

with AL = A+LC.

Consider the following observer, where x̂ denotes the estimate of the state vector
x : { ˙̂x(t) = Ax̂(t)+Bu(t)+BF(t, x̂(t))+L(ŷ(t)− y(t)), t � t0,

ŷ(t) = Cx̂(t), x̂(t0) = x̂0.
(3.8)

Setting
e(t) = x̂(t)− x(t),
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the estimation error e(t) satisfies the following equation

ė(t) = ˙̂x(t)− ẋ(t) = (A+LC)e(t)+BF(t, x̂(t))−BF(t,x(t)), (3.9)

where e0 = x̂0− x0.
The next result gives sufficient conditions under which the state estimation error is

globally uniformly practically exponentially stable, the so-called practical exponential
observer.

THEOREM 3.2. Under assumptions (H2) and (H3), the system (3.8) is a global
uniform practical exponential observer for the system (2.1).

Proof. First, note that under the assumptions of the theorem, it is easy to see that
equation (3.9) has a unique global mild solution e(t) by applying the results of Pazy
[16, Theorem 1.4] for any e0 ∈ H and this mild solution is even a classical solution.
Let’s consider the Lyapunov function:

W (e(t)) = 〈P2e(t),e(t)〉
with e(t) ∈ Dom(A). The time derivative of W along the trajectories of system (3.9) is
given by

Ẇ (e(t)) = 〈P2ė(t),e(t)〉+ 〈P2e(t), ė(t)〉
= 〈P2[(A+LC)e(t)+BF(t, x̂(t))−BF(t,x(t))],e(t)〉

+〈P2e(t), [(A+LC)e(t)+BF(t, x̂(t))−BF(t,x(t))]〉.
Then, by using the Cauchy-Schwartz inequality, one has

Ẇ (e(t)) � −
(

1
‖P2‖ − 2‖P2‖‖B‖χ(t)

ν
)W (e(t))

)
+

2‖P2‖‖B‖ψ(t)√
ν

√
W (e(t)).

(3.10)
By using a density argument for the operator A, to prove that (3.10) hold on the whole
H. Let ξ (t) =

√
W (e(t)). The derivative of ξ with respect to time leads to

ξ̇ (t) � −
(

1
2‖P2‖ − ‖P2‖‖B‖χ(t)

ν

)
ξ (t)+

‖P2‖‖B‖ψ(t)√
ν

.

Using Lemma 2.8, we have

ξ (t) � ξ (t0)e
‖P2‖‖B‖Mχ

ν e
− 1

2‖P2‖ (t−t0) +

√
Mψ

ν
‖P2‖ 3

2 ‖B‖e ‖P2‖‖B‖Mχ
ν .

Therefore, by (3.6), it follows that

‖e(t)‖ �
√

‖P2‖
ν

‖e0‖e
‖P2‖‖B‖Mχ

ν e
− 1

2‖P2‖ (t−t0) +

√
Mψ

ν
‖P2‖ 3

2 ‖B‖e ‖P2‖‖B‖Mχ
ν .

Thus, the error equation (3.9) is globally uniformly practically exponentially stable.
Consequently, the system (3.8) is a global uniform practical exponential Luenberger
observer for the system (2.1). �
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3.3. The compensator design

Now, in order to obtain a compensator design for (2.1). We consider the system
(2.1) controlled by the linear feedback control u(t) = Dx̂(t) and estimated with the
Luenberger observer (3.8).

THEOREM 3.3. Consider the controlled system (2.1) and suppose that assump-
tions (H1), (H2) and (H3) hold. If D ∈ L(H,U) and L ∈ L(Y,U) are such that
A + BD and A + LC generate exponentially stable semigroups, then the controller
u(t) = Dx̂(t), where x̂ is the Luenberger observer with output injection L, uniformly
practically exponentially stabilizes closed-loop system. The stabilizing compensator is
given by { ˙̂x(t) = (A+LC)x̂(t)+Bu(t)+BF(t, x̂(t))−Ly(t),

u(t) = Dx̂(t).
(3.11)

Proof. Under assumptions (H1) and (H3), there exist operators D and L, such
that SBD(t) and SLC(t) are exponentially stable. Combining the abstract differential
equations, we see that the closed-loop system is given by the dynamics of the extended
state xe =

(
x̂ e

)T
,

ẋe(t) = A xe(t)+F (t,x), (3.12)

where

A =
(

A+BD LC
0 A+LC

)
and

F (t,x) =
(

BF(t, x̂(t))
BF(t, x̂(t))−BF(t,x(t))

)
.

As LC and BD are bounded linear operators, A+BD and A+LC generate C0 -semi-
groups on H. So, A is the infinitesimal generator of a C0 -semigroups on H ×H, see
[9]. Observe that the operator F is also locally Lipschitz continuous in x, uniformly in
t on bounded intervals. Then, it easy to see that equation (3.12) has a unique classical
solution xe(t) which is defined on [t0,∞).

Let us define the following Lyapunov function:

U(xe(t)) = ςV (x̂(t))+W(e(t)),

where V (x̂(t)) = 〈P1x̂(t), x̂(t)〉, W (e(t)) = 〈P2e(t),e(t)〉 and ς > 0 is a Lyapunov
parameter to be determined. Let x̂(t) ∈ Dom(A) and e(t) ∈ Dom(A). Then, the time
derivative of U along the trajectories of system (3.12) is given by

U̇(xe(t)) = αV̇ (x̂(t))+Ẇ(e(t))
= ς(〈P1 ˙̂x(t), x̂(t)〉+ 〈P1x̂(t), ˙̂x(t)〉)+ 〈P2ė(t),e〉+ 〈P2e(t), ė(t)〉
= ς(〈P1[Ax̂(t)+BDx̂(t)+BF(t, x̂(t))+LCe(t)], x̂(t)〉

+〈P1x̂(t),Ax̂(t)+BDx̂(t)+BF(t, x̂(t))+LCe(t)〉
+〈P2[(A+LC)e(t)+BF(t, x̂(t))−BF(t,x(t))],e(t)〉
+〈P2e(t),(A+LC)e(t)+BF(t, x̂(t))−BF(t,x(t))〉.
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Thus, by using the Cauchy-Schwartz inequality, one has

U̇(xe(t)) � ς
(
− 1

‖P1‖V (x̂(t))+2‖P1‖‖B‖χ(t)‖x̂(t)‖2 +2‖P1‖‖B‖ψ(t)‖x̂(t)‖

+2‖P1‖‖LCe(t)‖‖x̂(t)‖
)
− 1

‖P2‖W (e(t))+2‖P2‖‖B‖χ(t)‖e(t)‖2

+2‖P2‖‖B‖ψ(t)‖e(t)‖.

Let ε > 0. By applying Young’s inequality

2‖x̂‖‖e‖ � 1
ε
‖x̂‖2 + ε‖e‖2,

we have

U̇(xe(t)) � ς
(
− 1

‖P1‖ +
2‖P1‖‖B‖χ(t)

μ
+

‖P1‖‖LC‖
εμ

)
V (x̂(t))

+
(
− 1

‖P2‖ +
2‖P2‖‖B‖χ(t)

ν
+

ςε‖P1‖‖LC‖
ν

)
W (e(t))

+
2ς‖P1‖‖B‖ψ(t)√μ

√
V (x̂(t))+

2‖P2‖‖B‖ψ(t)√
ν

√
W (e(t)).

Let

ε =
2‖P1‖2‖LC‖

μ
·

Choose ς , such that 1
‖P2‖ −

ςε‖P1‖‖LC‖
ν > 0. Then, let

ς =
μν

4‖P1‖3‖P2‖‖LC‖2 ·

It yields,

U̇(xe(t)) � ς
(
− 1

2‖P1‖ +
2‖P1‖‖B‖χ(t)

μ

)
V (x̂(t))

+
(
− 1

2‖P2‖ +
2‖P2‖‖B‖χ(t)

ν

)
W (e(t))

+λ1ψ(t)(
√

ςV (x̂(t))+
√

W (e(t))),

where

λ1 = max

(
2
√ς‖P1‖‖B‖√μ

,
2‖P2‖‖B‖√

ν

)
.

It follows that

U̇(xe(t)) � (−λ2 + λ3χ(t))U(xe)+2λ1ψ(t)
√

U(xe(t)),
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where

λ2 = min

(
ς

2‖P1‖ ,
1

2‖P2‖
)

,

and

λ3 = max

(
2ς‖P1‖‖B‖

μ
,
2‖P2‖‖B‖

ν
)
)

.

Let,

ϖ(t) =
√

U(xe(t)),

which implies that

ϖ̇(t) � 1
2
(−λ2 + λ3χ(t))ϖ(t)+ λ1ψ(t). (3.13)

Applying Lemma 2.8, inequality (3.13) gives

ϖ(t) � ϖ(t0)e
λ3
2 Mχ e

−λ2
2 (t−t0) + λ1

√
Mψ

λ2
e

λ3
2 Mχ .

Therefore,

‖x̂(t)‖ � e
λ3
2 Mχ

√μς

[
max(

√
ς‖P1‖,

√
‖P2‖)(‖x̂0‖+‖e0‖)e

−λ2
2 (t−t0) + λ1

√
Mψ

λ2

]
.

(3.14)
From (3.14), we can see that the system (3.12) is globally uniformly practically expo-
nentially stable. �

4. Compensator design by nonlinear state controller

In this section, we shall suppose some assumptions more than considered in Sec-
tion 3 and examine a compensator design in the practical sense for the class of non-
autonomous semilinear evolution equations modeled by (2.1), that is, the designed state
nonlinear feedback law remains valid when the control law implemented with the esti-
mated states. We propose the following assumption.

(H4) There exists a nonnegative scalar function κ(., .), such that

‖F(t,x(t))‖ � κ(t,y(t)),

for all t ∈ R+, x(t) ∈ H and y(t) ∈ Y is the known output function given by
(2.1).
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4.1. Practical stabilization

Now, we shall construct a nonlinear feedback law which makes the system (2.1) is
globally practically uniformly exponentially stable.

We have the following result.

THEOREM 4.1. Under assumptions (H1) and (H4), the nonlinear control sys-
tem (2.1) is practically stabilizable by the nonlinear feedback

u(t) = u1(t)+u2(t), (4.1)

where
u1(t) = Dx(t),

u2(t) = − B∗P1x(t)κ2(t,y)
‖B∗P1x(t)‖κ(t,y(t))+ τ1

,

where τ1 is a positive constant and D ∈ L(H,U) is the operator given in (H1).

Proof. By the state feedback controller (4.1), the nonlinear closed-loop system

ẋ(t) = (A+BD)x(t)− BB∗P1x(t)κ2(t,y)
‖B∗P1x(t)‖κ(t,y(t))+ τ1

+BF(t,x(t))

has a unique mild solution on [t0,∞) for any x0 ∈ H by using the result of Pazy [16,
Theorem 1.4] and this mild solution is even a classical solution. We consider the
following Lyapunov function:

W1(x(t)) = 〈P1x(t),x(t)〉.

Let us compute the time derivative of W1 with respect to system (2.1) in closed-loop
with the controller (4.1). For x(t) ∈ Dom(AD) = Dom(A), we obtain

Ẇ1(x(t)) = 〈P1ẋ(t),x(t)〉+ 〈P1x(t), ẋ(t)〉

� −〈x(t),x(t)〉+2‖B∗P1x(t)‖‖F(t,x(t))‖− 2‖B∗P1x(t)‖2κ2(t,y)
‖B∗P1x(t)‖κ(t,y(t))+ τ1

� − 1
‖P1‖W1(x(t))+

2‖B∗P1x(t)‖κ(t,y(t))τ1

‖B∗P1x(t)‖κ(t,y(t))+ τ1
.

Then, one gets

Ẇ1(x(t)) � − 1
‖P1‖W1(x(t))+2τ1. (4.2)

By using a density argument for the operator A, to prove that (4.2) hold on the whole
H. A simple computation shows that

W1(x(t)) � W1(x0)e
− 1

‖P1‖ (t−t0)
+2τ1‖P1‖·
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Thus,

‖x(t)‖ �
√

‖P1‖
μ

‖x0‖e−
1

2‖P1‖ (t−t0) +

√
2τ1‖P1‖

μ
·

Therefore, the system (2.1) in closed-loop with the nonlinear feedback (4.1) is globally
practically uniformly exponentially stable. �

4.2. Practical Luenberger observer design

The goal is to design a Luenberger observer for the system (2.1), such that the
practical global exponential stability of the resulting error system can be guaranteed.

We propose the following assumption.

(H5) There exists an operator N ∈ L(U,Y ) that satisfies B∗P2 = NC, where P2 is
the solution of the Lyapunov equation (3.7).

First, we construct a Luenberger observer for (2.1) of the following form:

{ ˙̂x(t) = Ax̂(t)+Bu(t)+ φ(t,e(t),y(t))+L(ŷ(t)− y(t)), t � t0 � 0

ŷ(t) = Cx̂(t), x̂(t0) = x̂0,
(4.3)

where

φ(t,e(t),y(t)) = −P∗
2C

∗N∗NCe(t)κ2(t,y(t))
‖NCe(t)‖κ(t,y(t))+ τ2

, (4.4)

with τ2 is a positive constant and e(t) = x̂(t)− x(t).
The error equation is given by

ė(t) = ˙̂x(t)− ẋ(t) = (A+LC)e(t)+ φ(t,e(t),y(t))−BF(t,x(t)), (4.5)

where e0 = x̂0− x0.

We have the following theorem.

THEOREM 4.2. Under assumptions (H3), (H4) and (H5), the system (4.3) is
a practical exponential Luenberger observer for the system (2.1).

Proof. It is easy to we see that system (4.5) has a unique classical solution e(t),
which is defined on [t0,∞). Let’s consider the Lyapunov function:

Z1(e(t)) = 〈P2e(t),e(t)〉,

with e(t) ∈ Dom(A). Then, the time derivative of Z1 along the trajectories of system
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(4.5) is given by

Ż1(e(t)) = 〈P2ė(t),e(t)〉+ 〈P2e(t), ė(t)〉

� −〈e(t),e(t)〉+2‖B∗P2e(t)‖κ(t,y)− 2‖NCe(t)‖2κ2(t,y(t))
‖NCe(t)‖κ(t,y(t))+ τ2

� −‖e(t)‖2 +
2‖B∗P2e(t)‖κ(t,y(t))τ2

‖NCe(t)‖κ(t,y(t))+ τ2

� − 1
‖P2‖Z1(e(t))+2τ2.

It follows that,

Z1(e(t)) � Z1(e0)e
− 1

‖P2‖ (t−t0) +2τ2‖P2‖. (4.6)

By applying a density argument for the operator A, to prove that (4.6) hold on the whole
H. Therefore,

‖e(t)‖ �
√

‖P2‖
ν

‖e0‖e−
1

2‖P2‖ (t−t0) +

√
2‖P2‖τ2

ν
· (4.7)

From (4.7), we can see that the system (4.5) is globally uniformly practically exponen-
tially stable. Consequently, the system (4.3) is a global uniform practical exponential
Luenberger observer for the system (2.1). �

4.3. The compensator design

We consider the system (2.1) controlled by the nonlinear feedback law

u(t) = Dx̂(t)+u2(t), (4.8)

where

u2(t) = − B∗P1x̂(t)κ2(t, ŷ(t))
‖B∗P1x̂(t)‖κ(t, ŷ(t))+ τ1

, τ1 > 0

and estimated with the Luenberger observer (4.3).
Then, we have the following theorem.

THEOREM 4.3. Consider the system (2.1) and assume that assumptions (H1),
(H3), (H4) and (H5) hold. If D ∈ L(H,U) and L ∈ L(Y,U) are such that A+BD
and A+LC generate exponentially stable semigroups, then the controller (4.8), where x̂
is the Luenberger observer with output injection L, uniformly practically exponentially
stabilizes closed-loop system. The stabilizing compensator is given by{ ˙̂x(t) = (A+LC)x̂(t)+Bu(t)+BF(t, x̂(t))+ φ(t,e(t),y(t))−Ly(t),

u(t) = Dx̂(t)+u2(t),
(4.9)

where

u2(t) = − B∗P1x̂(t)κ2(t, ŷ(t))
‖B∗P1x̂(t)‖κ(t, ŷ(t))+ τ1

,
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with τ1 is a positive constant, φ is a known function given by (4.4) and e(t) = x̂(t)−
x(t).

Proof. Under assumptions (H2) and (H3), there exist operators D and L, such
that SBD(t) and SLC(t) are exponentially stable. Combining the abstract differential
equations, we see that the closed-loop system is given by the dynamics of the extended
state xe =

(
x̂ e

)T
,

ẋe(t) = A xe(t)+F (t,x), (4.10)

where

A =
(

A+BD LC
0 A+LC

)
and

F (t,x) =
(

Bu2(t)+ φ(t,e(t),y(t))
φ(t,e(t),y(t))−BF(t,x(t))

)
.

Using the same argument as the proof of Theorem 3.3, equation (4.10) has a unique
classical solution xe(t) which is defined on [t0,∞).

Let us define the following Lyapunov function:

Y (xe(t)) = θW1(x̂(t))+Z1(e(t)),

where W1(x̂(t)) = 〈P1x̂(t), x̂(t)〉, Z1(e) = 〈P2e(t),e(t)〉 and θ > 0 is a Lyapunov
parameter to be determined. The time derivative of Y along the trajectories of system
(4.10) is given as follows:

Ẏ (xe(t)) � − θ
‖P1‖W1(x̂(t))− 1

‖P2‖Z1(e(t))+2θ‖P1‖‖LCe(t)‖‖x̂(t)‖

+2〈e(t)P2,φ(t,e(t),y(t))−BF(t,x(t))〉+2θ 〈x̂(t)P1,Bu2(t)+ φ(t,e(t),y)〉.
Since,

2〈e(t)P2,φ(t,e(t),y)−BF(t,x)〉 � −2
‖NCe(t)‖2κ2(t,y(t))

‖NCe(t)‖κ(t,y(t))+ τ2
+2‖NCe(t)‖κ(t,y(t))

� 2‖NCe(t)‖κ(t,y(t))τ2

‖NCe(t)‖κ(t,y(t))+ τ2
� 2τ2,

and

2θ 〈x̂(t)P1,Bu2(t)+ φ(t,e(t),y(t))〉 � −2θ
‖B∗P1x̂(t)‖2κ2(t,y(t))

‖B∗P1x̂(t)‖κ(t,y(t))+ τ1

+2θ‖B∗P1x̂(t)‖κ(t,y(t))

� 2θ‖B∗P1x̂(t)‖κ(t,y(t))τ1

‖B∗P1x̂(t)‖κ(t,y(t))+ τ1
� 2θτ1,

we have

Ẏ (xe(t)) �− θ
‖P1‖W1(x̂(t))− 1

‖P2‖Z1(e(t))+2θ‖P1‖‖LCe(t)‖‖x̂(t)‖+2τ2+2θτ1.
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Let ε > 0. Using Young’s inequality

2‖x̂(t)‖‖e(t)‖ � 1
ε
‖x̂(t)‖2 + ε‖e(t)‖2,

we can continue the above estimates as

Ẏ (xe(t)) �
(
− 1

‖P1‖ +
‖P1‖‖LC‖

με

)
θW1(x̂(t))

+
(
− 1
‖P2‖ +

θε‖P1‖‖LC‖
ν

)
Z1(e(t))+2τ2 +2θτ1.

Let,

ε =
2‖P1‖2‖LC‖

μ
·

Also, choose for this value of ε the scalar θ , such that 1
‖P2‖ −

θε‖P1‖‖LC‖
ν > 0. Then,

let
θ =

μν
4‖P1‖3‖P2‖‖LC‖2 ·

It yields,
Ẏ (xe(t)) � −σY (xe(t))+2τ2 +2θτ1,

with

σ = min

(
θ

2‖P1‖ ,
1

2‖P2‖
)

.

It follows that,

Y (xe(t)) � Y (xe
0)e

−σ(t−t0) +
2τ2 +2θτ1

σ
,

where xe
0 = (x̂0,e0).

Hence,

‖x̂(t)‖ � 1√
θ

[
max(

√
θ‖P1‖,

√
‖P2‖)(‖x̂0‖+‖e0‖)e− σ

2 (t−t0) +

√
2τ2 +2θτ1

σ

]
.

Therefore, the cascade system (4.10) is globally uniformly practically exponentially
stable. �

5. Application

We consider the controlled perturbed heat equation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂x(ζ , t)
∂ t

=
∂ 2x(ζ ,t)

∂ 2ζ
+b(ζ )u(t)+

b(ζ )√
1+ t2

x(ζ ,t)+b(ζ )e−t sin(x(ζ , t)),

∂x
∂ζ

(0, t) = 0 =
∂x
∂ζ

(1,t), x(ζ ,0) = x0(ζ ),

y(t) =
∫ 1

0
c(ζ )x(ζ ,t)dζ .

(5.1)



1060 H. DAMAK, M. A. HAMMAMI AND K. MAALOUL

where x(ζ , t) represents the temperature at position ζ at time t � 0 and x0 represents
the initial temperature profile, u(t) the addition of heat along the bar and b,c represents
the shaping functions around the control ω0 and the sensing point ω1, respectively

b(ζ ) =
1
2δ

1[ω0−δ ,ω0+δ ](ζ )

and

c(ζ ) =
1
2κ

1[ω1−κ ,ω1+κ ](ζ ),

with [ω0 − δ ,ω0 + δ ]∩ [ω1−κ ,ω1 + κ ] = /0, and

1[ϑ ,υ](x) =
{

1, if ϑ � x � υ
0, elsewhere.

Notice that b and c in this example are both elements in L2(0,1) for a fixed positive
constants δ and κ . To treat this system in the abstract form (2.1), we choose H =

L2(0,1), U = C and Y = C. Define operator A : Dom(A) ⊂ H → H by Ah =
∂ 2h
∂ 2ζ

,

with domain

Dom(A) =
{

h ∈ L2(0,1),h,
∂h
∂ζ

are absolutely continuous,

∂ 2h
∂ 2ζ

∈ L2(0,1) and
dh
dζ

(0) =
dh
dζ

(1) = 0
}
.

The input operator B is defined by

Bu = b(ζ )u

and the measured output operator C by

Cx =
∫ 1

0
c(ζ )x(ζ ,t)dζ .

The nonlinear operator is defined by

F(t,x(ζ ,t)) =
1√

1+ t2
x(ζ ,t)+ e−t sin(x(ζ ,t))·

On the other hand, A has the eigenvalues 0,−n2π2, n � 1 and the corresponding eigen-
vectors {1,

√
2cos(nπζ ), n � 1}. From [9], we know that A generates an analytic

semigroup S(t). We choose a stabilizing feedback

u(t) = Dx(t), (5.2)

with Dx = −3〈x,1〉. It is easy to verify that A+BD has the eigenvalues −3, −(nπ)2 ,
n � 1. Then, the pair {A,B} is exponentially stabilizable. One can see that Assumption
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(H2), is fulfilled with χ(t) =
1√

1+ t2
and ψ(t) = e−t . Thus, using Theorem 3.1, the

system (5.1) is globally practically uniformly exponentially stable with the controller
(5.2). In this case, all states trajectories are bounded and approach toward a neighbor-
hood of the origin.

Moreover, we choose a stabilizing output injection such that Ly =−3yφ0 =−3y.1.
The system A+LC has the eigenvalues −3, −(nπ)2 , n � 1. Therefore, the pair {A,C}
is exponentially detectable. Consequently, all hypotheses of Theorem 3.3 are satisfied.
We conclude that a stabilizing compensator is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ x̂(ζ , t)
∂ t

=
∂ 2x̂(ζ ,t)

∂ 2ζ
− 3

2κ

∫ ω1+κ

ω1−κ
x̂(ζ ,t)dζ

+ 1
2δ 1[ω0−δ ,ω0+δ ](x)[u(t)+ 1√

1+t2
x̂(ζ ,t)+ e−t sin(x̂(ζ ,t))]+3y(t),

∂ x̂
∂ζ

(0, t) = 0 =
∂ x̂
∂ζ

(1,t), x̂(ζ ,0) = x̂0(ζ ), t � 0,

u(t) = −3
∫ 1
0 x̂(ζ ,t)dζ .

(5.3)

6. Conclusion

In this paper, we have provided a compensator design for two classes of non-
autonomous semilinear evolution equations. It is shown that the system can be prac-
tically stabilized by means of an estimated state feedback given by a designated Lu-
enberger observer. We presented, how under the assumptions of stabilizability and
detectability of the pairs {A,B} and {A,C}, we can construct a stabilizing feedback
law and a Luenberger observer. An application has been introduced to validate the
developed methods.
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