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Abstract. In this paper, we consider a periodic quantum graph corresponding to graphene with
a variant of the zigzag shape of boundaries. The aim of this paper is to compare the spectra
of our graphs with the spectra of quantum graphs with the standard zigzag boundaries. For
this purpose, we utilize a Shnol type theorem and the Cramer’s rule to construct two spectral
discriminants Ds(μ ,λ) and Dc(μ ,λ) , where μ = S1 := [−π,π) is a quasi-momentum of a
corresponding fiber operator and λ ∈ R is a spectral parameter. As a result, we derive pictures
of a part of the dispersion relation for our quantum graph.

1. Introduction and main results

From a point of view of topological insulators, it is important to compare the spec-
tral structure of the system in a whole space with the spectral structure of the system in
a half space with boundaries. Indeed, topological insulators are known as materials that
behave as insulators in its bulk (interior) but contain conducting states (edge states) in
their surface (edge). Let k ∈ S1 := [−π ,π) be a quasi-momentum. In order to construct
a Z2 -invariant between bulk and edge Hamiltonians, Graf and Porta [3] dealt with the
k -parametrized bulk Hamiltonian HGP(k) in �2(Z;CN) and the k -parametrized edge
Hamiltonian H�

GP(k) in �2(N;CN) acting as

(HGP(k)ψ)n = A(k)ψn−1 +A(k)∗ψn+1 +Vn(k)ψn, n ∈ Z, ψ = (ψn)n∈Z,

(H�
GP(k)ψ)n = A(k)ψn−1 +A(k)∗ψn+1 +V �

n (k)ψn, n ∈ N, ψ = (ψn)n∈N.

Here, the potential Vn(k),V
�
n (k) and the hopping matrices A(k) are N ×N matrices

satisfying suitable assumptions (see [3]). Since the operators HGP(k) and H�
GP(k) play

role of the fiber operators of the discrete Schrödinger operators in Graphene or the
Kane–Male model [4] of topological insulators under the suitable choices of A(k) and
potentials in the case of N = 2, HGP(k) and H�

GP(k) are considered as a generalization
of a class of fiber operators.

In this paper, we study the spectra of the periodic Hamiltonian H� on Graphene
with variant boundaries (see Fig. 1) from the point of view of the quantum graphs. The
aim of this paper is to compare the spectrum of our Hamiltonian H� with the spectrum
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Fig. 1: The metric graph Γ� for the edge Hamiltonian H� with the variant boundaries. The
points An,k,Bn,k,Cn,k,Dn,k are denoted by A(n,k),B(n,k),C(n,k),D(n,k) .

of the periodic edge Hamiltonian H� in [8] on the Graphene with the standard zigzag
boundaries. Let us state the definition of the main target Hamiltonian H� . At first,
we recall that a quantum graph is defined as a triple of a metric graph, a differential
Schrödinger operator, and a suitable vertex condition [1]. We define the metric graph
Γ� as the hexagonal lattice with the variant shape of boundaries as seen in Fig. 1. Let
E� and V � be the set of edges and vertices of Γ� , respectively: Γ� = {E�,V �} . For an
edge e ∈ E� , its orientation is given as seen in Fig. 1. A white (black, respectively)
arrow is located on the boundary (in the interior, respectively) of Γ� . The set of vertices
V � consists of the points An,k,Bn,k,Cn,k,Dn,k (n = 0,1,2, . . .) and D−1,k , where k ∈ Z .
Put J = {1,2,3,4,5,6} and Z = Z1 ∪Z2 ∪Z3 , where Z1 = N×J ×Z , Z2 =
{0}×{2,3}×Z , Z3 = {(0,1),(0,4),(0,5),(0,6),(−1,3),(−1,5)}×Z . For distinct
points A and B in R2 , we denote the segments connecting A and B by AB and AB ,
where AB does not contain the edges A and B although AB does contain A and B .
In order to identify which edge is under consideration, we give an address (n, j,k) ∈ Z

for an edge e ∈ E� to derive the one-to-one correspondence between Z and E� such
as E� = {en, j,k| (n, j,k) ∈ Z } (see also Fig. 2), where

en,1,k = An,kBn,k, en,2,k = Bn,kAn+1,k, en,3,k = An+1,kDn,k,

en,4,k = Cn,kDn,k, en,5,k = Dn,kCn+1,k, en,6,k = Cn+1,kBn,k+1.

We assume that the length of any edge e ∈ E� is 1 . For any (n, j,k) ∈ Z , we give
the identification en, j,k � (0,1) , where x = 0 and x = 1 corresponds to the initial and
terminal vertices of en, j,k . For a function y on Γ� , we denote y restricted on en, j,k by
yn, j,k . Fix a real-valued potential q ∈ L2(0,1) and suppose that

ess inf
x∈(0,1)

q(x) > −∞
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Fig. 2: The metric graph Γ� .

throughout this paper. In this paper, we study the Schrödinger operator

(H�y)n, j,k(x) = −y′′n, j,k(x)+q(x)yn, j,k(x), x ∈ (0,1) � en, j,k, (n, j,k) ∈ Z

in the Hilbert space L2(Γ�) = ⊕(n, j,k)∈Z L2(en, j,k) , where L2(en, j,k) = L2(0,1) . Let

y ∈ dom(H�) be imposed the Kirchhoff–Neumann vertex condition at any v ∈ V � \
∂Γ� and the Dirichlet boundary condition on ∂Γ� , where ∂Γ� be the boundary of Γ� ,
namely, ∂Γ� :=

⋃
k∈Z(e0,1,k ∪ e−1,3,k ∪ e−1,4,k ∪ e0,4,k ∪ e0,5,k ∪ e0,6,k). More precisely,

the Kirchhoff–Neumann boundary conditions are

yn−1,2,k(1) = yn−1,3,k(0) = yn,1,k(0), −y′n−1,2,k(1)+ y′n−1,3,k(0)+ y′n,1,k(0) = 0 at An,k,

yn,1,k(1) = yn,2,k(0) = yn,6,k−1(1), −y′n,1,k(1)+ y′n,2,k(0)− y′n,6,k−1(1) = 0 at Bn,k,

yn,5,k(1) = yn,6,k(0) = yn+1,4,k(0), −y′n,5,k(1)+ y′n,6,k(0)+ y′n+1,4,k(0) = 0 at Cn+1,k,

yn,3,k(1) = yn,4,k(1) = yn,5,k(0), −y′n,3,k(1)− y′n,4,k(1)+ y′n,5,k(0) = 0 at Dn,k

for (n,k) ∈ N×Z . On the other hand, the Dirichlet boundary condition is expressed as
y ≡ 0 on ∂Γ� . These boundary conditions make H� self-adjoint.

Our operator H� is not periodic in a1 :=
−−−−→
B0,1B1,1 but periodic in a2 :=

−−−−→
B0,1B0,2 .

Thus, we give a direct integral decomposition to H� in the direction a2 [10]. For
that purpose, we construct a fiber operator H�(μ) of H� , where μ ∈ S1 is a quasi-
momentum. Put Z0 = Z1,0∪Z2,0∪Z3,0 , where Z1,0 = N×J , Z2,0 = {0}×{0,2} ,
Z3,0 = {(0,1),(0,4),(0,5),(0,6),(−1,3),(−1,5)} . Moreover, we define the funda-
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mental domain Γ�
0 = (E�

0,V
�
0 ) through

E�
0 = {en, j,0| (n, j) ∈ Z0}, V �

0 =

⎛
⎝ ⋃

n∈N∪{0}
{An,0,Bn,0,Cn,0,Dn,0}

⎞
⎠∪{D−1,0}.

Let ∂Γ�
0 =

⋃
(n, j)∈Z3,0

en, j,0 . Hereafter, we abbreviate en, j,0 to en, j and apply the similar

rule for yn, j,0 and An,0,Bn,0,Cn,0,Dn,0 . We define the fiber operator H�(μ) in L2(Γ0)
as

(H�(μ)y)n, j(x) = −y′′n, j(x)+q(x)yn, j(x), x ∈ (0,1) � en, j, (n, j) ∈ Z0,

where y ∈ dom(H�(μ)) is imposed the vertex conditions

yn−1,2(1) = yn−1,3(0) = yn,1(0), −y′n−1,2(1)+ y′n−1,3(0)+ y′n,1(0) = 0 at An, (1.1)

yn,1(1) = yn,2(0) = e−iμyn,6(1), −y′n,1(1)+ y′n,2(0)− e−iμy′n,6(1) = 0 at Bn, (1.2)

yn,5(1) = yn,6(0) = yn+1,4(0), −y′n,5(1)+ y′n,6(0)+ y′n+1,4(0) = 0 at Cn+1, (1.3)

yn,3(1) = yn,4(1) = yn,5(0), −y′n,3(1)− y′n,4(1)+ y′n,5(0) = 0 at Dn (1.4)

and the Dirichlet boundary condition y ≡ 0 on ∂Γ�
0 . Put the direct integral decomposi-

tion H :=
∫⊕
S1 L2(Γ�

0)
dμ
2π (see [6, 10] for the definition) and denote by L2

comp(Γ�) the set

of all compactly supported function in L2(Γ�) . Then, the operator U : L2
comp(Γ�) →H

acting as
(U f )μ(x) = ∑

m∈Z

e−imμ f (x+ma2), x ∈ Γ�
0, μ ∈ S1

is well-defined and is uniquely extended to the unitary operator U : L2(Γ�)→H . This
operator yields the unitary equivalence

UH�U−1 =
∫ ⊕

S1
H�(μ)

dμ
2π

in a similar way to [6, 10]. Since λ ∈ σ(H�) is characterize by λ ∈ R satisfying
m({μ ∈ S1| σ(H�(μ))∩ (λ − ε,λ + ε) �= /0}) > 0 for any ε > 0 and the Lebesgue
measure m , we hereafter study the spectrum of H�(μ) .

To state our main results, we need notations from the theory of the Hill opera-
tor L := − d2

dx2 + q(x) in L2(R) [2, 7, 10], where q is extended to be 1-periodic . For
λ ∈C , let θ (x,λ ) and ϕ(x,λ ) be the fundamental solutions to −y′′+qy= λy on R to-
gether with the initial conditions (θ (0,λ ),θ ′(0,λ )) = (1,0) and (ϕ(0,λ ),ϕ ′(0,λ )) =
(0,1) , respectively. For our convenience, we use the abbreviations (θ1,θ ′

1,ϕ1,ϕ ′
1) =

(θ (1,λ ),θ ′(1,λ ),ϕ(1,λ ),ϕ ′(1,λ )) . Then, the entire function Δ(λ ) = θ1+ϕ ′
1

2 is known
as the spectral discriminant of L . In [10], the result σ(L) = σac(L) = {λ ∈R| |Δ(λ )|�
1} is established by the theory of the direct integral decomposition of L . Furthermore,

the function Δ−(λ ) = θ1−ϕ ′
1

2 determines if q is even in the sense of q(x) = q(1− x) on
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(0,1) . The potential q is even if and only if Δ− ≡ 0 (see [5, Lemma 3.1(iii)]). More-
over, we define σD as the set of all eigenvalues of the Dirichlet problem −y′′+qy = λy
on (0,1) with the Dirichlet condition y(0) = y(1) = 0. This is characterized as σD =
{λ ∈ R| ϕ(1,λ ) = 0} .

In this paper, we construct the spectral theory of H�(μ) from the point of view of
the functions

Ds(μ ,λ ) = d2
s (μ ,λ )−16sin2 μ

4
and Dc(μ ,λ ) = d2

c (μ ,λ )−16cos2
μ
4

. (1.5)

Here, ds(μ ,λ ) and dc(μ ,λ ) are defined as ds(μ ,λ ) = 9Δ2(λ )−Δ2−(λ )−1−4sin2 μ
4

and dc(μ ,λ ) = 9Δ2(λ )−Δ2−(λ )−1−4cos2 μ
4 . Moreover, we define

D1 := {λ ∈ R\σD | Ds(μ ,λ ) < 0, Dc(μ ,λ ) < 0},
D2 := {λ ∈ R\σD | Ds(μ ,λ ) < 0, Dc(μ ,λ ) > 0},
D3 := {λ ∈ R\σD | Ds(μ ,λ ) > 0, Dc(μ ,λ ) < 0},
D4 := {λ ∈ R\σD | Ds(μ ,λ ) > 0, Dc(μ ,λ ) > 0}

and give a decomposition D4 = D+
4 ∪D−

4 , where

D+
4 :=

{
λ ∈ R\σD

∣∣∣ dc(μ ,λ ) > 4cos
μ
4

, ds(μ ,λ ) > 4
∣∣∣sin μ

4

∣∣∣}
D−

4 :=
{

λ ∈ R\σD

∣∣∣ dc(μ ,λ ) < −4cos
μ
4

, ds(μ ,λ ) < −4
∣∣∣sin μ

4

∣∣∣} .

Our main results are stated as

THEOREM 1.1. On the spectum of the fiber operator H�(μ) , we have the follow-
ings:

(0) For any μ ∈ S1 , we have σD ⊂ σp(H�(μ)) .
(1) If μ ∈ S1 \ {0} , then D1 ⊂ σ(H�(μ)) .
(2) If μ ∈ S1 \ {0} , then D2 ⊂ σ(H�(μ)) .
(3) If μ ∈ S1 \ {0,± 2

3π} , then D3 ⊂ σ(H�(μ)) .
(4) If μ ∈ S1 \ {0,±π} , then D+

4 ⊂ ρ(H�(μ)) .

To describe the statements on D−
4 , we put

m12(λ ) =
ϕ1(2Δ + ϕ ′

1)
1− e−iμ

for μ ∈ S1 \{0} . If q is even, then we note that m12 = 0 is equivalent to 3Δ+Δ− = 0.

THEOREM 1.2. Assume that μ ∈ S1 \ {0,± 2
3π ,±π} and λ ∈ D−

4 .

(A) Assume that m12 �= 0 and 3Δ + Δ− = 0 .

(1) If 2
3π < |μ | < π , then λ ∈ σp(H�(μ)) .
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(2) If 0 < |μ | < 2
3 π , then λ ∈ ρ(H�(μ)) .

(B) Assume that m12 �= 0 and 3Δ + Δ− �= 0 .

(1) If ds−
√

Ds +dc−
√

Dc +8 �= 0 , then λ ∈ ρ(H�(μ)) .

(2) If ds−
√

Ds +dc−
√

Dc +8 = 0 , then λ ∈ σp(H�(μ)) .

(C) Assume that m12 = 0 and q is even. Then, 3Δ + Δ− = 0 also holds true. If
2
3 π < |μ | < π , then λ ∈ σp(H�) . Otherwise, λ ∈ ρ(H�(μ)) .

(D) If m12 = 0 and q is not even, then λ ∈ ρ(H�(μ)) .

Our main results relates the dispersion relation for almost every μ ∈ S1 (except
the case of Ds(μ ,λ ) = 0 and Dc(μ ,λ ) = 0). In order to drew the picture, we prepare
the notations:

�1(μ) = {λ ∈ D−
4 | ds−

√
Ds +dc−

√
Dc +8 = 0}.

�2(μ) = {λ ∈ D−
4 | 3Δ + Δ− = 0}.

M1 =
{
(λ ,μ)| λ ∈ �1(μ), μ ∈ S1 \

{
0,±2

3
π ,±π

}}
.

M2 =
{
(λ ,μ)| λ ∈ �2(μ),

2
3

π < |μ | < π
}
.

Then, the picture of dispersion relation for q ≡ 0 is seen in Fig. 3. The picture will
help us to understand the statements of Theorem 1.1 and 1.2. If q is even, m12 = 0 is
equivalent to 3Δ + Δ− = 0. Thus, the eigenvalue curve 3Δ + Δ− = 0 and m12 = 0 in
Fig. 3 overlaps each other in the case of q = 0.

Next, we would like to compare our results with [8]. In [8], spectral properties are
studied for graphenes with standard zigzag boundaries. Let Γ� = (E�,V �) be the metric
graph corresponding to the half space of the graphene seen in Fig. 4, where E� and V �

are the set of edges and vertices respectively. Denote by H� the Schrödinger operator on
Γ� with the Dirichlet boundary conditions on ∂Γ� and the Kirchhoff–Neumann vertex
conditions at V � \ ∂Γ� . The operator H� acts as − d2

dx2 + q on each (0,1) � e ∈ E� ,

where q is the same as the potential of H� . Since there are no periodic bump on the
boundaries, the fundamental domain of H� is half as large as the one of H� . As a result,
spectral discriminant D(μ ,λ ) of the fiber operator H�(μ) corresponding to H� can be
simplified instead of (1.5) as

D(μ ,λ ) = d2(μ ,λ )−16cos2
μ
2

,

where d(μ ,λ ) = 9Δ2(λ )−Δ2−(λ )−1−4cos2 μ
2 for λ �∈ σD and μ ∈ S1 \{±π} . This

appears as in the explicit formulae of the eigenvalues

ρ± =
1

2(1+ e−iμ)
(d(μ ,λ )±

√
D(μ ,λ ))
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Fig. 3: The dispersion relation in the case of q ≡ 0 .

of the transfer matrix M�(λ ) defined as(
yn+1,1,0(0,λ )
y′n+1,1,0(0,λ )

)
= M�(λ )

(
yn,1,0(0,λ )
y′n,1,0(0,λ )

)

for a solution y = (yn, j,k) on Γ� to H�(μ)y = λy and λ ∈ R \σD . Since M�(λ ) is a
2× 2 matrix in contrast to the one for H� (see (2.1) below), it is relatively easier to

find the eigenspace of V (ρ±) . Prepare the key vector e =
(
0 1
)�

. Then, the function
D(μ ,λ ) plays the role of a spectral discriminant:

THEOREM 1.3. (Theorem 2.3 in [8]) Assume that λ ∈R\σD and μ ∈ S1\{±π} .

(I) If D(μ ,λ ) < 0 , then we have |ρ±| = 1 , λ ∈ σ(H�(μ)) and λ �∈ σp(H�(μ)) .

(II) If D(μ ,λ ) > 0 , then we have ρ+ρ− = 1 , |ρ±| �= 1 and the followings:

(i) If e �∈V (ρ+) and e �∈V (ρ−) , then we have λ ∈ ρ(H�(μ)) .

(ii) Assume that e ∈V (ρ+) . If |ρ+| < 1 , then we have λ ∈ σp(H�(μ)) . Otherwise,
namely, if |ρ+| > 1 , then we have λ ∈ ρ(H�(μ)) .

(iii) Assume that e ∈V (ρ−) . If |ρ+| > 1 , then we have λ ∈ σp(H�(μ)) . Otherwise,
namely, if |ρ+| < 1 , then we have λ ∈ ρ(H�(μ)) .

The signature of the discriminant D(μ ,λ ) is related in determining whether or not
λ �∈ σD belongs to the spectrum of the fiber operator H�(μ) . In this sense, our results
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Fig. 4: Graphene with standard zigzag boundaries

in this paper (Theorems 1.1 and 1.2) are analogues of Theorem 1.3. In the case without
bumpy boundaries, D(μ ,λ ) < 0 is equivalent to |F(μ ,λ )| < 1, where

F(μ ,λ ) =
1

4cos μ
2

(
9Δ2(λ )−Δ2

−(λ )−1−4cos2
μ
2

)
.

Since the asymptotics of θ1 and ϕ ′
1 are well-known in [9], the behavior of the func-

tion F(μ ,λ ) can be stated in §3 in [8]. As a result, we constructed the spectral
band-gap structure of H�(μ) and H� . In the case of D(μ ,λ ) > 0, λ ∈ R \σD and
μ ∈ S1 \ {±π} , the conditions e ∈ V (ρ+) and |ρ+| > 1 hold true in the case of
μ ∈ (−π ,− 2

3π)∪ ( 2
3 π ,π) and m�

12(λ ) = 0, where M�(λ ) = (m�
i j(λ ))i, j=1,2 (see [8,

Theorem 2.7]). The variety defined by m�
12(λ ) = 0 and μ ∈ (−π ,− 2

3π)∪ ( 2
3 π ,π) ap-

pears as eigenvalue curves in spectral gaps of H�(μ) (see Fig. 5). For λ �∈ σD , the
three conditions m�

12(λ ) = 0, m12(λ ) = 0 and θ1 +2ϕ ′
1 = 0 are equivalent. Compared

with Fig. 3, it looks like there are no difference for eigenvalue curves θ1 + 2ϕ ′
1 = 0

(μ ∈ (−π ,− 2
3π)∪ ( 2

3 π ,π)). The difference between the eigenvalue curves of H�(μ)
and H�(μ) appears as the varieties M1 . In the case of H�(μ) , the eigenvalue curve
is defined as 3Δ + Δ− = 0 and μ ∈ (−π ,− 2

3π)∪ ( 2
3 π ,π) . Note that the condition

3Δ + Δ− = 0 is equivalent to 2θ1 + ϕ ′
1 = 0.

Let us introduce the content of this paper and explain how new our approach in
this study is. In this paper, we deeply rely on the Cramer’s rule for our spectral analysis
of the fiber operator H�(μ) . In Section 2, we study the spectral properties of a transfer
matrix M(λ ) for H�(μ) defined in (2.1). In principle, a non-trivial solution y to H�y =
λy for λ ∈ R \σD can be written explicitly. However, it is more complicated to find
the components of the 4×4 matrix because the size of the fundamental domain of Γ�
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Fig. 5: The dispersion relation to H� in the unperturbed case q ≡ 0

is twice as big as the one of Γ� . The first highlight is the block matrix form

M(λ ) =
(

A e−iμB
B A

)
(1.6)

(see Lemma 2.1). This helps us to calculate the eigenvalues ρ±
s ,ρ±

c of the transfer ma-
trix M(λ ) and the corresponding eigenspaces V (ρ±

s ) and V (ρ±
c ) . In Lemma 2.4, the

eigenvectors in V (ρ±• ) are explicitly written for each • = s,c . In the subsection 3.1,
we find fundamental solutions to H�(μ)y = λy . In the case of λ ∈ R\σD , the funda-
mental solutions p and q to H�(μ)y = λy as well as initial conditions p0,2(0,λ ) = 0,
p′0,2(0,λ ) = 1, q1,4(0,λ ) = 0, q′1,4(0,λ )= 1 are explicitly written as in Lemma 3.4 (2).
As a result, we derive an explicit expression of a non-trivial solution y = (yn, j)(n, j)∈Z0

to H�(μ)y = λy as well as the initial condition⎛
⎜⎜⎝

y1,1(0,λ )
y′1,1(0,λ )
y1,4(0,λ )
y′1,4(0,λ )

⎞
⎟⎟⎠= c1

⎛
⎜⎜⎝

ϕ1

2Δ
0
0

⎞
⎟⎟⎠+ c2

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (1.7)

with constants (c1,c2) ∈ C
2 \ {(0,0)} . As in Lemma 3.4 (1), the expression includes

the eigenvalues ρ±
c and ρ±

s such as

yn, j(x,λ ) = (ρ+
c )n−1(c1η+

j,1,c + c2η+
j,2,c)+ (ρ−

c )n−1(c1η−
j,1,c + c2η−

j,2,c)

+ (ρ+
s )n−1(c1η+

j,1,s + c2η+
j,2,s)+ (ρ−

s )n−1(c1η−
j,1,s + c2η−

j,2,s).
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Here, η±
j,�,• = η±

j,�,•(x,λ ) is explicitly written as a linear combination of θ (x,λ ) and

ϕ(x,λ ) for j = 1,2,3,4,5,6, � = 1,2 and • = s,c . Its coefficients α±
j,�,• and β±

j,�,•
is given in (3.7)–(3.9) by considering the eigenvector expansion (3.6) of the vectors e1

and e2 appering the initial condition (see (3.1)). In the subsection 3.2, we construct
infinitely many linearly independent eigenfunctions to the eigenvalue λ ∈ σD with the
help of the idea in [5]. Recall that λ ∈ σD is called a flat band. In section 4, we give
the proof of Theorems 1.1 and 1.2. Assume that λ ∈ R \σD . In accordance with the
signature of Ds(μ ,λ ) and Dc(μ ,λ ) , we have three classes |ρ±• | = 1, |ρ±• | > 1 and
|ρ±• | < 1 for each symbol • = s,c . In the case of Ds(μ ,λ ) < 0 and Dc(μ ,λ ) < 0, the
absolute value of all eigenvalues are 1: |ρ±

s | = |ρ±
c | = 1. So, we see that ||yn, j||2L2(0,1)

is uniformly bounded with respect to n∈ N and any j . Then, we see that all non-trivial
solution y is a generalized eigenfunction for λ ∈ D1 . This is the simplest case in the
classifications {Dj} j=1,2,3,4 . For example, the case of λ ∈ D2 is more complicated
because ||yn, j||L2(0,1) might grow exponentially as n → ∞ due to |ρ±

s | = 1, |ρ−
c | > 1

and |ρ+
c |< 1 (see Lemma 4.1). If there exists some pair (c1,c2)∈C2\{(0,0)} satisfy-

ing c1η−
j,1,c(x,λ )+c2η−

j,2,c(x,λ )≡ 0, namely, (c1α−
j,1,c +c1α−

j,2,c,c1β−
j,1,c +c2β−

j,2,c) =
(0,0) for all j = 1,2,3,4,5,6, then ||yn, j||L2(0,1) is uniformly bounded with respect

to n ∈ N and j . The coefficients α−
j,1,c,α

−
j,2,c,β

−
j,1,c,β

−
j,2,c are appearing in the vec-

tors e−1,s and e−2,s (see (3.7)–(3.9)). There exist unique constants γ−s ,δ−
s ∈ C such

that e1,s = γ−s w−
s and e2,s = δ−

s w−
s because V (ρ±

s ) = 〈w±
s 〉 . As a result, we have

δ−
c α−

j,1,c +(−γ−c )α−
j,2,c = 0 and δ−

c β−
j,1,c +(−γ−c )β−

j,2,c = 0. To find (δ−
c ,γ−c ) �= (0,0) ,

we wonder to find the coefficients in the eigenvector expansion (4.2) and (4.3). How-
ever, this is very heavy task. Thus, we utilize the Cramer’s rule. As a result, we derive
a generalized eigenfunction for λ ∈ D2 .

2. Transfer matrix for the fiber operator H�(μ)

We pick y = (yn, j)(n, j)∈Z0
∈ dom(H�(μ)) , arbitrarily. Let us study the 4×4 trans-

fer matrix M(λ ) = (mi j(λ )) defined as⎛
⎜⎜⎝

yn+1,1(0,λ )
y′n+1,1(0,λ )
yn+1,4(0,λ )
y′n+1,4(0,λ )

⎞
⎟⎟⎠= M(λ )

⎛
⎜⎜⎝

yn,1(0,λ )
y′n,1(0,λ )
yn,4(0,λ )
y′n,4(0,λ )

⎞
⎟⎟⎠ (n ∈ N) (2.1)

and find its eigenvalues ρ±
s and ρ±

c by making use of the block matrix.

LEMMA 2.1. Let μ ∈ S1 \{0}= [−π ,0)∪(0,π) and λ ∈ R\σD . Then, we have

m11 =
θ ′

1ϕ1 +2Δθ1

1− e−iμ and m12 =
ϕ1ϕ ′

1 +2Δϕ1

1− e−iμ .

Furthermore, M(λ ) has the block matrix form (1.6), where

A =

(
m11 m12

2Δm11−θ1
ϕ1

−1+ 2Δm12
ϕ1

)
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and

B =

⎛
⎝ −m11 −m12

−2Δm11−θ1e
iμ

ϕ1
−eiμ − 2Δm12

ϕ1

⎞
⎠ .

Proof. Putting αn = yn,1(0,λ ) , α ′
n = y′n,1(0,λ ) , βn = yn,2(0,λ ) , γn = yn,4(0,λ ) ,

γ ′n = y′n,4(0,λ ) , δn = yn,5(0,λ ) , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn,1(x,λ ) = αnθ (x,λ )+ α ′
nϕ(x,λ ),

yn,2(x,λ ) = βnθ (x,λ )+ y′n,2(0,λ )ϕ(x,λ ),
yn,3(x,λ ) = αn+1θ (x,λ )+ y′n,3(0,λ )ϕ(x,λ ),
yn,4(x,λ ) = γnθ (x,λ )+ γ ′nϕ(x,λ ),
yn,5(x,λ ) = δnθ (x,λ )+ y′n,5(0,λ )ϕ(x,λ ),
yn,6(x,λ ) = γn+1θ (x,λ )+ y′n,6(0,λ )ϕ(x,λ )

(2.2)

due to yn, j(x,λ ) = yn, j(0,λ )θ (x,λ )+ y′n, j(0,λ )ϕ(x,λ ) on en, j for (n, j) ∈ Z0 . Sub-
stituting these (1.2) and (1.4), we have

− (αnθ ′
1 + α ′

nϕ ′
1)+ y′n,2(0,λ )− e−iμ(γn+1θ ′

1 + y′n,6(0,λ )ϕ ′
1) = 0, (2.3)

−(αn+1θ ′
1 + y′n,3(0,λ )ϕ ′

1)− (γnθ ′
1 + γ ′nϕ ′

1)+ y′n,5(0,λ ) = 0. (2.4)

Note that y′n, j(0,λ ) = (yn, j(1,λ )−θ1yn, j(0,λ ))/ϕ1 yields

y′n,2(0,λ ) =
αn+1−θ1βn

ϕ1
, y′n,6(0,λ ) =

eiμβn−θ1γn+1

ϕ1
, (2.5)

y′n,3(0,λ ) =
δn−θ1αn+1

ϕ1
, y′n,5(0,λ ) =

γn+1−θ1δn

ϕ1
. (2.6)

Substituting these into (2.3) and (2.4), we have

αn+1 + e−iμγn+1 = αnθ ′
1ϕ1 + α ′

nϕ1ϕ ′
1 +2Δβn,

αn+1 + γn+1 = γnθ ′
1ϕ1 + γ ′nϕ1ϕ ′

1 +2Δδn

using θ1ϕ ′
1−θ ′

1ϕ1 = 1 and θ1 +ϕ ′
1 = 2Δ . Substituting βn = yn,1(1,λ ) = αnθ1 +α ′

nϕ1

and δn = yn,4(1,λ ) = γnθ1 + γ ′nϕ1 into these, we derive

αn+1 + e−iμγn+1 = αn(θ ′
1ϕ1 +2Δθ1)+ α ′

n(ϕ1ϕ ′
1 +2Δϕ1),

αn+1 + γn+1 = γn(θ ′
1ϕ1 +2Δθ1)+ γ ′n(ϕ1ϕ ′

1 +2Δϕ1).

These yields

(1− e−iμ)αn+1

=αn(θ ′
1ϕ1 +2Δθ1)+ α ′

n(ϕ1ϕ ′
1 +2Δϕ1)− e−iμ{γn(θ ′

1ϕ1 +2Δθ1)+ γ ′n(ϕ1ϕ ′
1 +2Δϕ1)},

(1− e−iμ)γn+1

=−αn(θ ′
1ϕ1 +2Δθ1)−α ′

n(ϕ1ϕ ′
1 +2Δϕ1)+ γn(θ ′

1ϕ1 +2Δθ1)+ γ ′n(ϕ1ϕ ′
1 +2Δϕ1).
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Hence, we have

m11 = m33 =
θ ′

1ϕ1 +2Δθ1

1− e−iμ , m12 = m34 =
ϕ1ϕ ′

1 +2Δϕ1

1− e−iμ ,

m13 = −e−iμm11 , m14 = −e−iμm12 , m31 = −m11 , m32 = −m12. Thus, it turns out
that the components of the 1st and 3rd rows of M(λ ) are written as in the desired
statement.

Next, we find the components of the 2nd and 4th rows of M(λ ) . Substituting
(2.2) into (1.1) and (1.3), we have

α ′
n+1 = y′n,2(1,λ )− y′n,3(0,λ ) = (βnθ ′

1 + y′n,2(0,λ )ϕ ′
1)− y′n,3(0,λ ),

γ ′n+1 = y′n+1,4(0,λ ) = y′n,5(1,λ )− y′n,6(0,λ ) = (δnθ ′
1 + y′n,5(0,λ )ϕ ′

1)− y′n,6(0,λ ).

Inserting (2.5) and (2.6) into these, we obtain

α ′
n+1 =

2Δm11−θ1

ϕ1
αn +

(
−1+

2Δm12

ϕ1

)
α ′

n +
2Δm13−θ1

ϕ1
γn +

(
−1+

2Δm14

ϕ1

)
γ ′n,

γ ′n+1 =
2Δm31−θ1eiμ

ϕ1
αn +

(
−eiμ +

2Δm32

ϕ1

)
α ′

n +
2Δm33−θ1

ϕ1
γ +
(
−1+

2Δm34

ϕ1

)
γ ′n.

These combined with m33 = m11 , m34 = m12 , m13 = −e−iμm11 , m14 = −e−iμm12 ,
m31 = −m11 , m32 = −m12 give us the components of the 2nd and 4th rows of M(λ )
in the desired form. �

Next, we calculate the eigenvalues of M(λ ) . Since M(λ ) is the 4× 4 matrix,
it looks like difficult to achieve the calculation. However, the block form of M(λ ) in
Lemma 2.1 helps us to carry out the calculation:

LEMMA 2.2. Assume that μ ∈ S1 \ {0} and λ ∈ R \σD . Then, the eigenvalues
of M(λ ) are given by

ρ±
s =

ds(μ ,λ )±√Ds(μ ,λ )

4ie−
iμ
4 sin μ

4

and ρ±
c =

dc(μ ,λ )±√Dc(μ ,λ )

4e−
iμ
4 cos μ

4

.

Proof. Let En be the unit matrix of size n and consider the characteristic equation
det (ρE4−M(λ )) = 0. Our first calculation is

det (ρE4−M(λ )) =
∣∣∣∣ρE2−A −e−iμB

−B ρE2−A

∣∣∣∣
=

∣∣∣∣∣ρE2−A− e−
iμ
2 B −e−iμB+ e−

iμ
2 (ρE2−A)

−B ρE2−A

∣∣∣∣∣
=

∣∣∣∣∣ρE2−A− e−
iμ
2 B O

−B ρE2−A+ e−
iμ
2 B

∣∣∣∣∣
= det (ρE2−A− e−

iμ
2 B)det (ρE2−A+ e−

iμ
2 B).
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Since the components of A and B are found in Lemma 2.1, we have

det (ρE2−A− e−
iμ
2 B) = ρ2 +

(1+ e
iμ
2 )(1+ e−

iμ
2 )− (8Δ2 + θ ′

1ϕ1)

1+ e−
iμ
2

ρ +
1+ e

iμ
2

1+ e−
iμ
2

,

det (ρE2−A+ e−
iμ
2 B) = ρ2 +

(1− e
iμ
2 )(1− e−

iμ
2 )− (8Δ2 + θ ′

1ϕ1)

1− e−
iμ
2

ρ +
1− e

iμ
2

1− e−
iμ
2

.

Now, we have the following elemental results:

1+ e−
iμ
2 = 1+ cos

μ
2
− isin

μ
2

= 2cos2
μ
4
−2isin

μ
4

cos
μ
4

= 2e−
iμ
4 cos

μ
4

(�= 0),

1− e
−iμ
2 = 1− cos

μ
2

+ isin
μ
2

= 2sin2 μ
4

+2isin
μ
4

cos
μ
4

= 2ie−
iμ
4 sin

μ
4

(�= 0).

Using these 4 results, we obtain

det (ρE2−A− e−
iμ
2 B) = ρ2 +

4cos2 μ
4 −8Δ2−θ ′

1ϕ1

2e−
iμ
4 cos μ

4

ρ + e
iμ
2 ,

det (ρE2−A+ e−
iμ
2 B) = ρ2 +

4sin2 μ
4 −8Δ2−θ ′

1ϕ1

2ie−
iμ
4 sin μ

4

ρ − e
iμ
2 .

The quadratic formula yields the eigenvalues ρ = ρ±
s ,ρ±

c of M(λ ) . �

Put S = {ρ+
s ,ρ−

s }∩{ρ+
c ,ρ−

c } . In the next lemma, we examine if the eigenvalues
of M(λ ) are simple or not. For the most part, they are simple:

LEMMA 2.3. For almost every μ ∈ S1 and λ ∈ R , we have S = /0 :
(1) For any μ ∈ S1 \ {0} , we have S = /0 for almost every λ ∈ D1 .
(2) For any μ ∈ S1 \ {0} , we have S = /0 for every λ ∈ D2 .
(3) For any μ ∈ S1 \ {0,± 2

3π} , we have S = /0 for every λ ∈ D3 .
(4) For any μ ∈ S1 \ {0} , we have S = /0 for every λ ∈ D4 .

Proof. (1) Assume that ρ+
s = ρ±

c . Hence, we derive

ds(μ ,λ )
sin μ

4

= ∓
√−Dc(μ ,λ )

cos μ
4

, −
√−Ds(μ ,λ )

sin μ
4

=
dc(μ ,λ )
cos μ

4

.

This yields Ds(μ ,λ )Dc(μ ,λ ) = d2
s (μ ,λ )d2

c (μ ,λ ) . Put d = d(λ ) = 9Δ2 − Δ2− − 1.
Substituting Ds(μ ,λ ) = d2

s (μ ,λ )−16sin2 μ
4 and Dc(μ ,λ ) = d2

c (μ ,λ )−16cos2 μ
4 , we

have d(d − 16sin2 μ
4 cos2 μ

4 ) = 0. The asymptotic d(λ ) ∼ 9cos2
√

λ − 1 as |λ | → ∞
implies that the set L1 := {λ ∈ D1| d(d − 16sin2 μ

4 cos2 μ
4 ) = 0} has the Lebesgue

measure 0 for each μ ∈ S1 \ {0} . So, we have {ρ+
s }∩{ρ+

c ,ρ−
c } = /0 for almost every

λ ∈ D1 . Similarly, we obtain {ρ−
s }∩{ρ+

c ,ρ−
c } = /0 for almost every λ ∈ D1 .
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(2) We shall show ρ+
s �= ρ+

c , ρ−
c by contradiction. Seeking a contradiction, we

assume ρ+
s = ρ±

c . Then, we have ds = 0 and
√−Ds

sin μ
4

=
dc ±

√
Dc

cos μ
4

. (2.7)

First, we consider the case of μ ∈ (0,π) . Then, ds = 0 implies that
√−Ds = 4sin μ

4 .
Substituting this into (2.7), we have 4cos μ

4 − dc = ±√
Dc . This squared yields dc =

4cos μ
4 . On the other hand, we have dc = dc − ds = 4sin2 μ

4 − 4cos2 μ
4 because of

ds = 0. These results yield 2cos2 μ
4 + cos μ

4 −1 = 0. However, this does not have any
root in (0,π) . Next, we consider the case of μ ∈ [−π ,0) . By similar procedure, we
arrive at 2cos2 μ

4 − cos μ
4 − 1 = 0. This does not have any root in [−π ,0) . Thus, we

have ρ+
s �= ρ+

c ,ρ−
c . Since we also have ρ−

s �= ρ±
c in a similar way, we derive S = /0 .

The proof of (3) is similar to the one of (2).
(4) We shall show ρ+

s �= ρ+
c ,ρ−

c by contradiction. Seeking a contradiction, we
assume ρ+

s = ρ±
c . Taking part of the real part and imaginary part of the equality, we

have ds(μ ,λ )+
√

Ds(μ ,λ ) = 0 and dc(μ ,λ )±√Dc(μ ,λ ) = 0. These mean that d2
s =

d2
s −16sin2 μ

4 and d2
c = d2

c −16cos2 μ
4 , which yield a contradiction sin μ

4 = cos μ
4 = 0.

Similarly, we have ρ−
s �= ρ±

c . So, S = /0 . �

LEMMA 2.4. Assume that μ ∈ S1\{0} , λ ∈R\σD and S = /0 . Then, there exists
some x±c and x±s ∈ C2 such that V (ρ±

c ) = 〈w±
c 〉 and V (ρ±

s ) = 〈w±
s 〉 , where

w±
c =

(
x±c

e
iμ
2 x±c

)
, w±

s =

(
x±s

−e
iμ
2 x±s

)
∈ C

4.

Moreover, x±c and x±s ∈ C
2 are explicitly given as follows:

(1) If m12(λ ) �= 0 , then

x±c =

(
m12(λ )(1− e−

iμ
2 )

ρ±
c −m11(λ )(1− e−

iμ
2 )

)
, x±s =

(
m12(λ )(1+ e−

iμ
2 )

ρ±
s −m11(λ )(1+ e−

iμ
2 )

)
.

(2) Assume that m12(λ ) = 0 . Then,

x+
c =

(
ϕ1{ρ+

c +(1+ e
iμ
2 )}

−{2Δm11(e−
iμ
2 −1)+ θ1(e

iμ
2 +1)}

)
, x−c =

(
0
1

)
.

(a) If 0 < |μ | < 2
3 π , then

x−s =

(
ϕ1{ρ−

s +(1− e
iμ
2 )}

−{−2Δm11(1+ e−
iμ
2 )+ θ1(1− e

iμ
2 )}

)
, x+

s =
(

0
1

)
.

(b) If 2
3 π < |μ | � π , then

x+
s =

(
ϕ1{ρ+

s +(1− e
iμ
2 )}

−{−2Δm11(1+ e−
iμ
2 )+ θ1(1− e

iμ
2 )}

)
, x−s =

(
0
1

)
.
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Proof. First, we show that there exists some x±c ,x±s ∈C2 such that V (ρ±
c ) = 〈w±

c 〉
and V (ρ±

s ) = 〈w±
s 〉 , where w±

c =
(

x±c e
iμ
2 x±c

)�
, w±

s =
(

x±s −e
iμ
2 x±s

)�
. For ρ ∈C ,

we consider the linear equation

(ρE4−M(λ ))
(

x
y

)
= o, x,y ∈ C

2.

Taking the block form of M(λ ) as in Lemma 2.1 into account, we derive

(ρE2−A)x− e−iμBy = o, (2.8)

−Bx+(ρE2−A)y = o. (2.9)

Since the components of B are explicitly written in Lemma 2.1, we have

det B =
eiμ

e−iμ −1
�= 0.

Thus, the relationship

y = eiμB−1(ρE2−A)x (2.10)

has been established by (2.8). Substituting this into (2.9), we have

[{e iμ
2 B−1(ρE2−A)}2−E2]x = o.

This yields

{(e− iμ
2 B)−1(ρE2−A)−E2}{(e−

iμ
2 B)−1(ρE2−A)+E2}x = o, (2.11)

{(e− iμ
2 B)−1(ρE2−A)+E2}{(e−

iμ
2 B)−1(ρE2−A)−E2}x = o. (2.12)

Let us recall from the proof of Lemma 2.2 that

• ρ±
c are solutions to det (ρE2−A− e−

iμ
2 B) = 0, and

• ρ±
s are solutions to det (ρE2−A+ e−

iμ
2 B) = 0.

Let us discuss x for ρ = ρ±
c , respectively. By (2.12), we have

{(e− iμ
2 B)−1(ρ±

c E2−A)+E2}{(e−
iμ
2 B)−1(ρ±

c E2−A)−E2}x = o. (2.13)

Due to S = /0 , we have det (ρ±
c E−A+e−

iμ
2 B) �= 0. Multiplying (2.13) by e−

iμ
2 B(ρ±

c E−
A+ e−

iμ
2 B)−1e−

iμ
2 B from the left, we have

(ρ±
c E2−A− e−

iμ
2 B)x = o. (2.14)

Let x±c ∈C2 be an eigenvector of A+e
−iμ
2 B . Then, we have (ρ±

c E2−A)x±c = e−
iμ
2 Bx±c .

Thus, we have eiμB−1(ρ±
c E2 − A)x±c = e

iμ
2 x±c . This combined with (2.10) yields
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V (ρ±
c ) = 〈w±

c 〉 . Similarly, V (ρ±
s ) = 〈w±

c 〉 , where x±s ∈ C2 is an eigenvector of A−
e−

iμ
2 B . Note that we use (2.11) instead of (2.12). Except this part, the same procedure

brings us V (ρ±
s ) = 〈w±

c 〉 .
Hereafter, we find an explicit formulae of x±c and x±s as in (1) and (2). In order

to prove (1), we assume that m12 �= 0. To find x±c , we consider the solution x :=(
x1 x2

)� ∈ C
2 to (2.14). Due to det (ρ±

c E2 −A− e−
iμ
2 B) = 0, it follows by (2.14)

that {ρ±
c −m11(1− e−

iμ
2 )}x1 +m12(−1+ e−

iμ
2 )x2 = 0. By virtue of m12 �= 0 and μ ∈

S1 \ {0} , we have

x2 =
ρ±

c −m11(1− e−
iμ
2 )

m12(1− e−
iμ
2 )

x1

and x±c in (1). We also obtain x±s as in (1) by solving (ρ±
s E2 −A+ e−

iμ
2 B)x = o .

Next, we shall show (2). So, assume that m12 = 0. Then, it follows by
λ �∈ σD that ϕ ′

1 +2Δ = 0 and hence θ1 +2ϕ ′
1 = 0. This is why we have

9Δ2−Δ2
− = 9

(
θ1 + ϕ ′

1

2

)2

−
(

θ1−ϕ ′
1

2

)2

=
1
4
{9(−ϕ ′

1)
2− (−3ϕ ′

1)
2} = 0.

Owing to this, we have dc(μ ,λ ) = −1− 4cos2 μ
4 and Dc(μ ,λ ) = (1− 4cos2 μ

4 )2 . It

follows by |μ | � π that
√

Dc(μ ,λ ) = 4cos2 μ
4 −1(� 1) . So, we have ρ+

c = − e
iμ
4

2cos μ
4

and ρ−
c = −2e

iμ
4 cos μ

4 . Therefore, we have

ρ+
c −m11(1−e−

iμ
2 )= ρ−

c +(1+e
iμ
2 )= 0, ρ+

c +(1+e
iμ
2 ) �= 0, ρ−

c −m11(1−e−
iμ
2 ) �= 0.

Since (ρ−
c E2 −A− e−

iμ
2 B)x = o is equivalent to x1 = 0, we have x−c in (2). We also

have x+
c in (2) because (ρ+

c E2 −A− e−
iμ
2 B)x = o is equivalent to

2Δm11(e−
iμ
2 −1)+ θ1(e

iμ
2 +1)

ϕ1
x1 +{ρ+

c +(1+ e
iμ
2 )}x2 = 0.

On the other hand, ds(μ ,λ ) = −1−4sin2 μ
4 and

√
Ds(μ ,λ ) = |1−4sin2 μ

4 | .
(a) Assume that 0 < |μ | < 2

3 π . Then, we have
√

Ds(μ ,λ ) = 1−4sin2 μ
4 , which

yields ρ+
s = 2ie

iμ
4 sin μ

4 and ρ−
s = ie

iμ
4

2sin μ
4

. Therefore, we have

ρ+
s +1−e

iμ
2 = ρ−

s −m11(1+e−
iμ
2 )= 0, ρ+

s −m11(1+e−
iμ
2 ) �= 0, ρ−

s +1−e
iμ
2 �= 0.

These are why (ρ+
s −A+ e−

iμ
2 B)x = o and (ρ−

s −A+ e−
iμ
2 B)x = o yield x±s in (a).

(b) Assume that 2
3 π < |μ |� π . Then, we have ρ+

s = ie
iμ
4

2sin μ
4

and ρ−
s = 2ie

iμ
4 sin μ

4 .

Therefore, we obtain

ρ+
s −m11(1+e−

iμ
2 ) = ρ−

s +1−e
iμ
2 = 0, ρ+

s +1−e
iμ
2 �= 0, ρ−

s −m11(1+e−
iμ
2 ) �= 0.

Thus, (ρ+
s −A+ e−

iμ
2 B)x = o and (ρ−

s −A+ e−
iμ
2 B)x = o yield x±s in (b). �
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3. Fundamental solutions to H�(μ)y = λy .

In this section, we consider the equation to H�(μ)y = λy . In the first subsection,
we deal with the case of λ ∈ R\σD . In the second subsection, we discuss the case of
λ ∈ σD .

3.1. Fundamental solutions in the case of λ ∈ R\σD .

Throughout this subsection, we consider λ ∈ R\σD . The aim of this subsection
is to find fundamental solutions p = (pn, j) , q = (qn, j) to H�(μ)y = λy as well as the
Kirchhoff–Neumann boundary condition and the initial conditions⎛

⎜⎜⎝
p1,1(0,λ )
p′1,1(0,λ )
p1,4(0,λ )
p′1,4(0,λ )

⎞
⎟⎟⎠= e1 :=

⎛
⎜⎜⎝

ϕ1

2Δ
0
0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

q1,1(0,λ )
q′1,1(0,λ )
q1,4(0,λ )
q′1,4(0,λ )

⎞
⎟⎟⎠= e2 :=

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ , (3.1)

respectively. These conditions are chosen in terms of the following lemma.

LEMMA 3.1. Let λ ∈ R\σD and μ ∈ S1 . Then, any solution y to H�(μ)y = λy
as well as the Kirchhoff–Neumann boundary conditions (1.1)–(1.4) and the Dirichelt
boundary condition y ≡ 0 on ∂Γ�

0 satisfies y′0,2(0,λ ) = −y′0,3(1,λ ) . Moreover, we
have y′1,1(0,λ ) = 2Δc1 and y1,1(0,λ ) = c1ϕ1 if y satisfies y′0,2(0,λ ) = c1 ∈ C .

Proof. Pick a y satisfying (1.1)–(1.4) and the Dirichlet boundary condition, arbi-
trarily. Then, we have

y0,2(x,λ ) = y0,2(0,λ )θ (x,λ )+ y′0,2(0,λ )ϕ(x,λ ) = y′0,2(0,λ )ϕ(x,λ ). (3.2)

Using the Kirchhoff–Neumannboundary condition at A1 , we have y0,3(0,λ )= y0,2(1,λ )
= y′0,2(0,λ )ϕ1 . Substituting this into

y0,3(x,λ ) = y0,3(0,λ )θ (x,λ )+ y′0,3(0,λ )ϕ(x,λ ), (3.3)

we have y0,3(x,λ ) = y′0,2(0,λ )ϕ1θ (x,λ ) + y′0,3(0,λ )ϕ(x,λ ). It follows by (3.3) that
0 = y0,3(1,λ ) = y′0,2(0,λ )ϕ1θ1 + y′0,3(0,λ )ϕ1. Because of λ �∈ σD , i.e., ϕ1 �= 0, we
have

y′0,3(0,λ ) = −y′0,2(0,λ )θ1. (3.4)

So, we derive y′0,3(1,λ ) = y′0,2(0,λ )ϕ1θ ′
1 +(−y′0,2(0,λ )θ1)ϕ ′

1 = −y′0,2(0,λ ) .
Next, we assume that y satisfies y′0,2(0,λ ) = c1 . Taking the Kirchhoff–Neumann

boundary condition at A1 , we have y′1,1(0,λ ) = y′0,2(1,λ )−y′0,3(0,λ ) = y′0,2(0,λ )ϕ ′
1 +

y′0,2(0,λ )θ1 = 2Δc1 because of (3.2) and (3.4). At last, we have y1,1(0,λ )= y0,2(1,λ )=
y′0,2(0,λ )ϕ1 = c1ϕ1 by (3.2). �
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It turns out by Lemma 3.1 that p satisfies the initial conditions p0,2(0,λ ) = 0,
p′0,2(0,λ ) = 1 (as well as p0,3(1,λ ) = 0 and p′0,3(1,λ ) = −1) . For any solution y ∈
dom(H�(μ)) to H�(μ)y = λy , it follows by Lemma 3.1 that there exist some c1,c2 ∈C

such that y satisfies the initial condition (1.7). Conversely, for any c1,c2 ∈ C , a solu-
tion y to H�(μ)y = λy satisfying (1.1)–(1.4) and (1.7) satisfies the Dirichlet boundary
condition on ∂Γ� . Thus, p and q are fundamental solutions to H�(μ)y = λy . Next, we
give an explicit formula to the above fundamental solution p and q to H�(μ)y = λy .
Since θ (x,λ ) and ϕ(x,λ ) are the fundamental solutions to −y′′+qy = λy , there exist
αn, j,1,βn, j,1,αn, j,2,βn, j,2 ∈ C for each (n, j) ∈ Z0 such that

pn, j = αn, j,1θ (x,λ )+ βn, j,1ϕ(x,λ ) and qn, j = αn, j,2θ (x,λ )+ βn, j,2ϕ(x,λ ). (3.5)

The next aim is to determine the coefficients αn, j,1,βn, j,1,αn, j,2,βn, j,2 explicitly. To
this aim, we furthermore introduce M+(λ ) and M−(λ ) defined as follows:⎛

⎜⎜⎝
yn,2(0,λ )
y′n,2(0,λ )
yn,3(0,λ )
y′n,3(0,λ )

⎞
⎟⎟⎠= M+(λ )

⎛
⎜⎜⎝

yn,1(0,λ )
y′n,1(0,λ )
yn,4(0,λ )
y′n,4(0,λ )

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

yn,5(0,λ )
y′n,5(0,λ )
yn,6(0,λ )
y′n,6(0,λ )

⎞
⎟⎟⎠= M−(λ )

⎛
⎜⎜⎝

yn,1(0,λ )
y′n,1(0,λ )
yn,4(0,λ )
y′n,4(0,λ )

⎞
⎟⎟⎠ .

The components of M+(λ ) and M−(λ ) are explicitly given as follows:

LEMMA 3.2. Assume that λ ∈ R\σD and μ ∈ S1 . Then, we have

M+(λ ) =

⎛
⎜⎜⎜⎝

θ1 ϕ1 0 0
m11−θ2

1
ϕ1

m12
ϕ1

−θ1
m13
ϕ1

m14
ϕ

m11 m12 m13 m14

− θ1
ϕ1

m11 − θ1
ϕ1

m12
θ1
ϕ1

(1−m13) 1− θ1
ϕ1

m14

⎞
⎟⎟⎟⎠

and

M+(λ ) =

⎛
⎜⎜⎜⎝

θ1 ϕ1 0 0
m31
ϕ1

m32
ϕ1

m33−θ2
1

ϕ1

m34
ϕ1

−θ1

m31 m32 m33 m34
eiμ−θ1m31

ϕ1
eiμ − θ1

ϕ1
m32 − θ1

ϕ1
m33 − θ1

ϕ1
m34

⎞
⎟⎟⎟⎠ ,

where the components of M(λ ) = (mi j(λ )) are explicitly given in Lemma 2.1.

Proof. The statements can be shown in a similar way to Lemma 2.1. �
Let P±

c and P±
s be the projections to the eigenspace V (ρ±

c ) and V (ρ±
s ) of the

eigenvalues ρ±
c and ρ±

s of the transfer matrix M(λ ) , respectively. Assume that
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dimV (ρ±
c ) = dimV (ρ±

s ) = 1. Putting e±1,c = P±
c e1 , e±1,s = P±

s e1 , e±2,c = P±
c e2 , e±2,s =

P±
s e2 , we consider the decompositions

e1 = e+
1,c + e−1,c + e+

1,s + e−1,s and e2 = e+
2,c + e−2,c + e+

2,s + e−2,s. (3.6)

For j = 1,2,3,4,5,6, � = 1,2 and • = s,c , we define α±
j,�,• and β±

j,�,• by

(
α±

1,�,• β±
1,�,• α±

4,�,• β±
4,�,•

)�
= e±�,•, (3.7)(

α±
2,�,• β±

2,�,• α±
3,�,• β±

3,�,•
)�

= M+(λ )e±�,•, (3.8)(
α±

5,�,• β±
5,�,• α±

6,�,• β±
6,�,•

)�
= M−(λ )e±�,•. (3.9)

Then, we have an explicit formula of the coefficients αn, j,1,βn, j,1,αn, j,2,βn, j,2 of the
fundamental solutions p and q :

LEMMA 3.3. Let λ ∈ R \ σD and μ ∈ S1 \ {0} . Assume that dimV (ρ±
c ) =

dimV (ρ±
s )= 1 . Then, the fundamental solutions p = (pn, j) and q = (qn, j) to H�(μ)y =

λy as well as (1.1)–(1.4) and (3.1) are given by (3.5), where

αn, j,1 = (ρ+
c )n−1α+

j,1,c +(ρ−
c )n−1α−

j,1,c +(ρ+
s )n−1α+

j,1,s +(ρ−
s )n−1α−

j,1,s, (3.10)

βn, j,1 = (ρ+
c )n−1β +

j,1,c +(ρ−
c )n−1β−

j,1,c +(ρ+
s )n−1β +

j,1,s +(ρn−1
s− β−

j,1,s, (3.11)

αn, j,2 = (ρ+
c )n−1α+

j,2,c +(ρ−
c )n−1α−

j,2,c +(ρ+
s )n−1α+

j,2,s +(ρ−
s )n−1α−

j,2,s, (3.12)

βn, j,2 = (ρ+
c )n−1β +

j,2,c +(ρ−
c )n−1β−

j,2,c +(ρ+
s )n−1β +

j,2,s +(ρs−)n−1β−
j,2,s. (3.13)

Proof. Let y be the solution to H�(μ)y = λy as well as (1.7) and (1.1)–(1.4). By
the definition of the transfer matrix M(λ ) , we have(

yn,1(0,λ ) y′n,1(0,λ ) yn,4(0,λ ) y′n,4(0,λ )
)�

= Mn−1(λ )
(
y1,1(0,λ ) y′1,1(0,λ ) y1,4(0,λ ) y′1,4(0,λ )

)�
= Mn−1(λ )(c1e1 + c2e2)
= c1M

n−1(λ )(e+
1,c + e−1,c + e+

1,s + e−1,s)+ c2M
n−1(λ )e+

2,c + e−2,c + e+
2,s + e−2,s

= (ρ+
c )n−1(c1e+

1,c + c2e+
2,c)+ (ρ−

c )n−1(c1e−1,c + c2e−2,c)

+(ρ+
s )n−1(c1e

+
1,s + c2e

+
2,s)+ (ρ−

s )n−1(c1e
−
1,s + c2e

−
2,s).

This combined with (3.7) yield

yn, j(0,λ ) = c1{(ρ+
c )n−1α+

j,1,c +(ρ−
c )n−1α−

j,1,c +(ρ+
s )n−1α+

j,1,s +(ρ−
s )n−1α−

j,1,s)}
+ c2{(ρ+

c )n−1α+
j,2,c +(ρ−

c )n−1α−
j,2,c +(ρ+

s )n−1α+
j,2,s +(ρ−

s )n−1α−
j,2,s)},

(3.14)

y′n, j(0,λ ) = c1{(ρ+
c )n−1β +

j,1,c +(ρ−
c )n−1β−

j,1,c +(ρ+
s )n−1β +

j,1,s +(ρ−
s )n−1β−

j,1,s)}
+ c2{(ρ+

c )n−1β +
j,2,c +(ρ−

c )n−1β−
j,2,c +(ρ+

s )n−1β +
j,2,s +(ρ−

s )n−1β−
j,2,s)}

(3.15)
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for j = 1,4. Recall that yn, j(x,λ ) = pn, j(x,λ ) (yn, j(x,λ ) = qn, j(x,λ ) , respectively) if
(c1,c2) = (1,0) ((c1,c2) = (0,1) , respectively). Since yn, j(x,λ ) = yn, j(0,λ )θ (x,λ )+
y′n, j(0,λ )ϕ(x,λ ) , (3.10)–(3.13) are valid for j = 1,4.

We next deal with the case of j = 2,3. Taking the definition of M(λ ) and M+(λ )
into account, we have

(
yn,2(0,λ ) y′n,2(0,λ ) yn,3(0,λ ) y′n,3(0,λ )

)�
=M+(λ )Mn−1(λ )

(
y1,1(0,λ ) y′1,1(0,λ ) y1,4(0,λ ) y′1,4(0,λ )

)�
=(ρ+

c )n−1(c1M+(λ )e+
1,c + c2M+(λ )e+

2,c)+ (ρ−
c )n−1(c1M+(λ )e−1,c + c2M+(λ )e−2,c)

+ (ρ+
s )n−1(c1M+(λ )e+

1,s + c2M+(λ )e+
2,s)+ (ρ−

s )n−1(c1M+(λ )e−1,s + c2M+(λ )e−2,s).

Therefore, we see that (3.14) and (3.15) are valid for j = 2,3. After all, (3.10)–(3.13)
are valid for j = 2,3. On the other hand, it follows by using M(λ ) and M−(λ ) that
(3.10)–(3.13) are valid for j = 5,6.

The results in Lemma 3.3 also can be expressed as follows:

LEMMA 3.4. Assume that λ ∈R\σD , μ ∈ S1\{0} and dimV (ρ±
c ) = dimV (ρ±

s )
= 1 . Let y = (yn, j)(n, j)∈Z0

be the solution to H�(μ)y = λy as well as (1.7) and (1.1)–
(1.4).

(1) For n ∈ N and j = 1,2,3,4,5,6 , we have

yn, j(x,λ ) = (ρ+
c )n−1(c1η+

j,1,c + c2η+
j,2,c)+ (ρ−

c )n−1(c1η−
j,1,c + c2η−

j,2,c)

+ (ρ+
s )n−1(c1η+

j,1,s + c2η+
j,2,s)+ (ρ−

s )n−1(c1η−
j,1,s + c2η−

j,2,s),

where η±
j,�,• = η±

j,�,•(x,λ ) = α±
j,�,•θ (x,λ )+ β±

j,�,•ϕ(x,λ ) for � = 1,2 and • = s,c.

(2) The fundamental solutions p = (pn, j)(n, j)∈Z0
and q = (qn, j)(n, j)∈Z0

to H�(μ)y
= λy as well as (3.1) and (1.1)–(1.4) are expressed as

pn, j(x,λ ) = (ρ+
c )n−1η+

j,1,c +(ρ−
c )n−1η−

j,1,c +(ρ+
s )n−1η+

j,1,s +(ρ−
s )n−1η−

j,1,s,

qn, j(x,λ ) = (ρ+
c )n−1η+

j,2,c +(ρ−
c )n−1η−

j,2,c +(ρ+
s )n−1η+

j,2,s +(ρ−
s )n−1η−

j,2,s.

These expression will be used in the proof of our main theorems.

3.2. Eigenfunctions to H�(μ) in the case of λ ∈ σD

In this subsection, we construct infinitely many linear independent eigenfunctions
{Ψm}m∈N to H�(μ) in the case of λ ∈ σD . The result here is an analogy constructed
by Korotyaev and Lobanov for carbon nanotubes [5].

Put c = ϕ ′(1,λ ) and η = 1− e−iμc4 for each μ ∈ S1 and λ ∈ σD . For each

m ∈ N , we define the function Ψm = (Ψ(n, j)
m ) on Γ� as follows:

(i) If η = 0, then we put Ψ(m,2)
m (x,λ ) = ϕ(x,λ ) , Ψ(m,3)

m (x,λ ) = cϕ(x,λ ) ,
Ψ(m,5)

m (x,λ ) = c2ϕ(x,λ ) , Ψ(m,6)
m (x,λ ) = c3ϕ(x,λ ) and Ψ(n, j)

m (x,λ ) = 0 otherwise.
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(ii) If η �= 0, then we put Ψ(m,1)
m (x,λ ) = ηϕ(x,λ ) , Ψ(m,2)

m (x,λ ) = cϕ(x,λ ) ,
Ψ(m,3)

m (x,λ ) = c2ϕ(x,λ ) , Ψ(m,5)
m (x,λ ) = c3ϕ(x,λ ) , Ψ(m,6)

m (x,λ ) = c4ϕ(x,λ ) ,
Ψ(m−1,2)

m (x,λ ) = −e−iμc3ϕ(x,λ ) , Ψ(m−1,3)
m (x,λ ) = −ϕ(x,λ ) , Ψ(m−1,5)

m (x,λ ) =
−cϕ(x,λ ) , Ψ(m−1,6)

m (x,λ ) = −c2ϕ(x,λ ) and Ψ(n, j)
m (x,λ ) = 0 otherwise.

THEOREM 3.5. For λ ∈ σD , μ ∈ S1 and m ∈ N , we have Ψm ∈ dom(H�(μ))
and H�(μ)Ψm = λ Ψm . In particular, λ ∈ σD is an eigenvalue to H�(μ) with infinite
multiplicities and compactly supported eigenfunctions.

Proof. It follows by straightforward calculations that Ψm satisfies (1.1)–(1.4) and
the Dirichlet boundary condition on ∂Γ� . Moreover, it is clear that Ψm solves H�(μ)y =
λy for λ ∈ σD . �

4. Proof of Theorems 1.1 and 1.2

In subsection 3.2, Theorem 1.1 (0) has been already proven. Thus, we prove The-
orem 1.1 (1)–(4) and 1.2. Let y �≡ 0 be the one in Lemma 3.4. Since |a+b+ c+d|2 �
4(|a|2 + |b|2 + |c|2 + |d|2) for any a,b,c,d ∈ C , we have

||yn, j||2L2(0,1)

� 4|ρ+
c |2(n−1)||c1η+

j,1,c + c2η+
j,2,c||2L2(0,1) +4|ρ−

c |2(n−1)||c1η−
j,1,c + c2η−

j,2,c||2L2(0,1)

+4|ρ+
s |2(n−1)||c1η+

j,1,s + c2η+
j,2,s||2L2(0,1) +4|ρ−

s |2(n−1)||c1η−
j,1,s + c2η−

j,2,s||2L2(0,1).

(4.1)

Proof of Theorem 1.1 (1). For each μ ∈ S1 \ {0} , we fix λ ∈ D1 satisfying S =
/0 . It follows by Ds(μ ,λ ) < 0, Dc(μ ,λ ) < 0 and Lemma 2.2 that |ρ±

s | = |ρ±
c | =

1. Put C(μ ,λ ,c1,c2) = 16max{||c1η±
j,1,• + c2η±

j,2,•||L2(0,1)| j = 1, · · · ,6,• = s,c} > 0.

Taking y �≡ 0 in Lemma 3.4, we have ||yn, j||2L2(0,1) � C(μ ,λ ,c1,c2) for any n ∈ N and

j by (4.1). Thus, ||yn, j|| is uniformly bounded on n ∈ N and j . Since y satisfies the
sub-exponential growth condition in the Shnol type theorem [1], we have D1 \ L1 ⊂
σ(H�(μ)) , where L1 is seen in the proof of Lemma 2.3. Since the Lebesgue measure
of L1 is 0 , we have D1 ⊂ σ(H�(μ)) . �

4.1. Proof of Theorem 1.1 (2) and (3)

In the proof of Theorem 1.1 (1), we derived the uniformly boundedness of
||yn, j||2L2(0,1) due to |ρ±

s | = |ρ±
c | = 1. Since the part changes in other cases, the proofs

of Theorem 1.1 (2)–(4) and 1.2 turn to be more complicated. In this subsection, we
shall give the proof of Theorem 1.1 (2) and (3).

LEMMA 4.1. Assume that λ ∈D2 and μ ∈ S1 \{0} . Then, dc(μ ,λ ) <−4cos μ
4 ,

|ρ±
s | = 1 , |ρ−

c | > 1 , |ρ+
c | < 1 and ρ+

c ρ−
c = 1 hold true.
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Proof. We first prove dc(μ ,λ )<−4cos μ
4 . Since Dc(μ ,λ )> 0, one of dc(μ ,λ )>

4cos μ
4 and dc(μ ,λ ) < −4cos μ

4 holds true. Let us prove the former does not hold true
by contradiction. Seeking a contradiction, we assume the former holds true. It follows
by Ds(μ ,λ ) < 0 that

−4
∣∣∣sin μ

4

∣∣∣< 9Δ2−Δ2
−−1−4sin2 μ

4
< 4

∣∣∣sin μ
4

∣∣∣ .
This together with 0 < |μ | � π yields

9Δ2−Δ2
− <

(
2
∣∣∣sin μ

4

∣∣∣+1
)2

� (
√

2+1)2.

On the other hand, it follows by dc(μ ,λ ) > 4cos μ
4 that

9Δ2−Δ2
− >

(
2cos

μ
4

+1
)2

� (
√

2+1)2,

which is a contradiction. This is why dc(μ ,λ ) < −4cos μ
4 only holds true.

It turns out by Lemma 2.2 and Ds(μ ,λ ) < 0 that

|ρ±
s | =

√
d2

s (μ ,λ )+ (−Ds(μ ,λ ))
4
∣∣sin μ

4

∣∣ =

√
16sin2 μ

4

4
∣∣sin μ

4

∣∣ = 1.

It follows by dc(μ ,λ ) < −4cos μ
4 < 0 that

|ρ−
c | =

−dc(μ ,λ )+
√

d2
c (μ ,λ )−16cos2 μ

4

4cos μ
4

>
4cos μ

4 +0

4cos μ
4

= 1.

This combined with

ρ+
c ρ−

c =
dc(μ ,λ )+

√
Dc(μ ,λ )

4e
−iμ
4 cos μ

4

· dc(μ ,λ )−√Dc(μ ,λ )

4e
iμ
4 cos μ

4

=
16cos2 μ

4

16cos2 μ
4

= 1

yields |ρ+
c | < 1. �

Although we utilize the Shnol’s type theorem in [1] to prove D2 ⊂ σ(H�(μ)) for
μ ∈ S1\{0} , it is not clear due to the results in this lemma ( |ρ±

s |= 1, |ρ−
c |> 1, |ρ+

c |<
1, especially ) for that there exist some (c1,c2) ∈ C2 \ {(0,0)} satisfying ||yn, j||2L2(0,1)
is uniformly bounded on n ∈ N and j = 1,2,3,4,5,6. The highlight of this paper is the
followings:

• We utilize the Cramer’s rule to determine (c1,c2) ∈ C
2 \ {(0,0)} producing

a non-trivial y which has uniformly bounded norm ||yn, j||L(0,1) on (n, j) and

solves H�(μ)y = λy as well as (1.1)–(1.4) and (1.7).
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Recall (3.6), Lemma 2.3 and 2.4. Then, there exist the coefficients γ+
c , γ−c , γ+

s ,
γ−s , δ+

c , δ−
c , δ+

s , δ−
s ∈ C of the eigenfunction expansions

e1 = e+
1,c + e−1,c + e+

1,s + e−1,s = γ+
c w+

c + γ−c w−
c + γ+

s w+
s + γ−s w−

s , (4.2)

e2 = e+
2,c + e−2,c + e+

2,s + e−2,s = δ+
c w+

c + δ−
c w−

c + δ+
s w+

s + δ−
s w−

s . (4.3)

LEMMA 4.2. Assume that λ ∈ D2 and μ ∈ S1 \ {0} . Then, we have γ−c �= 0 and
δ−

c �= 0 in the eigenfunction expansion (4.2) and (4.3).

In order to make our discussion clear, we shall show Theorem 1.1 (2) using Lemma
4.2 before the proof of the lemma.

Proof of Theorem 1.1 (2). Fix λ ∈D2 and μ ∈ S1\{0} . If follows by e−1,c = γ−c w−
c

and e−2,c = δ−
c w−

c that δ−
c e−1,c +(−γ−c )e−2,c = o . This combined with (3.7)–(3.9) give us

the relationship

δ−
c α−

j,1,c +(−γ−c )α−
j,2,c = 0 and δ−

c β−
j,1,c +(−γ−c )β−

j,2,c = 0

for any j = 1,2,3,4,5,6. Therefore, we have

δ−
c η−

j,1,c(x,λ )+ (−γ−c )η−
j,2,c(x,λ ) = 0

for all j = 1,2,3,4,5,6 because η±
j,�,•(x,λ ) = α±

j,�,•θ (x,λ )+ β±
j,�,•ϕ(x,λ )(, which is

defined in Lemma 3.4). Thus, it turns out by (4.1) that

||yn, j||2L2(0,1)

�4|ρ+
c |2(n−1)||δ−

c η+
j,1,c − γ−c η+

j,2,c||2L2(0,1) +4|ρ+
s |2(n−1)||δ−

c η+
j,1,s− γ−c η+

j,2,s||2L2(0,1)

+4|ρ−
s |2(n−1)||δ−

c η−
j,1,s− γ−c η−

j,2,s||2L2(0,1)

for any n ∈ N and j = 1,2,3,4,5,6. According to Lemma 4.1, we have |ρ±
s | = 1,

|ρ−
c | > 1, |ρ+

c | < 1. So, this ||yn, j||L2(0,1) is uniformly bounded on n ∈ N and j =
1,2,3,4,5,6. Note that our y is the solution to H�(μ)y = λy as well as (1.1)–(1.4) and
the Dirichlet boundary condition

(
y1,1(0,λ ) y′1,1(0,λ ) y1,4(0,λ ) y′1,4(0,λ )

)� = δ−
c e1 +(−γ−c )e2.

By virtue of γ−c �= 0 and δ−
c �= 0, this y is non-trivial. The existence of such y yields

the sub-exponential condition in the Shnol’s theorem [1]. �

As seen in the proof of Theorem 1.1 (2), Lemma 4.2 plays the role to tune the
volumes of channels (c1,c2) ∈ C2 \ {(0,0)} to make a non-trivial wave y satisfying
the sub-exponentially growth condition. In order to finish the proof of Theorem 1.1
(2), we need to prove Lemma 4.2. To prove γ−c �= 0, we consider the linear equation
(4.2) whose the argmented coefficient matrix (w+

c w−
c w+

s w−
s | e1) . Although all

vectors w+
c ,w−

c ,w+
s ,w−

s ,e1 are explicitly given in Lemma 2.4 and (3.1), elementary
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row operations of the matrix seem to be not practical. However, it is enough to find
γ−c �= 0 in order to find our desired wave. Thus, the Cramer’s rule can be an effective
tool. Introduce new notations

e+
1 =

(
ϕ1

2Δ

)
and e−2 =

(
0
1

)
. (4.4)

Proof of Lemma 4.2. We show γ−c �= 0. It follows from Lemma 2.3 that all eigen-
values ρ+

s ,ρ−
s ,ρ+

c ,ρ−
c are distinct. Thus, w+

c ,w−
c ,w+

s ,w−
s are linearly independent.

Applying the Cramer’s rule, we have

γ−c =
det (w+

c e1 w+
s w−

s )
det (w+

c w−
c w+

s w−
s )

.

In order to prove γ−c �= 0, it suffices to show that det (w+
c e1 w+

s w−
s ) �= 0. It follows

by Lemma 2.4 that

det (w+
c e1 w+

s w−
s ) =

∣∣∣∣∣ x+
c e+

1 x+
s x−s

e
iμ
2 x+

c o −e
iμ
2 x+

s −e
iμ
2 x−s

∣∣∣∣∣=
∣∣∣∣∣ x+

c e+
1 x+

s x−s
2e

iμ
2 x+

c e
iμ
2 e+

1 o o

∣∣∣∣∣ .
Since

∣∣∣∣A11 A12

A21 O

∣∣∣∣ = |A12||A21| holds true for any 2× 2 matrices A11,A12,A21 and the

2×2 zero matrix O , we have

γ̃−c := det (w+
c e1 w+

s w−
s ) = 2eiμ ∣∣x+

s x−s
∣∣× ∣∣x+

c e+
1

∣∣ . (4.5)

Since w+
s and w−

s are linearly independent, so x+
s and x−s are. So,

∣∣ x+
s x−s

∣∣ �= 0.
Let us show

∣∣x+
c e+

1

∣∣ �= 0 by straightforward calculations. We claim that m12 �= 0.
Seeking a contradiction, we assume that m12 = 0. This yield 2Δ + ϕ ′

1 = 0 and 9Δ2 −
Δ2 = 0. So, we have ds(μ ,λ ) = −1− 4sin2 μ

4 and Ds(μ ,λ ) = (−1− 4sin2 μ
4 )2 −

16sin2 μ
4 = (4sin2 μ

4 − 1)2 � 0, which contradicts λ ∈ D2 . Thus, we use Lemma 2.4
(1). Substituting m11 and m12 obtained in Lemma 2.1 into x+

c obtained in Lemma 2.4
(1), we have ∣∣x+

c e+
1

∣∣= ϕ1

(
8Δ2 + θ ′

1ϕ1

1+ e−
iμ
2

−ρ+
c

)
.

Substituting 1 + e−
iμ
2 = 2e−

iμ
4 cos μ

4 and 8Δ2 + θ ′
1ϕ1 = 9Δ2 −Δ2− − 1 here and then

using Lemma 2.2, we have

∣∣x+
c e+

1

∣∣= ϕ1

4e−
iμ
4 cos μ

4

(
dc−

√
Dc +8cos2

μ
4

)
. (4.6)

Seeking a contradiction, we assume dc−
√

Dc +8cos2 μ
4 = 0. Squaring dc+8cos2 μ

4 =√
Dc , we have dc = −1−4cos2 μ

4 and 9Δ2 −Δ2− = 0. The latter contradicts λ ∈ D2 .
As a result, we have dc −

√
Dc +8cos2 μ

4 �= 0. This combined with λ �∈ σD and (4.6)
yield

∣∣x+
c e+

1

∣∣ �= 0. So, we have γ−c �= 0.
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Secondly, we prove δ−
c �= 0. In a similar way, we have

det (w+
c e2 w+

s w−
s ) = 2e

iμ
2
∣∣ x+

s x−s
∣∣×m12(1− e−

iμ
2 ).

Note that
∣∣x+

s x−s
∣∣ �= 0 by the linearly independence of w+

s and w−
s . Furthermore,

m12 �= 0 has already been proven. Thus, we have δ−
c �= 0. �

Here, the proof of Theorem 1.1 (2) has been completed. The proof of Theorem 1.1
(3) can be shown in a similar way to Theorem 1.1 (2). We set materials for the proof of
Theorem 1.1 (3) without their proofs.

LEMMA 4.3. Assume that λ ∈ D3 and μ ∈ S1 \ {0,± 2
3π} . Then, ds(μ ,λ ) >

4|sin μ
4 | , |ρ±

c | = 1 , |ρ+
s | > 1 , |ρ−

s | < 1 and ρ+
s ρ−

s = 1 hold true.

The proof of this lemma has done in a similar way to Lemma 4.1. The reason why
we need the assumption μ �= ± 2

3π is due to Lemma 2.3. Namely, we have distinct 4
eigenvalues ρ±

s ,ρ±
c in the additional assumption.

LEMMA 4.4. Assume that λ ∈ D3 and μ ∈ S1 \ {0,± 2
3π} . Then, we have γ+

s �=
and δ+

s �= 0 in the eigenfunction expansions (4.2) and (4.3).

The proof of this lemma has done in a similar way to Lemma 4.2. For readers’
sake, we only record the followings:

det (w+
c w−

c e1 w−
s ) = 2eiμ ∣∣x+

c x−c
∣∣× −ϕ1

4ie
−iμ
4 sin μ

4

(
ds +

√
Ds +8sin2 μ

4

)
�= 0.

det (w+
c w−

c e2 w−
s ) = 2e

iμ
2
∣∣x+

c x−c
∣∣×m12(1+ e−

iμ
2 ) �= 0.

Proof of Theorem 1.1 (3). Considering the solution y to H�y = λy as well as
(1.1)–(1.2) and

(
y1,1(0,λ ) y′1,1(0,λ ) y1,4(0,λ ) y′1,4(0,λ )

)� = δ+
s e1 +(−γ+

s )e2

and taking into account Lemma 4.3 and 4.4, we obtain a non-trivial solution satisfy-
ing the sub-exponential growth condition in [1]. The detail is similar to the proof of
Theorem 1.1 (2). �

4.2. Proof of Theorem 1.1 (4) and 1.2.

In the last subsection, we deal with the case of λ ∈ D4 and μ ∈ S1 \ {0} . The
following cases do not happen:

• the case of dc(μ ,λ ) > 4cos μ
4 and ds(μ ,λ ) < −4|sin μ

4 |.
• the case of dc(μ ,λ ) < −4cos μ

4 and ds(μ ,λ ) > 4|sin μ
4 |.
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So, we have D4 = D+
4 ∪D−

4 . To begin with, we explain the reason why we split the
subsections.

LEMMA 4.5. Assume that μ ∈ S1 \ {0} .

(i) If λ ∈D+
4 , then ρ+

s ρ−
s = ρ+

c ρ−
c = 1 , |ρ+

s |> 1 , |ρ+
c |> 1 , |ρ−

s |< 1 , |ρ−
c |< 1 .

(ii) If λ ∈D−
4 , then ρ+

s ρ−
s = ρ+

c ρ−
c = 1 , |ρ+

s |< 1 , |ρ+
c |< 1 , |ρ−

s |> 1 , |ρ−
c |> 1 .

These results can be shown in a similar way to Lemmas 4.1 and 4.3. From the point
of view of Lemma 4.5, there are 2 terms in (4.1) which might grow exponentially. The
possibilities yield the difference between this and the previous subsections Since the
proof of Theorem 1.1 (4) is relatively easy to deal with, we discuss it first.

LEMMA 4.6. Assume that λ ∈ D+
4 and μ ∈ S1 \ {0} . Then, we have γ+

c �= 0 ,
γ+
s �= 0 , δ+

c �= 0 and δ+
c �= 0 in the eigenfunction expansions (4.2) and (4.3).

Proof. Unlike the case of λ ∈D−
4 (see Lemma 4.11 below), we cannot fail to have

m12 �= 0 if λ ∈ D+
4 . To make sure it, we assume that m12 = 0 seeking a contradiction.

Then, we have 2Δ + ϕ ′
1 and hence 9Δ2 −Δ2− = 0. Substituting this into dc(μ ,λ ) >

4cos μ
4 , we have 0 = 9Δ2 −Δ2− > (2cos μ

4 + 1)2 � (
√

2+ 1)2 . So, we have m12 �= 0.
In a similar manner to Lemma 4.2, we have

γ̃+
s := det (w+

c w−
c e1 w−

s ) = −eiμϕ1
∣∣x+

c x−c
∣∣

2ie−
iμ
4 sin μ

4

(
ds +

√
Ds +8sin2 μ

4

)
, (4.7)

γ̃+
c := det (e1 w−

c w+
s w−

s ) = −eiμϕ1
∣∣x+

s x−s
∣∣

2e−
iμ
4 cos μ

4

(
dc +

√
Dc +8cos2

μ
4

)
, (4.8)

δ̃+
s := det (w+

c w−
c e2 w−

s ) = 2e
iμ
2
∣∣x+

c x−c
∣∣(e− iμ

2 +1)m12 �= 0, (4.9)

δ̃+
c := det (e2 w−

c w+
s w−

s ) = 2e
iμ
2
∣∣x+

s x−s
∣∣(e− iμ

2 −1)m12 �= 0. (4.10)

We claim that ds +
√

Ds +8sin2 μ
4 �= 0 and dc +

√
Dc +8cos2 μ

4 �= 0. In fact, we have
9Δ2−Δ2− = 0 in both cases of ds +

√
Ds +8sin2 μ

4 = 0 and dc +
√

Dc +8cos2 μ
4 = 0.

We reuse the fact that 9Δ2−Δ2− = 0 contradicts dc > 4cos μ
4 .

So, we have det (w+
c w−

c e1 w−
s ) �= 0 and det (e1 w−

c w+
s w−

s ) �= 0. It turns out by
the Cramer’s rule that γ+

c �= 0, γ+
s �= 0, δ+

c �= 0 and δ+
c �= 0. �

Next, we are interested in whether or not we can find (c1,c2) ∈ C2 \{(0,0)} satis-
fying c1η+

j,1,c +c2η+
j,2,c = c1η+

j,1,s +c2η+
j,2,s = 0 for all j = 1,2,3,4,5,6 from the point

of (4.1).

LEMMA 4.7. Let λ ∈D+
4 and μ ∈ S1\{0,±π} . Then, we have δ+

c γ+
s −γ+

c δ+
s �=

0 .
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Proof. Recall the notations γ̃+
s , γ̃+

c , δ̃+
s , δ̃+

c from (4.7)–(4.10). Since Lemma 2.3
(4) means det (w+

c w−
c w+

s w−
s ) �= 0, it suffices to show that −δ̃+

c γ̃+
s + δ̃+

s γ̃+
c �= 0.

Using 1+ e−
iμ
2 = 2e

−iμ
4 cos μ

4 and 1− e−
iμ
2 = 2ie

−iμ
4 sin μ

4 , we have

−δ̃+
c γ̃+

s + δ̃+
s γ̃+

c = 2e
3iμ
2 m12ϕ1

∣∣x+
s x−s

∣∣ ∣∣x+
c x−c

∣∣(−ds−
√

Ds−dc−
√

Dc −8
)
.

Since dc(μ ,λ ) > 4cos μ
4 , ds(μ ,λ ) > 4|sin μ

4 | , Ds(μ ,λ ) > 0 and Dc(μ ,λ ) > 0, we
have

−ds−
√

Ds −dc−
√

Dc −8 < 0.

Moreover, we derived m12(λ ) �= 0 in Lemma 4.6. Thus, we have δ+
c γ+

s − γ+
c δ+

s �=
0. �

LEMMA 4.8. Let λ ∈D+
4 and μ ∈ S1 \{0,±π} . Then, there is no pair (c1,c2) ∈

C2\{(0,0)} satisfying c1η+
j,1,c+c2η+

j,2,c = c1η+
j,1,s+c2η+

j,2,s = 0 for all j = 1,2,3,4,5,6 .

Proof. It follows that e+
1,s = γ+

s
δ+
s

e+
2,s and e+

1,c = γ+
c

δ+
c

e+
2,c by e+

1,2 = γ+
s w+

s , e+
2,s =

δ+
s w+

s , e+
1,c = γ+

c w+
c , e+

2,c = δ+
c w+

c , (4.2), (4.3) and Lemma 4.7. Substituting e+
1,s =

γ+
s

δ+
s

e+
2,s and e+

1,c = γ+
c

δ+
c

e+
2,c into (3.7)–(3.9), we have

α+
j,1,• =

γ+•
δ+•

α+
j,2,•, β +

j,1,• =
γ+•
δ+•

β +
j,2,•,

η+
j,1,• = α+

j,1,•θ (x,λ )+ β +
j,1,•ϕ(x,λ )

=
γ+•
δ+•

(α+
j,2,•θ (x,λ )+ β +

j,2,•ϕ(x,λ ))

=
γ+•
δ+•

η+
j,2,• (4.11)

for • = s,c . So, we have δ+
c η+

j,1,c − γ+
c η+

j,2,c = δ+
s η+

j,1,s− γ+
s η+

j,2,s = 0 for all j .

Seeking a contradiction, we assume that there is some pair (c1,c2) ∈ C2 \{(0,0)}
satisfying c1η+

j,1,c + c2η+
j,2,c = c1η+

j,1,s + c2η+
j,2,s = 0 for all j = 1,2,3,4,5,6. Substi-

tuting δ+
c η+

j,1,c = γ+
c η+

j,2,c into δ+
c (c1η+

j,1,c + c2η+
j,2,c) = 0, we have c1γ+

c + c2δ+
c =

0. Substititing δ+
s η+

j,1,s = γ+
s η+

j,2,s into δ+
s (c1η+

j,1,s + c2η+
j,2,s) = 0, we have c1γ+

s +
c2δ+

s = 0. It follows by Lemma 4.7 that c1 = c2 = 0. After all, there does not exist
such a pair. �

Taking the result and (4.1) into account, we are wondering if ||yn, j||2L2(0,1) might
not be uniformly bounded on n ∈ N and j = 1,2,3,4,5,6. To make sure it, we prepare
the followings:

LEMMA 4.9. Assume that λ ∈ D+
4 and μ ∈ S1 \ {0,±π} . For all (c1,c2) ∈ C2 \

{(0,0)} , we have (c1γ+
c + c2δ+

c ,c1γ+
s + c2δ+

s ) �= (0,0) .
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Proof. In the case of c1 �= − δ+
c

γ+
c

c2 , it directly means the result. So, we show that

c1γ+
s + c2δ+

s �= 0 if c1 = − δ+
c

γ+
c

c2 and c2 �= 0. Assume that c1 = − δ+
c

γ+
c

c2 and c2 �= 0.

Then, our goal is to show that −δ+
c γ+

s +δ+
s γ+

c �= 0, which has been already derived in
the previous lemma. �

Proof of Theorem 1.1 (4). Substituting (4.11) into the expression in Lemma 3.4
(1), we have

yn, j(x,λ ) =(ρ+
c )n−1(c1

γ+
c

δ+
c

+ c2)η+
j,2,c +(ρ−

c )n−1(c1η−
j,1,c + c2η−

j,2,c)

+ (ρ+
s )n−1(c1

γ+
s

δ+
s

+ c2)η+
j,2,s +(ρ−

s )n−1(c1η−
j,1,s + c2η−

j,2,s).

Taking its L2(0,1)-norm, we have the estimates

||yn, j||2L2(0,1)

=
∣∣∣∣
∣∣∣∣(ρ+

c )n−1
(

c1γ+
s + c2δ+

c

δ+
c

)
η+

j,2,c +(ρ+
s )n−1

(
c1γ+

s + c2δ+
s

δ+
s

)
η+

j,2,s

∣∣∣∣
∣∣∣∣
2

L2(0,1)

+o(|ρ+
c |2(n−1))+o(|ρ+

s |2(n−1))

�
∣∣∣∣|ρ+

c |n−1

∣∣∣∣c1γ+
c + c2δ+

c

δ+
c

∣∣∣∣ ||η+
j,2,c||2L2(0,1)−|ρ+

s |n−1

∣∣∣∣c1γ+
s + c2δ+

s

δ+
s

∣∣∣∣ ||η+
j,2,s||L2(0,1)

∣∣∣∣
2

+o(|ρ+
c |2(n−1))+o(|ρ+

s |2(n−1)).

as n → ∞ . Since the coefficients c1γ+
c + c2δ+

c and c1γ+
s + c2δ+

s do not equal to 0 si-
multaneously for any (c1,c2)∈C2\{(0,0)} due to Lemma 4.9, we see that ||yn, j||2L2(0,1)
grows exponentially as n → ∞ in any cases where

(i) |ρ+
c | > |ρ+

s |(> 1) (ii) |ρ+
c | = |ρ+

s |(> 1) (iii) (1 <)|ρ+
c | < |ρ+

s | .
So, y is neither an eigenfunction nor an generalized eigenfunction. As a result, we have
λ ∈ ρ(H�(μ)) . �

Next, we discuss the proof of Theorem 1.2. We prepare two classes:

σA = {λ ∈ D−
4 | m12(λ ) �= 0} and σB = {λ ∈ D−

4 | m12(λ ) = 0}.
In both cases, it is a key to examine whether or not the coefficients δ−

c ,δ−
s ,γ−c ,γ−s

vanish in the expansion (4.2) and (4.3) because of Lemma 4.5 (ii). First, we study the
first class σA .

LEMMA 4.10. Let λ ∈ σA and μ ∈ S1\{0} . Then, we have δ−
c �= 0 and δ−

s �= 0 .
Furthermore, we have the followings:

➀ If 3Δ + Δ− = 0 and 2
3 π < |μ | � π , then γ−c = 0 and γ−s = 0 .

➁ If 3Δ + Δ− = 0 and 0 < |μ | < 2
3 π , then γ−c = 0 and γ−s �= 0 .

➂ If 3Δ + Δ− �= 0 , then γ−c �= 0 and γ−s �= 0 .
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Proof. In a similar way to (4.7)–(4.10) in Lemma 4.6, we have

γ̃−s := det (w+
c w−

c w+
s e1) =

eiμϕ1
∣∣x+

c x−c
∣∣

2ie−
iμ
4 sin μ

4

(
ds−

√
Ds +8sin2 μ

4

)
, (4.12)

γ̃−c := det (w+
c e1 w+

s w−
s ) =

eiμϕ1
∣∣x+

s x−s
∣∣

2e−
iμ
4 cos μ

4

(
dc −

√
Dc +8cos2

μ
4

)
, (4.13)

δ̃−
s := det (w+

c w−
c w+

s e2) = −2e
iμ
2
∣∣x+

c x−c
∣∣(1+ e−

iμ
2 )m12 �= 0, (4.14)

δ̃−
c := det (w+

c e2 w+
s w−

s ) = 2e
iμ
2
∣∣x+

s x−s
∣∣(1− e−

iμ
2 )m12 �= 0. (4.15)

Due to λ ∈ σA , we are dealing with the case of m12 �= 0. Thus, we have δ−
c �= 0 and

δ−
s �= 0 by (4.14) and (4.15) utilizing the Cramer’s rule.

We claim the following assertions:

(1) ds−
√

Ds +8sin2 μ
4 = 0 is equivalent to 9Δ2−Δ2− = 0 and 2

3π < |μ | � π .

(2) dc−
√

Dc +8cos2 μ
4 = 0 is equivalent to 9Δ2−Δ2− = 0.

First, we prove (1). Assume that ds −
√

Ds + 8sin2 μ
4 = 0. Squaring

√
Ds = ds +

8sin2 μ
4 , we have ds = −1− 4sin2 μ

4 , namely, 9Δ2 − Δ2− = 0. This is why Ds =
(4sin2 μ

4 − 1)2 . Substituting this into
√

Ds = ds + 8sin2 μ
4 , we have −1 + 4sin2 μ

4 =∣∣4sin2 μ
4 −1

∣∣ , which yields −1+4sin2 μ
4 � 0. Hence, 2

3π � |μ | � π . Due to Ds > 0,
we have to exclude the case of |μ | = 2

3 π . Therefore, we have 2
3π < |μ | � π . Con-

versely, we assume that 9Δ2−Δ2− = 0 and 2
3π < |μ | � π . It follows by 9Δ2−Δ2− = 0

that ds = −1− 4sin2 μ
4 and Ds = (4sin2 μ

4 − 1)2 . It turns out by 2
3 π < |μ | � π that

4sin2 μ
4 −1 > 0. So, we derive ds−

√
Ds +8sin2 μ

4 = −1−4sin2 μ
4 − (4sin2 μ

4 −1)+
8sin2 μ

4 = 0. Therefore, we obtain (1).
Next, we prove (2). Assume that dc −

√
Dc + 8cos2 μ

4 = 0. In the case, we have
dc = −1− 4cos2 μ

4 . This implies 9Δ2 −Δ2− = 0. Conversely, we assume that 9Δ2 −
Δ2− = 0. Then, we have dc = −1− 4cos2 μ

4 and Dc = (4cos2 μ
4 − 1)2 . For any μ ∈

S1 \{0}= [−π ,0)∪ (0,π) , we have 4cos2 μ
4 > 1. Thus, we have

√
Dc = 4cos2 μ

4 −1.
So, we obtain dc −

√
Dc +8cos2 μ

4 = 0.
Since m12 = 0 is equivalent to 3Δ−Δ− = 0, we see that 9Δ2−Δ2− = 0 is equiva-

lent to 3Δ−Δ− = 0 for λ ∈ σA . Therefore, we have ➀, ➁ and ➂. �

Proof of Theorem 1.2 (A) and (B). Assume that μ ∈ S1 \ {0,± 2
3π ,±π} and λ ∈

σA . First, we prove (B). Assume that 3Δ + Δ− �= 0. Lemma 4.9 yields

−δ̃−
c γ̃−s + δ̃−

s γ̃−c = 2e
3iμ
2 m12ϕ1

∣∣x+
s x−s

∣∣ ∣∣x+
c x−c

∣∣(ds−
√

Ds +dc−
√

Dc +8
)
.

Then, we have the followings:

(a) If λ satisfies ds −
√

Ds + dc −
√

Dc + 8 �= 0, we have (c1γ−c + c2δ−
c ,c1γ−s +

c2δ−
s ) �= (0,0) for any (c1,c2) ∈ C

2 \ {(0,0)} .
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(b) If λ satisfies ds−
√

Ds +dc−
√

Dc +8 = 0, we have δ−
c γ−s − δ−

s γ−c = 0.

The statement (a) can be proven in a similar way to Lemma 4.9.
If λ satisfies ds−

√
Ds +dc−

√
Dc +8 �= 0, we obtain the estimate

||yn, j||2L2(0,1) �
∣∣∣|ρ−

c |n−1

∣∣∣∣c1γ−c + c2δ−
c

δ−
c

∣∣∣∣ ||η−
j,2,c||2L2(0,1)

−|ρ−
s |n−1

∣∣∣∣c1γ−s + c2δ−
s

δ−
s

∣∣∣∣ ||η−
j,2,s||L2(0,1)

∣∣∣2
+o(|ρ−

c |2(n−1))+o(|ρ−
s |2(n−1))

in a similar way to the proof of Theorem 1.1 (4). So, we have (B-1).
Assume that λ satisfies ds −

√
Ds + dc −

√
Dc + 8 = 0. Recall that γ−c �= 0 and

γ−s �= 0 from Lemma 4.10. Using δ−
c e−1,c−γ−c e−2,c = o , we have δ−

c α−
j,1,c−γ−c α−

j,2,c = 0

and δ−
c β−

j,1,c−γ−c β−
j,2,c = 0 for all j = 1,2,3,4,5,6. So, we have δcη−

j,1,c−γ−c η−
j,2,c = 0

for all j . In a similar way, we also have δ−
s η−

j,1,s − γ−s η−
j,2,s = 0 for all j . Substituting

δ−
c = γ−c

γ−s
δ−

s into δcη−
j,1,c − γ−c η−

j,2,c = 0, we derive δ−
s η j,1,c − γ−s η−

j,2,c = 0 for all

j . Therefore, we have (c1η−
j,1,c + c2η−

j,2,c,c1η−
j,1,s + c2η−

j,2,s) = (0,0) for (c1,c2) =
(δ−

s ,−γ−s ) �= (0,0) . For such a pair (c1,c2) , we have ||y||L2(Γ�
0)

< +∞ . So, we have

λ ∈ σp(H�(μ)) . Hence, (B-2) has been established.
Next, we prove (A). We discuss the case of 3Δ+Δ− = 0 and 0 < |μ |< 2

3π . Then,
we recall γ−c = 0 from Lemma 4.10. This implies e−1,c = o . Thus, it turns out by

(3.7)–(3.9) that α−
j,1,c = β−

j,1,c = 0 for j = 1,2,3,4,5,6. This yields η−
j,1,c ≡ 0 for all

j = 1,2,3,4,5,6 (see Lemma 3.4 (1)). Therefore, we have the estimates

||yn, j||2L2(0,1) �
∣∣∣∣|ρ−

c |n−1|c2|||η−
j,2,c||2L2(0,1)−|ρ−

s |n−1

∣∣∣∣c1γ−s + c2δ−
s

δ−
s

∣∣∣∣ ||η−
j,2,s||L2(0,1)

∣∣∣∣
2

+o(|ρ−
c |2(n−1))+o(|ρ−

s |2(n−1))

Due to γ−s �= 0, we see that (c2,c1γ−s + c2δ−
s ) �= (0,0) for any (c1,c2) ∈ C

2 \{(0,0)} .
So, we have λ ∈ ρ(H�(μ)) .

At last, we deal with the case of 3Δ + Δ− = 0 and 2
3 π < |μ | < π (Note that

2
3π < |μ | � π can be permitted.). In the case, we derived γ−c = 0 and γ−s = 0. Then,
we have η−

j,1,c ≡ 0 and η−
j,1,s ≡ 0. Looking at Lemma 3.4 (2), we have

||pn, j||2L2(0,1) � 2(|ρ+
c |2(n−1)||η+

j,1,c||2L2(0,1) + |ρ+
s |2(n−1)||η+

j,1,s||2L2(0,1)).

This means that λ is an eigenvalue of H�(μ) and p is an eigenfunction corresponding
to λ . (On the other hand, q is neither an eigenfunction nor a generalized eigenfunc-
tion.) This is why we derive λ ∈ σp(H�(μ)) . �

Finally, we discuss the proof of Theorem 1.2 (C) and (D). Since all discussions
so far was corresponding to the case of m12 �= 0, we were using Lemma 2.4 (1) as
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eigenspaces for the transfer matrix M(λ ) . From now on, we utilize the expression in
Lemma 2.4 (2) under the setting λ ∈ σB . Recall that λ ∈ σB is equivalent to ϕ ′

1 +2Δ =
0, namely, ϕ ′

1 = − θ1
2 .

LEMMA 4.11. Assume that λ ∈ σB and μ ∈ S1 \ {0} . Then, δ−
c �= 0 .

(1) The potential q is even if and only if γ−c = 0 .

(2-a) Assume that 0 < |μ | < 2
3 π . Then, γ−s �= 0 and δ−

s = 0 .

(2-b) Assume that 2
3 π < |μ | � π . Then, δ−

s �= 0 . Moreover, q is even if and only if
γ−s = 0 .

Proof. We calculate the 2nd row of x+
c in Lemma 2.4 (2). Using m11 in Lemma

2.1, we have

2Δm11(e−
iμ
2 −1)+ θ1(e

iμ
2 +1) = e

iμ
4

( −ϕ ′
1

2cos μ
4

+2θ1 cos
μ
4

)

= 2θ1e
iμ
4

(
cos

μ
4

+
1

8cos μ
4

)

because of ϕ ′
1 = − θ1

2 . Since ρ+
c +1+ e

iμ
2 = e

iμ
4 (2cos μ

4 − 1
2cos μ

4
) �= 0, we have

∣∣ x+
c e+

1

∣∣= 3θ1ϕ1e
iμ
4 cos

μ
4

.

Hence, we see that
∣∣x+

c e+
1

∣∣= 0 is equivalent to θ1 = 0, which is moreover equivalent

to Δ− = 0 because of ϕ ′
1 =− θ1

2 . Recall that Δ− plays the role to determine whether or
not q is even. This is why (4.4) and (4.5) mean that γ−c = 0 is equivalent to q is even.

Next, we prove that δ−
c ��= 0. Note that

δ̃−
c := det (w+

c e2 w+
s w−

s ) = 2e
iμ
2
∣∣x+

s x−s
∣∣ϕ1(ρ+

c +1+ e
iμ
2 ). (4.16)

This combined with ρ+
c +1+ e

iμ
2 �= 0 yields δ−

c �= 0.
Finally, we show (2-a) and (2-b) using the expressions in Lemma 2.4 (2). If 0 <

|μ | < 2
3 π , then we have the following statements, which mean (2-a):

det (w+
c w−

c w+
s e1) = 2eiμ ∣∣x+

c x−c
∣∣ ∣∣ e−2 e+

1

∣∣ �= 0,

det (w+
c w−

c w+
s e2) = 2eiμ ∣∣x+

c x−c
∣∣ ∣∣ e−2 e−2

∣∣= 0.

If 2
3 π < |μ | � π , then we have

γ̃−s := det (w+
c w−

c w+
s e1) = 2eiμ ∣∣x+

c x−c
∣∣ ∣∣ x+

s e+
1

∣∣ , (4.17)

δ̃−
s := det (w+

c w−
c w+

s e2) = −2eiμ ∣∣x+
c x−c

∣∣ ∣∣x+
s e−2

∣∣ . (4.18)
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Since we have
∣∣x+

s e+
1

∣∣ = −3θ1ϕ1ie
iμ
4 sin μ

4 , we see that γ−s = 0 if and only if q is

even. It follows by
∣∣x+

s e−2
∣∣= ϕ1(ρ+

s +1− e
iμ
2 ) �= 0 that δ−

s �= 0. �

Proof of Theorem 1.2 (C) and (D). Assume that μ ∈ S1 \ {0,± 2
3π ,±π} and λ ∈

σB . Recall |ρ+
s | < 1, |ρ+

c | < 1, |ρ−
s | > 1, |ρ−

c | > 1 from Lemma 4.5 (ii). We prepare
the following classifications for the proof:

(C-1) q is even and 0 < |μ | < 2
3π . (C-2) q is even and 2

3 π < |μ | < π .

(D-1) q is not even and 0 < |μ | < 2
3 π . (D-2) q is not even and 2

3π < |μ | < π .

Consider the case (C-1). Then, it follows by Lemma 4.11 that γ−c = 0, γs �= 0,
δ−

c �= 0 and δ−
s = 0. Therefore, we have e−1,c = e−2,s = o in the eigenfunction expansion

(4.2) and (4.3). This implies by the notations (3.7)–(3.9) that α−
j,1,c = β−

j,1,c = α−
j,2,s =

β−
j,2,s = 0 for all j = 1,2,3,4,5,6. Recall the definition of η±

j,�,• from Lemma 3.4

(1). As a result, we have η−
j,1,c(x,λ ) ≡ 0 and η−

j,2,s(x,λ ) ≡ 0 for j = 1,2,3,4,5,6.
Therefore, we have

||yn, j||2L1(0,1) = ||c1(ρ−
s )n−1η−

j,1,s+c2(ρ−
c )n−1η−

j,2,c||2L2(0,1+o(|ρ−
c |2(n−1))+o(|ρ−

s |2(n−1))

as n→∞ by Lemma 3.4 (1). For any (c1,c2)∈C
2 \{(0,0)} , ||yn, j||2L2(0,1) grows expo-

nentially in all cases (i) |ρ−
s |> |ρ−

c |(> 1) , (ii) |ρ−
s |= |ρ−

c |(> 1) and (iii) (1 <)|ρ−
s |<

|ρ−
c | . Since any non-trivial solution can be neither a eigenfunction nor a generalized

eigenfunction, we have λ ∈ ρ(H�(μ)) .
Consider the case (C-2). By Lemma 4.11, we have γ−c = 0, γ−s = 0, δ−

c �= 0 and
δ−

s �= 0. Then, we have η−
j,1,c(x,λ ) ≡ 0 and η−

j,1,s(x,λ ) ≡ 0 for all j = 1,2,3,4,5,6.

Substituting these into Lemma 3.4 (2), we have pn, j = (ρ+
c )n−1η+

j,1,c +(ρ+
s )n−1η+

j,1,s .

This yields ||p||L2(Γ�) < ∞ which means that λ ∈ σp(H�(μ)) and p is its corresponding
eigenfunction.

We deal with the case (D-1). In this case, we have γ−c �= 0, γ−s �= 0, δ−
c �= 0 and

δ−
s = 0. Then, we have η−

j,2,s(x,λ ) ≡ 0. On the other hand, it follows by γ−c w−
c =

e−1,c �= 0 and δ−
c w−

c = e−2,c �= 0 that e−1,c = γ−c
δ−
c

e−2,c . From the point of view of the no-

tations in (3.7)–(3.9), we have α−
j,1,c = γ−c

δ−
c

α−
j,2,c and β−

j,1,c = γ−c
δ−
c

β−
j,2,c , which yield

η−
j,1,c = γ−c

δ−
c

η−
j,2,c for j = 1,2,3,4,5,6. Thus, we have

||yn, j||2L2(0,1) = ||(ρ−
c )n−1

(
c1γ−c + c2δ−

c

δ−
c

)
η−

j,2,c +(ρ−
s )n−1c1η−

j,1,s||2L2(0,1)

+o(|ρ−
c |2(n−1))+o(|ρ−

s |2(n−1))

as n → ∞ . For any (c1,c2) ∈ C2 \ {(0,0)} , we see that (c1γ−c + c2δ−
c ,c1) �= (0,0) .

Thus, ||yn, j||L2(0,1) grows exponentially as n → ∞ in all cases (i) |ρ−
s | > |ρ−

c | , (ii)

|ρ−
s | = |ρ−

c | and (iii) |ρ−
s | < |ρ−

c | . Hence, we have λ ∈ ρ(H�(μ)) .
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Consider the case (D-2). At last, we finish so many classifications. In the case,

we have γ−c �= 0, γ−s �= 0, δ−
c �= 0 and δ−

s �= 0. Then, we have η−
j,1,c = γ−c

δ−
c

η−
j,2,c and

η−
j,1,s = γ−s

δ−
s

η−
j,2,s . Hence, it follows by Lemma 3.4 (1) that

yn, j(x,λ ) =(ρ+
c )n−1(c1η+

j,1,c + c2η+
j,2,c)+ (ρ+

s )n−1(c1η+
j,1,s + c2η+

j,2,s)

+ (ρ−
c )n−1

(
c1γ−c + c2δ−

c

δ−
c

)
η−

j,2,c +(ρ−
s )n−1

(
c1γ−s + c2δ−

s

δ−
s

)
η−

j,2,s.

Our last task is to show that (c1γ−s + c2δ−
c ,c1γ−s + c2δ−

s ) �= (0,0) for any (c1,c2) ∈
C2 \ {(0,0)} . Seeking a contradiction, we assume that these exists some (c1,c2) ∈
C2\{(0,0)} satisfying c1γ−c +c2δ−

c = c1γ−s +c2δ−
s = 0. This is equivalent to γ̃−c δ̃−

s −
γ̃−s δ̃−

c = 0. Substituting (4.5), (4.16), (4.17) and (4.18) into this, we have cosμ = 0.
This does not hold true for 2

3 π < |μ | < π . Therefore, we have (c1γ−s + c2δ−
c ,c1γ−s +

c2δ−
s ) �= (0,0) for any (c1,c2) ∈ C2 \ {(0,0)} . As a result, we see that the L2(0,1)-

norm of any non-trivial solution y in Lemma 3.4 growth exponentially. Namely, λ ∈
ρ(H�(μ)) . �

Acknowledgement. This work was supported by Grant-in-Aid for Young Scientists
(17K14221) and Grant-in-Aid for Scientific Research (C) (21K03273), Japan Society
for Promotion of Science. The author thanks a reviewer for taking his/her precious time
to read the manuscript carefully.

RE F ER EN C ES

[1] G. BERKOLAIKO AND P. KUCHMENT, Introduction to quantum graphs, AMS, Providence, RI (2012).
[2] M. S. P. EASTHAM, The spectral theory of periodic differential equations, Scottish Academic Press

Ltd., London, 1973.
[3] G. M. GRAF AND M. PORTA, Bulk-Edge Correspondence for Two-Dimensional Topological Insula-

tors, Commun. Math. Phys., 324, 851–895 (2013).
[4] C. L. KANE AND E. J. MALE, Z2 Topological order and the quantum spin Hall effect, Phys. Rev.

Lett., 95, 146802 (2005).
[5] E. KOROTYAEV AND I. LOBANOV, Schrödinger Operators on Zigzag Nanotubes, Ann. Henri
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