
Operators
and

Matrices

Volume 16, Number 4 (2022), 1097–1123 doi:10.7153/oam-2022-16-72

IMPROVED RATE OF APPROXIMATION BY

MODIFICATION OF BASKAKOV OPERATOR

ASHA RAM GAIROLA, AMRITA SINGH, LAXMI RATHOUR ∗
AND VISHNU NARAYAN MISHRA ∗

(Communicated by D. Han)

Abstract. The optimal order of approximation, |Ln f (x) − f (x)| of a linear positive operator
Ln f (x) is 1/n and can not be improved however smooth the function may be. We remove
the positivity of the Baskakov operator Vn( f ;x) and introduce its three variants VM,i

n ( f ;x) ,
i = 1,2,3. We prove that the rates of approximation by these operators are improved from the
linear order 1/n to quadratic order 1/n2 and then to cubic order 1/n3 for sufficiently smooth
functions.

1. Introduction

The Weierstrass theorem states that “A continuous function on a closed interval is
uniform limit of the sequence of polynomials”. A constructive proof of this theorem
was given by Bernstein in 1912 [22]. For a function defined and bounded in the interval
[0,1], the n th Bernstein operator Bn,n ∈ N is defined by

Bn( f ,x) :=
n

∑
k=0

Bn,k(x) f

(
k
n

)
, (1.1)

where

Bn,k(x) =
(

n
k

)
xk(1− x)n−k, k = 0,1, . . . ,n.

It is known that Bn( f ,x) converges to f (x) (see [22]) whenever f is continuous at x.
In fact Aramă [6] proved that for a function f in C[0,1] there exist three distinct points
u1,u2,u3 such that

Bn( f ,x) := f (x)+
x(1− x)

n
[u1,u2,u3; f ] . (1.2)

Further, convergence is uniform in case f is continuous on [0,1]. The Bernstein oper-
ators demonstrate interesting analytical and geometric properties e.g. (see [21])
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1. Bn( f ,0) = f (0), Bn( f ,1) = f (1) i.e. Bn( f ,x) have end point interpolation prop-
erty,

2. Bn( f ,x) � 0, for any f with f (x) � 0 on [0,1],

3. limn→∞ B( j)
n ( f ,x) = f ( j)(x) if f ( j) is continuous at x,

4. f ∈C[0,1] is convex if and only iff for every n ∈ N , Bn( f ) is convex.

In 1960 Korovkin [23] extensively studied approximation by linear positive oper-
ators in his work. After that study of approximation by linear positive operators have
attracted interest of many researchers. Subsequently, a number of new operators have
been introduced as well as modification of classical operators also have been made in
order to approximate other classes of function. It is worth mentioning the work of
Voronovkaja [53] about the asymptotic error estimation of Bernstein operator and re-
sults of [26], [27] and [29].

Since the rate of approximation by linear positive operators is relatively slow, there
have been attempts by many researchers for better order of approximation. In this
direction certain methods have been introduced. The first one is the method of linear
combination of operators introduced by Butzer [11]. These combinations for Bernstein
operators Bn are defined by

(2k −1)B2k
n ( f ;x) = 2kB2k−1

2n ( f ;x)−B2k−1
n ( f ;x),B0

n( f ;x) = Bn( f ;x) (1.3)

The following convergence theorem was shown in [11] that states

THEOREM 1. If f (x) is defined on [0,1] with | f (x)| � M and if f (2k) exists at
the point x, then ∣∣∣B2k−2

n ( f ,x)− f (x)
∣∣∣ = O(n−k),

and moreover, ∣∣∣B2k
n ( f ,x)− f (x)

∣∣∣ = o(n−k), as n → ∞, k = 1,2, . . .

Thus the degree of approximation is significantly improved to O(n−k), however
it requires 2kn nodes that makes the method of linear combinations of less practical
value. Later, Rathore [48] in 1973 and May [35] in 1976 extended the method in [11].

Another technique to improve degree of approximation without requirement of
large number of nodes, was introduced by Micchelli [37], (see also [36]) wherein
he used combinations of iterates of the Bernstein operator Bn to define the operator
Tn,M( f ,x) as follows

Tn,M( f ,x) = (I− (I−Bn)M)( f ,x) =
M

∑
s=1

(−1)s+1
(

M
s

)
Bs

n( f ;x), (1.4)
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where Bs
n( f ;x) , s ∈ N denotes the s-th iterate and I = B0

n( f ;x). In fact Gonska and
Zhou in [28] introduced the M -fold Boolean sum of the Bernstein operators Bn by

⊕MBn := Bn⊕Bn⊕· · ·⊕Bn︸ ︷︷ ︸
Mfold

,

where the Boolean sum of the operators P and Q on a common linear space X is
defined by

P⊕Q = P+Q−PoQ.

It is easily observed that

⊕MBn = I− (I−Bn)M = Tn,M.

In [28] the authors have proved a direct and saturation theorem for the operators ⊕MBn

defined on the space C[0,1] of continuous functions on [0,1]. The authors of [28]
proved the following Jackson type quantitative result

‖ f −⊕MBn f‖ � C

{
ω2M

φ

(
f ,

1√
n

)
+‖ f‖n−M

}
, M � 1

The authors of [28] predicted the order of the approximation O(n−M).

2. Extension of the operator Bn f (x) to [0,∞)

In an attempt to extend Bernstein polynomials to unbounded domain, another se-
quence of positive linear operators known as Baskakov operator was introduced by
Baskakov [7]. These operators are defined by the formulas

Ln f (x) =
∞

∑
k=0

(−x)k φ (k)
n (x)
k!

f

(
k
n

)
, x ∈ [0,b], b ∈ R+∪{∞},

where the sequence φ (k)
n (x) of functions satisfy the conditions

1. φn ∈C∞[0,b],

2. φn(0) = 1,

3. (−1)kφ (k)
n � 0 and

4. φ (k+1)
n = −nφ (k)

n for b > max{0,−c} where c is some integer.

It can be easily verified that the functions (1 + x)−n satisfy all the conditions of the
sequence φn(x). With φn(x) = (1+ x)−n we obtain the following particular case of the
Baskakov operator

Vn( f ;x) =
∞

∑
k=0

Pn,k(x) f

(
k
n

)
, (2.1)
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where the basis function

Pn,k(x) =

{(n+k−1
k

)(
x

1+x

)k (1+ x)−n if 0 � k � n,

0 if k < 0

It can be shown that the sequence Vn( f ;x) is convergent on [0,∞) provided the function
f is such that limx→∞ f (x) exists. Let C[0,∞) be the space of continuous functions on
[0,∞). Then we define the following sub class of C[0,∞).

C[0,∞) := { f ∈C[0,∞) : | f (x)| < ∞} . (2.2)

The Baskakov operators Vn( f ;x) share interesting shape preservation properties. For
example it interpolates the function f (x) at x = 0 i.e. Vn( f ;0) = f (0). Following are
some of the geometric properties of the operators Vn( f ;x).

1. For a certain n the function Vn f ,n ∈ N is increasing for each increasing function
f ,

2. for a convex function f , the functions Vn f , n ∈ N are convex,

3. Vn f (x) � Vn+1 f (x) � f (x) , x ∈ [0,∞).

A number of results about the approximation properties of the operators Vn( f ;x) have
been discussed in [2], [3], [8]–[15], [46], [50] and [51] and the references therein. It
is worth refer to [31] for the rate of convergence of Baskakov type operator by Gupta
and [38] for generalization by Mihesan. Further, in [55] the preservation properties of
Baskakov-Kantorovich operator are studied.

It was proved in [7] that the sequence Vn( f ;x) converges uniformly to the func-
tion f (x) whenever f is bounded on [0,∞). Later on, the uniform convergence was
also observed for the functions having polynomial growth i.e. functions f satisfying
the condition | f (x)| = O(1 + xm) , m ∈ {0}∪N. Moreover, for a twice differentiable
function f satisfying the growth condition sup | f ′′(x)|e−Ax < ∞, Ditzian in [14] have
established following direct estimate

THEOREM 2.

e−Ax|Vn( f ;x)− f (x)| � ‖ f ′′‖A
x(1+ x)

n

(
M +1

2

)

for x � η
√

n, n > 2A where M depends only on A and η = 1
3 min(A−2,1) and ‖ f‖A =

sup | f (x)|e−Ax. It follows from the above theorem that even for a twice differentiable
function, the rate of approximation is O(n−1) and can not be improved. For a twice
differentiable function f , it can be shown by standard method that if f ′′(x) < ∞ , x ∈
[0,∞) then

lim
n→∞

n
Vn( f ,x)− f (x)

x+ x2 =
1
2

f ′′(x).
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Hence, the optimal rate of approximation achieved by these operators is O(n−1),
however smooth the function may be. In fact, we have the values Vn(t2,x) = x2 + x(1+x)

n
which yields order of approximation O(n−1), for the function x2 while this functions
is sufficiently smooth. With the aim for better approximation results, Aral and Gupta
in [5] introduced the q -varinat Bn,q of the Baskakov operators Vn and proved that the
rate of approximation

|Bn,q( f ;x)− f (x)| � Mω2

(
f ,

x
[n]q

(
1+

x
q

))
.

Thus, the q -varinat Bn,q of the Baskakov operators Vn do not yield better estimates.
In fact, the method of q -modifications have been proved useful for q � 1 and some
exceptional classes of analytical functions only as proved in [42]. However, the q -
varinat Bn,q demonstrate some shape preservation properties nicely (see [5]). Finally,
it is worth to mention the approach of King to obtain better rates of approximation.
King in [34] generalized the classical Bernstein operators Bn and achieved better rate
of approximation for his operator Vn( f ) as follows.

|Vn( f )− f (x)| � ω( f ,δ )
[
1+

1
δ
√

2x(x− r∗n(x))
]
,

where

r∗n(x) =

{
x2 if n = 1

− 1
2(n−1) +

√(
n

n−1

)
x2 + 1

4(n−1)2 if n = 2,3, . . .

For recent progress in the direction of King’s approach it is worth to mention the articles
[16]–[52], and [43]–[44]. The Baskakov operators have been modified in several ways
in order to look for better results. A certain number of modifications and applications
of the Baskakov operators can be found in [4], [10], [13], [19], [45] and [49]. Relevant
work in this direction can also be found in [25], and [39]–[41].

Recently, Arab et al. [20] have introduced a new method to get improved order
of approximation by the Bernstein operator. By decomposition of the weight function
pn,k(x), they defined the Bernstein type operator of first order as

BM,1
n ( f ,x) =

n

∑
k=0

BM,1
n,k (x) f

(
k
n

)
, x ∈ [0,1],

BM,1
n,k (x) = a(x,n)Bn−1,k(x)+a(1− x,n)Bn−1,k−1(x) (2.3)

where a(x,n) = a1(n)(x) + a0(n) , n = 0,1, . . . , a0(n) and a1(n) are two unknown
sequences which are determined in an appropriate way so that convergence is assured.
Similarly, second, third and fourth order Bernstein type operators BM,2

n ( f ,x), BM,3
n ( f ,x),

BM,4
n ( f ,x), respectively have been defined. It is worth mentioning that for sufficiently

smooth function f (x), BM,k
n ( f ,x)− f (x) = O(n−k) , k = 1,4. Thus, there is significant

improvement in the order of approximation without including more nodes k/n.
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Subsequently, A. M. Acu et al. [1] introduced and studied the Durrmeyer variants
of the Bernstein operators and applied the method of Arab et al. [20] to achieve better
degree of approximation. Similarly, the Kantorovich variant of the modified Bernstein
operators was studied in paper [33]. In a recent paper [24], degree of approximation
by certain Durrmeyer type operators is given explicitly in terms of the modulus of
smoothness of the function. However, to the best of our knowledge there have not
been any such attempts to improve the degree of approximation in the infinite domain
[0,∞) or R. Our aim is to extend the method of Arab et al. [20] for approximation
of functions defined on the interval [0,∞). We modify classical Baskakov operator
Vn( f ;x) for better degree of approximation.

3. First order operator VM,1
n ( f ;x)

We apply the technique of decomposition of weight function to the classical Baska-
kov operator (2.1) and introduce our operator as follows:

VM,1
n ( f ;x) =

∞

∑
k=0

PM,1
n,k (x) f

(
k
n

)
, x ∈ [0,∞) (3.1)

where,
PM,1

n,k (x) = S(ϕ(x),n)Pn,k−1(x)+S(1−ϕ(x),n)Pn−1,k(x) (3.2)

and

S(ϕ(x),n) = s1(n)ϕ(x)+ s0(n), ϕ(x) =
1

1+ x
.

Here, s1(n) , s0(n) are the sequences of n and x. Our operators are generalized in the
sense that for the particular values s1 = −1 and s0 = 1 the operator (3.1) becomes the
classical operator (2.1). Similarly, the operator (2.1) is a special case of the operators
VM,2

n ( f ;x) and VM,3
n ( f ;x). By straight forward calculations we obtain the following

lemmas.

LEMMA 1. For r = 0,1, we have

1.
∞
∑

k=0
Pn+r−1,k−r(x) = 1,

2.
∞
∑

k=0
Pn+r−1,k−r(x)

(
k
n

)
= r

n + (n+r−1)x
n ,

3.
∞
∑

k=0
Pn+r−1,k−r(x)

(
k
n

)2
= r2

n2 +(2r+1) (n+r−1)x
n2 + (n+r−1)(n+r)x2

n2 ,

4.
∞
∑

k=0
Pn+r−1,k−r(x)

(
k
n

)3
= r3

n3 + (3r2+3r+1)(n+r−1)x
n3 + 3(r+1)(n+r−1)(n+r)x2

n3

+ (n+r−1)(n+r)(n+r+1)x3

n3 .
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Since the expressions for images of monomials e j(x) = x j by a positive linear
operator are important to evaluate rate of approximation we make use of the identities
of lemma 1, to obtain following

LEMMA 2. Let VM,1
n ( f ;x) be defined by (3.1) and e j(x) = x j , j = 0,1,2. Then

VM,1
n (e0;x) = 2s0 + s1,

VM,1
n (e1;x) = (2s0 + s1)x+

(s0 + s1)(1− x)
n

,

VM,1
n (e2;x) = (2s0 + s1)x2 +(4s0 + s1)

x
n

+
s1x(2− x)

n
+

(s0 + s1)(1− x)
n

.

COROLLARY 1. If 2s0 + s1 = 1, then VM,1
n (e0;x) = 1 and for the operator

VM,1
n ( f ;x) we have that

VM,1
n ((t − x);x) = (s0 + s1)

(1− x)
n

,

VM,1
n ((t − x)2;x) =

1
n

[
4s0x+3s1x− s1x

2]+ 1
n

[
1
n
−2x

]
(1− x)(s0 + s1).

We discuss different cases for the values of s0 and s1 = 1. We observe the following 7
cases:

1. s0 = 0 implies s1 = 1

2. s1 = 0 implies s0 = 1
2

3. 0 < s1 < 1 implies s0 > 0

4. s1 = −1 implies s0 = 1

5. s1 > 1 implies s0 < 0

6. −1 < s1 < 0 implies s0 > 0 and s0 + s1 > 0

7. s1 < −1 implies s0 > 0 and s0 + s1 < 0

For the cases (1)–(3) , the operator (3.1) is positive and for the cases (4)–(7) cases
these are negative.

REMARK 1. It follows by lemma 2 that the monomials e j are mapped to poly-
nomials of degree at most j. Also on every closed sub interval [a,b] of [0,∞) the
convergence limn→∞VM,1

n (e j;x) = x j, j = 0,1,2 holds.

The convergence limn→∞VM,1
n (e j;x) = x j, j = 0,1,2 enable us to present the

following convergence result
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THEOREM 3. If f ∈ C[0,∞), 2s0 +s1 = 1 and let si(n) , i = 0,1 be the sequences
for which the operator (3.1) is positive and s0(n) is bounded then,

lim
n→∞

VM,1
n ( f ;x) = f (x)

uniformly on [0,b] , b < ∞.

Proof. If s0(n) is bounded then under conditions (1–3) VM,1
n ( f ;x) is positive.

Since,
lim
n→∞

VM,1
n (ei;x) = ei(x)

uniformly, the proof follows from Korovkin’s theorem. �
Under the assumptions of Theorem 3, the operator VM,1

n is positive. For a twice
differentiable function f , we have the following Voronovskaja type theorem.

THEOREM 4. Let f be a twice differentiable function such that f ′′ ∈C[0,∞) and
suppose that the operator (3.1) is positive. Then

(a) If s0(n) + s1(n) = 0 and a second derivative f ′′(x) exists at the certain point
x ∈ [0,∞) then we have

lim
n→∞

2n(VM,1
n ( f ;x)− (2s0(n)+ s1(n)) f (x)) = lim

n→∞
(4s0x+(3x− x2)s1) f ′′(x).

(b) If s0(n)+ s1(n) 
= 0 and the first derivative f ′(x) exists at the certain point x ∈
[0,∞) then we have

lim
n→∞

n(VM,1
n ( f ;x)− f (x)) = lim

n→∞
(1− x)(s0 + s1) f ′(x).

Proof. (a) When s0(n)+ s1(n) = 0, we have

f

(
k
n

)
= f (x)+ f ′(x)

(
k
n
− x

)
+

f ′′(x)
2

(
k
n
− x

)2

+ μ
(

k
n
− x

)(
k
n
− x

)2

(3.3)

where the function μ(t) is continuous and limt→0 μ(t) = 0. Multiplying equation (3.3)
by PM,1

n,k (x) and then summation over k leads to

VM,1
n ( f ;x) = f (x)VM,1

n (e0;x))+ f ′(x)VM,1
n (e1 − x;x)+

f ′′(x)
2

VM,1
n ((e1− x)2);x)

+
∞

∑
k=0

PM,1
n,k (x)μ

(
k
n
− x

)(
k
n
− x

)2

.

For s0 + s1 = 0, VM,1
n (e1− x;x) =

∞
∑

k=0
PM,1

n,k (x)
(

k
n − x

)
= 0. So we have,

VM,1
n ( f ;x) = f (x)+

1
n

[
4xs0 +(3x− x2)s1

] f ′′(x)
2

+
∞

∑
k=0

PM,1
n,k (x)μ

(
k
n
− x

)(
k
n
− x

)2

.

(3.4)
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By continuity of the function μ , for a given ε > 0, there exists a δ > 0 such that if
| kn − x| < δ then μ

(
k
n − x

)
< ε. Denote,

P :=
{

k ∈ N0 :

∣∣∣∣ kn − x

∣∣∣∣< δ
}

and

Q :=
{

k ∈ N0 :

∣∣∣∣ kn − x

∣∣∣∣� δ
}

.

Then,

∞

∑
k=0

PM,1
n,k (x)μ

(
k
n
− x

)(
k
n
− x

)2

� ∑
k∈P

PM,1
n,k (x)

∣∣∣∣μ
(

k
n
− x

)∣∣∣∣
(

k
n
− x

)2

+ ∑
k∈Q

PM,1
n,k (x)

∣∣∣∣μ
(

k
n
− x

)∣∣∣∣
(

k
n
− x

)2

� ε ∑
k∈P

PM,1
n,k (x)+

M
δ 2 ∑

k∈Q

PM,1
n,k (x)

(
k
n
− x

)2

= ε +
M
δ 2 (VM,1

n (e2;x)−2xVM,1
n (e1;x)+ x2VM,1

n (e0;x))

= ε +
M
δ 2

4s0x+(3x− x2)s1

n
< ε.

Here, M = sup
0�t<∞

|μ(t)|, f ′′ ∈C[0,∞) , 0 � x � b < ∞. The proof for s0 + s1 = 0

is complete. The case for s0 + s1 
= 0 is similar. This completes the proof. �

REMARK 2. The rate of convergence |VM,1
n ( f ;x)− f (x)| for function having sec-

ond order continuous derivatives is therefore O(n−1) provided s0(n) and s1(n) are
bounded sequences.

We prove an estimate for rate of approximation by VM,1
n ( f ;x) in following theo-

rem.

THEOREM 5. If f ∈ C[0,∞) , 0 � x � b < ∞ and the operator (3.1) is positive
then,

|VM,1
n ( f ;x)− f (x)| � (3|s1|+1)(b+2)ω

(
1√
n

)
.

Proof. We have

VM,1
n ( f ;x) = S(ϕ(x),n)

∞

∑
k=0

Pn,k−1(x) f

(
k
n

)
+S(1−ϕ(x),n)

∞

∑
k=0

Pn−1,k(x) f

(
k
n

)
.
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Using 2s0 + s1 = 1,

|VM,1
n ( f ;x)− f (x)| � |S(ϕ(x),n)|

∞

∑
k=0

Pn,k−1(x)
∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣
+ |S(1−ϕ(x),n)|

∞

∑
k=0

Pn−1,k(x)
∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣
� |S(ϕ(x),n)|

∞

∑
k=0

Pn,k−1(x)ω
(∣∣∣∣ kn − x

∣∣∣∣
)

+ |S(1−ϕ(x),n)|
∞

∑
k=0

Pn−1,k(x)ω
(∣∣∣∣ kn − x

∣∣∣∣
)

.

By the inequality,
ω(λ δ ) � (1+ λ )ω(δ ), λ � 0

we get

|VM,1
n ( f ;x)− f (x)| � |S(ϕ(x),n)|

(
1+

√
n

∞

∑
k=0

Pn,k−1(x)
∣∣∣∣ kn − x

∣∣∣∣
)

ω
(

1√
n

)

+ |S(1−ϕ(x),n)|
(

1+
√

n
∞

∑
k=0

Pn−1,k(x)
∣∣∣∣ kn − x

∣∣∣∣
)

ω
(

1√
n

)
.

(3.5)

Now using the Schwarz’s inequality, we obtain

∞

∑
k=0

Pn,k−1(x)
∣∣∣∣ kn − x

∣∣∣∣�
(

∞

∑
k=0

Pn,k−1(x)
(

k
n
− x

)2
) 1

2
(

∞

∑
k=0

Pn,k−1(x)

) 1
2

�
(

∞

∑
k=0

Pn,k−1(x)
(

k
n

)2

−2x
∞

∑
k=0

Pn,k−1(x)
(

k
n

)
+ x2

∞

∑
k=0

Pn,k−1(x)

) 1
2

.

Using lemma 1, we get for x ∈ [0,b) , b � ∞

∞

∑
k=0

Pn,k−1x

∣∣∣∣ kn − x

∣∣∣∣�
(

x2

n
+

x
n

+
1
n2

) 1
2

� (1+ x)√
n

√
x

1+ x
+

1
n

1
(1+ x)2

� 1+ x√
n

√(
1− 1

1+ x

)
+

1
n

(
1

1+ x

)2

� 1+ x√
n

. (3.6)
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Similarly,

∞

∑
k=0

Pn,k−1(x)
∣∣∣∣ kn − x

∣∣∣∣�
(

∞

∑
k=0

Pn,k−1(x)
(

k
n
− x

)2
) 1

2
(

∞

∑
k=0

Pn,k−1(x)

) 1
2

� 1+ x√
n

(3.7)

Making use of (3.6) and (3.7) in (3.5) we obtain

|VM,1
n ( f ;x)− f (x)| � (|S(ϕ(x),n)|+ |S(1−ϕ(x),n)|)

(
1+

√
n
(1+ x)√

n

)
ω
(

1√
n

)

� (|S(ϕ(x),n)|+ |S(1−ϕ(x),n)|)(x+2)ω
(

1√
n

)
. (3.8)

In view of the equality 2s0 + s1 = 1, and 0 < ϕ(x) � 1, it follows that

|S(ϕ(x),n)|+ |S(1−ϕ(x),n)|� |s1ϕ |+
∣∣∣∣1− s1

2

∣∣∣∣+ |s1− s1ϕ +
1
2
− s1

2
| � 3|s1|+1.

(3.9)
Combining these estimates we finally get

|VM,1
n ( f ;x)− f (x)| � (3|s1|+1)(2+ x)ω

(
1√
n

)
.

Hence the proof is completed. �
The error estimate by the sequence VM,1

n ( f ;x) is at least as good as those by the
usual Baskakov operators Vn( f ;x). Our next theorem discusses the convergence when
the sequences s1(n),s0(n) are convergent.

THEOREM 6. Let f ∈ C[0,∞) and 2s0 + s1 = 1. Then, for all convergent se-
quences s0(n) and s1(n) satisfying the cases when the operator is non positive,

lim
n→∞

VM,1
n ( f ;x) = f (x)

uniformly on [0,b] , b < ∞.

Proof. We prove the convergence theorem when the operator (3.1) is not positive.
For this we divide our proof in two cases:

Case 1. When the unknown sequences si(n) , i = 0,1 are convergent. We have

VM,1
n ( f ;x) = S(ϕ(x),n)

∞

∑
k=0

Pn,k−1(x) f

(
k
n

)
+S((1−ϕ),n)

∞

∑
k=0

Pn−1,k(x) f

(
k
n

)
.

We write,
VM,1

n ( f ;x) = Wn,1( f ;x)−Wn,2( f ;x),
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where

Wn,1( f ;x) = s1ϕ(x)
∞

∑
k=0

Pn,k−1(x) f

(
k
n

)
+ s1

∞

∑
k=0

Pn−1,k(x) f

(
k
n

)
and

Wn,2( f ;x)= s1ϕ(x)
∞

∑
k=0

Pn−1,k(x) f

(
k
n

)
−s0

∞

∑
k=0

Pn−1,k(x) f

(
k
n

)
−s0

∞

∑
k=0

Pn,k−1(x) f

(
k
n

)
.

By direct calculations we have

Wn,1(e0,x) = s1

(
1+

1
1+ x

)
,

Wn,1(e1,x) = s1

(
1+

1
1+ x

)
x+

s1

n

(
1

1+ x
− x

)
,

and

Wn,1(e2,x) = s1

(
1+

1
1+ x

)
x2 +

s1

1+ x

(
x2 +3x+

1
n

)
− s1

n2

(
nx2−nx+ x

)
.

Similarly for Wn,2( f ;x) we have that

Wn,2(e0,x) =
(

s1

(
1+

1
1+ x

)
−1

)
,

Wn,2(e1,x) =
(

s1

(
1+

1
1+ x

)
−1

)
x− 1

n

(
s1x

1+ x
+

1− s1

2
(1+ x)

)
,

and

Wn,2(e2,x) =
(

s1

(
1+

1
1+ x

)
−1

)
x2 − s1

n(1+ x)

(
x2− x+

x
n

)
+

s1−1
2n

(
4x− x

n
+

1
n

)
.

Let lim
n→∞

s1(n) = l1. Since, the sequence (2.1) converges uniformly on [0,b], it

follows that

lim
n→∞

Wn,1( f ;x) = l1

(
1+

1
1+ x

)
f (x)

uniformly and similarly

lim
n→∞

Wn,2( f ;x) =
(

l1

(
1+

1
1+ x

)
−1

)
f (x)

uniformly. Therefore, the limit

lim
n→∞

VM,1
n ( f ;x) = f (x)

holds uniformly on [0,b].
Case 2. When the unknown sequences are bounded. The proof in this case is

similar to Case 1. Hence, the proof is completed. �
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4. Second order operator VM,2
n ( f ;x)

In order to improve the order of approximation of classical Baskakov operator we
further decompose the Baskakov operator Vn( f ;x) and get a new modified operator.
Thus, we introduced new modified Baskakov operator VM,2

n ( f ;x) of order two by

VM,2
n ( f ;x) =

∞

∑
k=0

PM,2
n,k (x) f

(
k
n

)
, (4.1)

where

PM,2
n,k (x) = S(ϕ(x),n)Pn,k−2(x)+R(ϕ ,n)Pn−1,k−1(x)+S(1−ϕ(x),n)Pn−2,k(x) (4.2)

and
S(ϕ(x),n) = s2ϕ2 + s1ϕ + s0

S(1−ϕ(x),n) = s2(1−ϕ)2 + s1(1−ϕ)+ s0

R(ϕ ,n) = r0ϕ(1−ϕ).

REMARK 3. Our method is natural generalization of the operator Vn( f ;x) in the
sense that if we put s2 = 1, s1 =−2, s0 = 1, r0 = 2 we recover the Baskakov operator
(2.1).

LEMMA 3. For r = 0,1,2 there hold the identities

1.
∞
∑

k=0
Pn+r−2,k−r(x) = 1

2.
∞
∑

k=0
Pn+r−2,k−r(x)

(
k
n

)
= r

n +
(

n+r−2
n

)
x

3.
∞
∑

k=0
Pn+r−2,k−r(x)

(
k
n

)2
= r2

n2 +(2r+1)
(

n+r−2
n2

)
x+
(

(n+r−1)(n+r−2)
n2

)
x2

4.
∞
∑

k=0
Pn+r−2,k−r(x)

(
k
n

)3
= r3

n3 +(3r2 +3r+1)
(

n+r−2
n3

)
x

+3(r+1)
(

(n+r−1)(n+r−2)
n3

)
x2 +

(
(n+r)(n+r−1)(n+r−2)

n3

)
x3.

Using lemma 3 we find the values for sequences si, and ri for the operator VM,2
n ( f ;x).

By straight forward calculations

VM,2
n (e0;x) = 2s0 + s1 + s2−ϕ(2s2− r0)+ ϕ2(2s2 − r0).

We assume the conditions
2s0 + s1 + s2 = 1 (4.3)

and
2s2− r0 = 0. (4.4)



1110 A. R. GAIROLA, A. SINGH, L. RATHOUR AND V. N. MISHRA

Using the condition (4.4) we obtain

VM,2
n (e1;x) = (2s0 + s1 + s2)x+

(
2(s0 + s1 + s2)(1− x)

n

)
.

Next, using the condition (4.3), we get

VM,2
n (e1;x) = x+2(1− s0)

(1− x)
n

.

Now we set s0 = 1, in the evaluation for VM,2
n (e1;x). This yields

VM,2
n (e1;x) = x.

Next, we have

VM,2
n (e2;x) = (2s0 + s1 + s2)x2 +(−2s0−3s1−3s2)

x2

n
+(6s0 +5s1 +5s2)

x
n

+(2s0 +2s1 +2s2)
x2

n2 +(−2s0−4s1−6s2)
x
n2 +(s0 + s1 + s2)

4
n2

Since, we have 2s0 + s1 + s2 = 1, s0 = 1 so that

s1 = −1− s2. (4.5)

Using these values together with the condition 2s0 + s1 + s2 = 1, we get

VM,2
n (e2;x) = x2 +

x(2+n+nx−2s2)
n2 .

Next, we set

s2 =
n(1+ x)

2
. (4.6)

Finally, we evaluate the sequences’s si, ri as

s0 = 1, s2 =
n(1+ x)

2
, r0 = n(1+ x), s1 = −1− n(1+ x)

2
.

With these values of s0,s1,s2,r0 the operator VM,2
n ( f ;x) is finally defined as

VM,2
n ( f ;x) =

∞

∑
k=0

PM,2
n,k (x) f

(
k
n

)
, (4.7)

where

PM,2
n,k (x) =

(
n
2

(
1

1+ x

)
−
(

1+
n(1+ x)

2

)(
1

1+ x

)
+1

)
Pn,k−2(x)

+n

(
x

1+ x

)
Pn−1,k−1(x)

+
(

n
2

(
x2

1+ x

)
−
(

1+
n(1+ x)

2

)(
x

1+ x

)
+1

)
Pn−2,k(x).
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NOTE 1. We will show that the (4.7) has order of approximation O
(

1
n2

)
. First,

we find the estimates of monomials and then extend the results for any arbitrary function
with preassigned smoothness in Theorem 7.

LEMMA 4. For the operator (4.7), we have

1. VM,2
n (1,x) = 1,

2. VM,2
n (t,x) = x,

3. VM,2
n (t2,x) = x2 + 2x

n2 ,

4. VM,2
n (t3,x) = x3 + 2x3+6x2−2x

n2 + 6x
n3 .

LEMMA 5. We have

1. VM,2
n ((t − x);x) = 0,

2. VM,2
n ((t − x)2;x) = 2x

n2 ,

3. VM,2
n ((t − x)3;x) = 2x(x2−1)

n2 + 6x
n3 .

Finally, we have following theorem on the operator VM,2
n ( f ;x).

THEOREM 7. Let f ∈C[0,∞) and f ′′′(x) exists at x ∈ [0,b] , b < ∞. Then,

lim
n→∞

n2(VM,2
n ( f ;x)− f (x)) = x(1+ x)

(
f ′′(x)
1+ x

+
x−1

3
f ′′′(x)

)
.

Moreover, the results holds uniformly if f ′′′(x) is continuous on [0,b].

Proof. By linearity of VM,2
n ( f ;x) and smoothness of f

VM,2
n ( f ,x) = f (x)+ f ′(x)VM,2

n ((t− x);x)+
1
2

f ′′(x)VM,2
n ((t − x)2;x)

+
1
6

f ′′′(x)VM,2
n ((t − x)3;x)+VM

n (ε(t,x)(t − x)3;x),

where ε(t,x) is bounded on [0,b] and limt→x ε(t,x) = 0. By the lemma 5 we have

VM,2
n ( f ;x) = f (x)+ f ′′(x)

( x
n2

)
+

1
3

f ′′′(x)
(

x(x2 −1)
n2 +

3x
n3

)
+VM,2

n (ε(t)(t − x)3;x).

The proof now follows along the lines similar to Theorem 4. �

THEOREM 8. We have

|VM,2
n ( f ;x)− f (x)| � φ(ϕ ,n)(x+2)ω

(
1√
n

)
uniformly on [0,b],b < ∞, where φ(ϕ ,n) = |S(ϕ(x),n)|+ |R(ϕ ,n)|+ |S(1−ϕ(x),n)|.
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Proof. By using the values 2s0 + s1 + s2 = 1, 2s2− r0 = 0

∣∣VM,2
n ( f ;x)− f (x)

∣∣
=
∣∣VM,2

n ( f ;x)− (2s0 + s1 + s2) f (x)
∣∣

=

∣∣∣∣∣
∞

∑
k=0

PM,2
n,k (x) f

(
k
n

)
− (2s0 + s1 + s2) f (x)

∣∣∣∣∣
�
∣∣∣∣∣

∞

∑
k=0

(S(ϕ(x),n)Pn,k−2(x)+R(ϕ ,n)Pn−1,k−1(x)

+S(1−ϕ(x),n)Pn−2,k(x)) f

(
k
n

)

− (S(ϕ(x),n)+R(ϕ ,n)+S(1−ϕ(x),n)) f (x)

∣∣∣∣∣
�
∣∣∣∣∣

∞

∑
k=0

S(ϕ(x),n)Pn,k−2(x)
(

f

(
k
n

)
− f (x)

)∣∣∣∣∣
+

∣∣∣∣∣
∞

∑
k=0

R(ϕ ,n)Pn−1,k−1(x)
(

f

(
k
n

)
− f (x)

)∣∣∣∣∣
+

∣∣∣∣∣
∞

∑
k=0

S(1−ϕ(x),n)Pn−2,k(x)
(

f

(
k
n

)
− f (x)

)∣∣∣∣∣ .
Now, by the inequality

∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣� ω
(∣∣∣∣ kn − x

∣∣∣∣
)

we have that

ω
∣∣∣∣ kn − x

∣∣∣∣= ω
(√

n

∣∣∣∣ kn − x

∣∣∣∣ 1√
n

)
�
(

1+
√

n

∣∣∣∣ kn − x

∣∣∣∣
)

ω
(

1√
n

)
.

Hence,

∣∣VM,2
n ( f ;x)− f (x)

∣∣ � ∞

∑
k=0

|S(ϕ(x),n)Pn,k−2(x)|
∣∣∣∣
(

1+
√

n

∣∣∣∣ kn − x

∣∣∣∣
)∣∣∣∣ω

(
1√
n

)

+
∞

∑
k=0

|R(ϕ ,n)Pn−1,k−1(x)|
∣∣∣∣
(

1+
√

n

∣∣∣∣ kn − x

∣∣∣∣
)∣∣∣∣ω

(
1√
n

)

+
∞

∑
k=0

|S(1−ϕ(x),n)Pn−2,k(x)|
∣∣∣∣
(

1+
√

n

∣∣∣∣ kn − x

∣∣∣∣
)∣∣∣∣ω

(
1√
n

)
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� ω
(

1√
n

)[
|S(ϕ(x),n)|

(
1+

√
n

∞

∑
k=0

Pn,k−2(x)
∣∣∣∣ kn − x

∣∣∣∣
)]

+

[
|R(ϕ ,n)|

(
1+

√
n

∞

∑
k=0

Pn−1,k−1(x)
∣∣∣∣ kn − x

∣∣∣∣
)]

+

[
|S(1−ϕ(x),n)|

(
1+

√
n

∞

∑
k=0

Pn−2,k(x)
∣∣∣∣ kn − x

∣∣∣∣
)]

.

An application of Schwarz’s inequality yields

∞

∑
k=0

Pn,k−2(x)
∣∣∣∣ kn − x

∣∣∣∣�
(

∞

∑
k=0

Pn,k(x)
(

k
n
− x

)2
) 1

2
(

∞

∑
k=0

Pn,k(x)

) 1
2

=
(

x2 −2x

(
x+

2
n

)
+ x2 +

x2

n
+

5x
n

+
4
n2

) 1
2

=
(

x2 + x
n

+
4
n2

) 1
2

=

√
x(1+ x)

n
+

4
n2

=
(1+ x)√

n

√(
1− 1

1+ x

)
+

4
n

(
1

1+ x

)2

� 1+ x√
n

.

Similarly,

∞

∑
k=0

Pn−1,k−1(x)
∣∣∣∣ kn − x

∣∣∣∣�
(

∞

∑
k=0

Pn−1,k−1(x)
(

k
n
− x

)2
) 1

2
(

∞

∑
k=0

Pn−1,k−1(x)

) 1
2

=
(

x2 −2x

(
x− x

n
+

1
n

)
+ x2− x2

n
+

3x
n
− 3x

n2 +
1
n2

) 1
2

=

√
x(1+ x)

n
+

2x
n
− 5x

n2 +
1
n2

� 1+ x√
n

and

∑Pn−2,k(x)
∣∣∣∣ kn − x

∣∣∣∣� (1+ x)√
n

.
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Finally, combining these results we obtain,

|VM,2
n ( f ;x)− f (x)| � (|S(ϕ(x),n)|+ |R(ϕ ,n)|+ |S(1−ϕ(x),n)|)(1+1+ x)ω

(
1√
n

)

� φ(ϕ ,n)(x+2)ω
(

1√
n

)
.

Hence the proof is completed. �

REMARK 4. Although the degree of approximation in Theorem 8 is of order

O
(

1√
n

)
, it is significantly improved to O

(
1
n2

)
for smoother functions as observed

in Theorem 7.

5. Third order operator VM,3
n ( f ;x)

For further improvement in the degree of approximation we define the third order
modified Baskakov operator by

VM,3
n ( f ;x) =

∞

∑
k=0

PM,3
n,k (x) f

(
k
n

)
(5.1)

where,

PM,3
n,k (x) = S(ϕ(x),n)Pn,k−4(x)+R(ϕ ,n)Pn−1,k−3(x)

+V(ϕ ,n)Pn−2,k−2(x)+R(1−ϕ ,n)Pn−3,k−1(x)
+S(1−ϕ(x),n)Pn−4,k(x) (5.2)

and
S(ϕ(x),n) = s4ϕ4 + s3ϕ3 + s2ϕ2 + s1ϕ + s0,

R(ϕ ,n) = r4ϕ4 + r3ϕ3 + r2ϕ2 + r1ϕ + r0,

V (ϕ ,n) = v0(ϕ(1−ϕ)2).

REMARK 5. For the operator (5.1) we note that if we put s4 = 1, s3 =−4, s2 = 6,
s1 = −4, s0 = 1, r4 = −4, r3 = 12, r2 = −12, r1 = 4, r0 = 0 and v0 = 6 then it
reduces in the classical Baskakov operator (2.1).

LEMMA 6. For r = 0,1,2,3,4 we have

1.
∞
∑

k=0
Pn+r−4,k−r(x) = 1

2.
∞
∑

k=0
Pn+r−4,k−r(x)

(
k
n

)
= r

n + (n+r−4)x
n

3.
∞
∑

k=0
Pn+r−4,k−r(x)

(
k
n

)2
= r2

n2 + (2r+1)(n+r−4)x
n2 + (n+r−4)(n+r−3)x2

n2
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4.
∞
∑

k=0
Pn+r−4,k−r(x)

(
k
n

)3
= r3

n3 +(3r2 +3r+1) (n+r−4)x
n3

+3(r+1) (n+r−4)(n+r−3)x2

n3 + (n+r−4)(n+r−3)(n+r−2)x3

n3 .

Using the technique as for the operator VM,2
n ( f ;x), we find following sequences

s4 = 1+
23n(1+ x)

12
+

n2(1+ x)2

8
,

s3 = −4− 14n(1+ x)
3

− n2(1+ x)2

4
,

s2 = 6+
10n(1+ x)

3
+

n2(1+ x)2

8
,

s1 = −4− 7n(1+ x)
12

,

s0 = 1,

r4 = −4− 23n(1+ x)
3

− n2(1+ x)2

2
,

r3 = 12+17n(1+ x)+n2(1+ x)2,

r2 = −12− 31n(1+ x)
3

− n2(1+ x)2

2
,

r1 = 4+n(1+ x),
r0 = 0,

v0 = 6+
23n(1+ x)

2
+

3n2(1+ x)2

4
.

Using the values of sequences si,ri where i = 0,1,2,3,4 and v0 we find the mo-
ments of operator (5.1) in the next lemma.

LEMMA 7. The operator VM,3
n ( f ;x) verifies

1. VM,3
n (e0;x) = 1,

2. VM,3
n (e1;x) = x,

3. VM,3
n (e2;x) = x2,

4. VM,3
n (e3;x) = x3,

5. VM,3
n (e4;x) = x4 + 12x(1+x)3

n3 .

Finally we have that

COROLLARY 2.

VM,3
n ((e1− x) j;x) = 0, j = 0,1,2,3



1116 A. R. GAIROLA, A. SINGH, L. RATHOUR AND V. N. MISHRA

and

VM,3
n ((t− x)4;x) =

12x(1+ x)3

n3 = O

(
1
n3

)
, x ∈ [0,∞).

THEOREM 9. Let f ∈ C[0,∞). Then the operator (5.1) together with the values
of sequences v0,si,ri, i = 0, . . . ,4 converges uniformly to f (x).

THEOREM 10. Let f be a function such that f (iv)(x) ∈C[0,∞). Then,

lim
n→∞

n3 (VM,3
n ( f ;x)− f (x)

)
=

1
2
x(x+1)3 f (iv)(x).

REMARK 6. We observe that si(n), ri(n) and v0(n) are the sequences of func-
tions i.e. depend on x while in the case of Bernstein operators (see [20]), the unknown
sequences are numerical sequences only. The degree of approximation by the operators
VM,3

n ( f ;x) is O(n−3) for sufficiently smooth functions.

6. Numerical verification

Having been establishing the orders O(n−2) and O(n−3) we apply the operators
VM,i

n ( f ;x) , k = 2,3 to the various smooth and non-smooth functions. First, we choose
exp(−x/10) , 0 � x � 30 for approximation by VM,2

n ( f ;x) for the degrees n = 5 and
n = 10.

5 10 15 20 25 30 x

0.2

0.4

0.6

0.8

1.0

y

Figure 1: Comparison of VM,2
n ( f ;x) and VM,3

n ( f ;x) for exp(−x/10)

The large error are obtained near the end x = 30 which is due to the small values
of n and truncation of the series for VM,2

n ( f ;x) at k = 400. For approximation in large
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interval we need to enhance both the degree of polynomial as well as degree of partial
sums in VM,2

n ( f ;x). The tables 1, 2 provide the absolute errors, values of f (x) and the
polynomials VM,2

n ( f ;x) , n = 5,10.

Table 1: Comparison of VM,2
5 ( f ;x) and VM,2

10 ( f ;x) with respect to the function
f (x) = exp(−x/10).

VM,2
n ( f ;x) | f (x)−VM,2

n ( f ;x)|
x f (x) n = 5 n = 10 n = 5 n = 10
3 0.740818 0.741429 0.74097 0.00061227 0.000151318
6 0.548812 0.548313 0.548662 0.000498981 0.00014917
9 0.40657 0.403135 0.405634 0.00343497 0.000935989
12 0.301194 0.293361 0.299085 0.00783306 0.0021096
15 0.22313 0.209947 0.219608 0.0131828 0.00352233
18 0.165299 0.14631 0.160272 0.0189886 0.00502694
21 0.122456 0.0976175 0.115956 0.0248389 0.00650006
24 0.090718 0.0602921 0.0828675 0.0304258 0.00785048
27 0.0672055 0.0316653 0.0581868 0.0355403 0.00901875
30 0.0497871 0.00973072 0.0398142 0.0400564 0.00997283

The maximum absolute errors by VM,2
5 ( f ;x) and VM,2

10 ( f ;x) are 0.0400564 and

0.00997283 at x = 30, while the errors by VM,3
5 ( f ;x) and VM,3

10 ( f ;x) are 0.051334 and
0.00584135 obtained at x = 30 again. It should be noted that there is slight difference
between the values of error shown in table and the figure near end point because in
software calculations some values are too small to represent as a normalized machine
number so there is loss of precision near end point.

Table 2: Comparison of VM,3
5 ( f ;x) and VM,3

10 ( f ;x) with respect to the function
f (x) = exp(−x/10).

VM,3
n ( f ;x) | f (x)−VM,3

n ( f ;x)|
x f (x) n = 5 n = 10 n = 5 n = 10
3 0.740818 0.740826 0.740826 0.0000575333 .00000734
6 0.548812 0.549313 0.548876 0.000501069 0.0000639825
9 0.40657 0.408365 0.406798 0.00179559 0.000228654
12 0.301194 0.305531 0.301743 0.00433724 0.000548682
15 0.22313 0.231511 0.224179 0.00838108 0.00104858
18 0.165299 0.179335 0.167033 0.0140365 0.00173079
21 0.122456 0.143747 0.125053 0.0212904 0.00259683
24 0.090718 0.120757 0.0943438 0.0300393 0.00362582
27 0.0672055 0.107325 0.0718925 0.0401196 0.00468703
30 0.0497871 0.101121 0.0553377 0.051334 0.0055506
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5 1 0 2 3x .

x43

x45

x46

x41

x48

y

Figure 2: Approximation of a smooth functions by VM,i
n ( f ;x)

Our next example discusses convergence of VM,2
n ( f ;x) and VM,3

n ( f ;x) for n = 15
to the function

f (x) =
x

x2 +1
. (6.1)

It is clear that f ∈ C[0,∞). Table 3 provides a comparison of the error bounds by
VM,2

15 ( f ;x) and VM,3
15 ( f ;x) at different points.

2 4 6 8 10 x

0.002

0.004

0.006

0.008

y

Figure 3: Comparison of absolute errors by | f (x)−VM,i
n ( f ;x)| for i = 2 , i = 3.

Fig. 3 verifies that the absolute error | f (x)−VM,3
n ( f ;x)| by third order operator

is less than the corresponding error | f (x)−VM,2
n ( f ;x)| by the second order operator

VM,2
n ( f ;x).
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Table 3: Comparison of VM,2
15 ( f ;x) and VM,3

15 ( f ;x) with respect to the function 6.1.

VM,i
n ( f ;x) | f (x)−VM,i

n ( f ;x)|
x f (x) i = 2 i = 3 i = 2 i = 3
1 0.5 0.501087 0.499991 0.00108733 0.000008679
2 0.4 0.408345 0.392403 0.00834536 0.00759716
3 0.3 0.303171 0.292277 0.00317085 0.00772254
4 0.235294 0.234811 0.230935 0.000483567 0.00435922
5 0.192308 0.190146 0.190814 0.00216195 0.00149363
6 0.162162 0.159344 0.162493 0.00281795 0.000330981
7 0.14 0.136995 0.141383 0.00300469 0.00138254
8 0.123077 0.120094 0.125029 0.0029827 0.00195226
9 0.109756 0.106885 0.111993 0.0028715 0.00223698
10 0.0990099 0.0962838 0.101366 0.00272612 0.00235607

Next, we discuss convergence of VM,3
n ( f ;x) for a non-differentiable function f (x)

defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2, if 0 � x < 2

4, if 2 � x < 6,

(x−8)2, if 6 � x � 8,

0, if x > 8.

(6.2)

2 4 6 8 10 x

1

2

3

4

y

Figure 4: Approximation of Discontinuous functions by VM,3
n ( f ;x)
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Table 4, discusses the comparison of values of the function with respect to the
value by VM,3

n ( f ;x) for n = 20 and n = 40.

Table 4: Comparison of VM,3
20 ( f ;x) and VM,3

40 ( f ;x) with respect to the function 6.2.

VM,3
n ( f ;x) | f (x)−VM,3

n ( f ;x)|
x f (x) n = 20 n = 40 n = 20 n = 40
1 1 0.994772 0.999724 0.00522774 0.00027647
2 4 3.70739 3.78039 0.292613 0.219613
3 4 4.09573 3.97765 0.0957321 0.0223536
4 4 3.91882 3.98593 0.0811822 0.0140728
5 4 3.96041 4.05347 0.0395879 0.0534708
6 4 3.29052 3.4432 0.709483 0.556804
7 1 1.72108 1.39419 0.721076 0.39419
8 0 0.263065 -0.0637303 0.263065 0.0637303

Conclusions

It is shown that the absolute error, | f (x)−VM,i
n ( f ;x)| for a sufficiently smooth

function f is of order n−i. It is worth pointing out that in order to achieve higher
rate of approximation, it is better to use a suitable modification VM,2

n ( f ;x) rather than
increasing the degree of ordinary operator Vn( f ;x). It is observed that our method is
applicable to approximate non-smooth functions too. However, the choice of the degree
of polynomials VM,i

n ( f ;x) depends on the length of the interval taken for the approx-
imation. The approximation of unbounded functions on [0,∞) with certain growth
conditions i.e. functions f satisfying the inequalities | f (x)| �Cφ(x) for given well be-
haved functions φ(x) can be interesting and significant topic for future investigations.
For weighted approximation and numerical quadrature such functions are quite suitable
so that the interested readers can consider this as open area of study.
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