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ATOMIC LATTICES OF SUBSPACES OF AN ARBITRARY

VECTOR SPACE AND ASSOCIATED OPERATOR ALGEBRAS

DON HADWIN AND KENNETH J. HARRISON

(Communicated by C.-K. Ng)

Abstract. We study a class of completely distributive, commutative, lattices of subspaces of an
arbitrary vector space, and associated operator algebras. Our results are compared with corre-
sponding results for commutative lattices of closed subspaces of a Hilbert space and associated
algebras of bounded linear operators.

1. Introduction

Reflexive algebras of operators, i.e., algebras of operators that leave invariant given
lattices of subspaces, have long had an important role in the study of non-self-adjoint
operators and operator algebras acting on Hilbert space. Of particular interest are nest
algebras and CSL algebras. Nest algebras are algebras of operators that leave invariant
totally ordered lattices of subspaces. See, for example [2]. In [4] nest algebras of oper-
ators acting on an arbitrary vector space are examined. In [1] Arveson introduced and
studied in depth CSL algebras, i.e., algebras of operators that leave invariant commu-
tative lattices of subspaces. Here certain types of lattices of subspaces of an arbitrary
vector space that are closely related to a given Hamel basis are defined. These lattices
are completely distributive and commutative. We study the corresponding reflexive
algebras of operators and compare them to their counterparts acting on Hilbert space.

1.1. Atomic subspace lattices

Suppose that X is a vector space over a field F . Let L(X) denote the alge-
bra of all operators on X , and let S (X) denote the lattice of all subspaces of X .
Here operators are linear functions that map X into itself, and subspaces are linear
manifolds. In this context continuity is not an issue, because we are not imposing a
topology on X or the field F . The lattice operations in S (X) are intersection and lin-
ear span, i.e., if {Mα : α ∈ Ω} is a subset of S (X) , then

∧
α∈Ω Mα =

⋂
α∈Ω Mα and∨

α∈Ω Mα = span(
⋃

α∈Ω Mα) . A subspace lattice is a complete sublattice (i.e., closed
under intersections and spans of unions) of S (X) that includes the trivial subspaces
{0} and X .
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Suppose that B is a Hamel basis of X . Suppose also that � is a quasi-order, i.e.,
a reflexive and transitive relation, on B . An initial segment of B (with respect to the
quasi-order � ) is a subset Φ of B with the property that e� f and f ∈ Φ =⇒ e ∈ Φ.
Let B(�) denote the set of all initial segments of B . The set B(�) is a complete,
completely distributive, sublattice of 2B , the lattice of all subsets of B . For each
subset Φ of B , let XΦ = span{e : e ∈ Φ} and let X∅ = {0} .

DEFINITION 1. L(�) = {XΦ : Φ ∈ Ω(�)}
Clearly L(�) is a subspace lattice that is lattice isomorphic to B(�). It is also

easy to see that if M is any non-zero subspace in L(�) then B∩M is a basis of
M .

DEFINITION 2. A subspace lattice L is atomic if there is a Hamel basis B of X
with the property that for each non-zero subspace M in L, B∩M is a basis of M .

Such a basis B is called a generating basis.
The subspace lattice L(�) is atomic. We shall show that any atomic subspace

lattice is of the form L(�) for some quasi-order � of the basis.
Suppose that L is an atomic subspace lattice with generating basis B . For each

vector x ∈ X let L(x) =
⋂{M ∈ L and x ∈M} . For any two basis vectors e and f

write
e � f ⇐⇒ L(e) ⊆ L( f ).

It is clear that � is a quasi-order on B . We need to show that L = L(�) . First observe
that e � f ⇐⇒ e ∈ L( f ) . So for each f ∈ B , B∩L( f ) is an initial segment of B ,
and L( f ) ∈ L(�) . Since M = ∨{L( f ) : f ∈ B∩M} . for each non-zero subspace in
L, it follows that L ⊆ L(�) .

For the reverse inclusion, observe that M = ∨{L(e) : e ∈M} for each non-zero
subspace M ∈ L(�). Since L(e) ∈ L for each e ∈ B and since L is join-closed,
M∈ L . So L(�) ⊆ L.

For the remainder of this section L(�) is the atomic subspace lattice correspond-
ing to the basis B with quasi-order � . For e, f ∈ B write e ≈ f if L(e) = L( f ) , i.e.,
e � f and f � e , and write e ≺ f if L(e) ⊂ L( f ) , where ⊂ denotes proper inclusion,
i.e., L(e) ⊆ L( f ) and L(e) �= L( f ) . Let

[≈ e] = { f ∈ B : f ≈ e} and let [≺ e] = { f ∈ B : f ≺ e}.

Clearly [≈ e]∪ [≺ e] = [� e] and [≈ e]∩ [≺ e] = ∅.
Let L(e)− = span[≺ e], for each e ∈ B . Clearly L(e)− is the unique immediate

predecessor of L(e) in L , and L(e)− =
∨{M∈ L : M⊂ L(e)}.

The subspaces of X of the form span[≈ e] are called the atoms of L(�) . The
atoms of L(�) span X , and each subspace in L(�) is a join of atoms. The atoms
of L(�) are not necessarily subspaces in L(�) . In fact span[≈ e] ∈ L(�) if and
only if L(e)− = {0}, and L(�) contains each of its atoms if and only if L(�) is
complemented, i.e., a Boolean algebra.
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For each subset Φ of B let PΦ denote the unique operator in L(X) that satisfies

PΦx =
{

x if x ∈ XΦ
0 if x ∈ XB\Φ

Thus PΦ is a projection with range XΦ and kernel XB\Φ . The projections PΦ : Φ ⊆ B
are a commuting family satisfying

PΦPΨ = PΨPΦ = PΦ∩Ψ, PΦ +PΨ = PΦ∩Ψ +PΦ∪Ψ, PΦ = 0 and PB = I

for any Φ,Ψ ⊆ B .
It is convenient to identify L(�) with its projection lattice, i.e., the projections

PΦ : Φ ∈B . We say that L(�) is commutative because its projection lattice is commu-
tative. Thus the atomic subspace lattice L(�) is commutative, completely distributive
and isomorphic to B(�) .

Following Ringrose [8] we say that L(�) is simple if its atoms are 1-dimensional,
i.e., [≈ e] = {e} for all e ∈ B.

EXAMPLE 1. If � is a total order on the equivalence classes of B , i.e., e � f or
f � e for all e, f ∈ B , then L(�) is totally ordered and is called a nest.

EXAMPLE 2. If � is an inorder on the equivalence classes of B , i.e., e � f if
and only if f � e , then L(�) is a Boolean algebra of subspaces of X.

It is useful to introduce a simple topology on L(X).

DEFINITION 3. The strict operator topology is the topology on L(X) whose sub-
basic open sets are subsets of the form

U(T,x) = {S ∈ L(X ) : Sx = Tx},

where T ∈ L(X) and x ∈ X . It is easy to verify that addition and multiplication are
both jointly continuous operations in the strict topology on the algebra L(X)

LEMMA 1. L(�) is strictly closed.

Proof. Suppose that T is in the strict closure of {PΦ : Φ∈B(�)}, and that e∈B.
Then Te = PΦe for some Φ∈B(�) . So Te = e or Te = 0 . Let Ψ = { f ∈B : T f = f} .
Then clearly T = PΨ . It remains to be shown that Ψ ∈ B(�) . So suppose that f ∈ Ψ
and e � f . Then Te = PΦe and T f = PΦ f for some Φ ∈ B(�). Now T f = f and
so f ∈ Φ , hence e ∈ Φ . So Te = PΦe = e. Hence e ∈ Ψ , and so Ψ ∈ B(�) , as
required. �
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1.2. The algebra A(�)

Suppose that T ∈ L(X) . The representing matrix for T relative to the basis B is
the array (Te, f )(e, f )∈B×B , where each Te, f is a scalar, i.e., an element of F, and

T f = ∑
e∈B

Te, f e for each f ∈ B.

The array (Te, f ) is column-finite, in the sense that for each f ∈ B , Te, f = 0 for all
but finitely many e. Conversely, any column-finite array of scalars is the representing
matrix of an operator in L(X) .

DEFINITION 4. The support, suppx, of any vector x ∈ X is defined by

suppx = {e ∈ B : Pex �= 0}

where Pe = P{e}. The support, suppT, of any operator T ∈ L(X) is defined by

suppT = {(e, f ) ∈ B×B : Te, f �= 0}.

For each Γ ⊆ B×B , the incidence space L(X,Γ) is defined by

L(X,Γ) = {T ∈ L(X) : suppT ⊆ Γ}

The incidence space L(X,Γ) is the linear subspace of L(X) consisting of all operators
in L(X) that are supported on Γ.

The graph G(�) of the quasi-order � is defined by

G(�) = {(e, f ) ∈ B×B : e � f}.

DEFINITION 5. A(�) = L(X,G(�)).

Clearly A(�) is closed under addition and multiplication by scalars. Since �
is reflexive and transitive, A(�) contains the identity operator I and is closed under
multiplication. It is also easy to show that A(�) is strictly closed. So A(�) is a strictly
closed subalgebra of L(X) that contains I

In the latter parts of this paper we examine properties of the algebra A(�) and
compare these to the properties of CSL (commutative subspace lattice) algebras in a
Hilbert space context. First we establish an important relationship between A(�) and
L(�).

1.3. Reflexivity

For any L ⊆ S(X) and any F ⊆ L(X) we define

AlgL = {T ∈ L(X ) : T (M) ⊆M for all M∈L} , and

LatF = {M∈ S(X ) : T (M) ⊆M for all T ∈ F}.
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That is, AlgL is the set of operators on X that leave each subspace in L invariant, and
LatF is the set of all subspaces of X that are invariant under each operator in F .

We say a subset L of S(X ) is reflexive if L=LatAlgL . Since LatF=LatAlgLatF
for any F ⊆ L(X ) , L is reflexive if and only if L = LatF for some F ⊆L(X ) . Sim-
ilarly, a subset F of L(X ) is reflexive if F = AlgLatF . Since AlgL = AlgLatAlgL
for any L ⊆ S(X ) , F is reflexive if and only if F = AlgL for some L ⊆ S(X ) .

A reflexive family of subspaces of X is necessarily of the form LatF for some
family F of operators on X , and is a subspace lattice, i.e., a complete sublattice of
S(X ) containing the trivial subspaces {0} and X , and a reflexive family of operators
is necessarily of the form AlgL for some family L of subspaces of X , and is a strictly
closed subalgebra of L(X ) containing the identity operator I .

We shall demonstrate the reflexivity of A(�) and L(�), but first we need some
notational preliminaries. Let X′ denote the algebraic dual of X , i.e., the set of all scalar-
valued functions defined on X . For each x ∈ X and each ϕ ∈ X′, let x⊗ϕ denote the
rank one operator on X defined by (x⊗ϕ)(y) = ϕ(y)x for each y∈X . For each f ∈B
let f ′ denote the element of X′ which has the properties

f ′( f ) = 1 and f ′(g) = 0 if g ∈ B\ { f}.

Suppose that e ∈ B and f ∈ B . It is easy to see that supp(e⊗ f ′) = {(e, f}} and
e⊗ f ′ ∈ A(�) if and only if e � f .

THEOREM 1. LatA(�) = L(�) and AlgL(�) = A(�).

Proof. Clearly L(�) ⊆ LatA(�) . Suppose that M∈ LatA(�) . Then M⊆XΦ ,
where Φ =

⋃{suppx : x ∈M}. Since f ⊗ f ′ ∈A(�) for all f ∈B , it follows that f ∈
M for all f ∈ Φ . So M = XΦ . It remains to be shown that Φ ∈ B(�) . So suppose
that e � f and f ∈ Φ . Then f ∈M , and e⊗ f ′ ∈ A(�) , and so e = (e⊗ f ′) f ∈M.
So Φ is an initial segment, and hence M∈ L(�) . So LatA(�) = L(�).

It is also clear that A(�) ⊆ AlgL(�) . Suppose that T ∈ AlgL(�) and that
(e, f ) ∈ suppT . Then PeTPf x �= 0 for some x ∈ X . Now Pf x ∈ X[� f ] ∈ L(�),
and so TPf x ∈ X[� f ] . Since PeTPf x �= 0 it follows that e ∈ [� f ] , i.e., e � f . So
suppT ⊆ G(�) , i.e., T ∈ A(�). So AlgL(�) = A(�). �

The following corollary is a simple consequence of Theorem 1.

COROLLARY 1. A(�) and L(�) are reflexive.

2. The radical

Suppose that Ω is a subset of B with the property that |Ω∩ [≈ e]| = 1 for each
equivalence class [≈ e] . That is, the atoms [≈ e] , e ∈ Ω are all distinct, and

⋃{[≈ e] :
e ∈ Ω} = B} . For each T in L(X) let

δ (T ) = ∑
e∈Ω

P[≈e]TP[≈e] (2.1)
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Note that δ 2 = δ and δ (I) = I , and that the sum in (2.1) converges in the strict topol-
ogy.

LEMMA 2. The map T → δ (T ) is a homomorphism of A(�) into A(�).

Proof. Clearly the map δ is linear. Suppose that T ∈ A(�) . For each e ∈ B ,
P[≈e] ∈ A(�) , and so δ (T ) ∈ A(�) by (2.1).

Suppose also that S ∈ A(�) . It is easy to see that

δ (ST ) = ∑
e∈Ω

P[≈e]STP[≈e] and δ (S)δ (T ) = ∑
e∈Ω

P[≈e]SP[≈e]TP[≈e]

So to show that the map δ is an algebra homomorphism, it suffices to show that
P[≈e]STP[≈e] = P[≈e]SP[≈e]TP[≈e] .

Note that P[�e] = P[≈e] + P[≺e] and that P[≈e]P[≺e] = 0. Since [≺ e] is an initial
segment of Ω, P[≈e]SP[≺e] = P[≈e]P[≺e]SP[≺e] = 0, and so

P[≈e]SP[≈e] = P[≈e]SP[�e]−P[≈e]SP[≺e] = P[≈e]SP[�e]

Furthermore,

P[�e]TP[≈e] = P[�e]TP[�e]P[≈e] = TP[�e]P[≈e] = TP[≈e]

and so
P[≈e]SP[≈e]TP[≈e] = P[≈e]SP[�e]TP[≈e] = P[≈e]STP[≈e]

as required. �

DEFINITION 6. A(≈), the diagonal subalgebra of A(�), is defined by

A(≈) = L(X,G(≈)), where G(≈) = {(e, f ) ∈ B×B : e ≈ f}

and A(≺) , the strictly triangular ideal of A(�) , is defined by

A(≺) = L(X,G(≺)), where G(≺) = {(e, f ) ∈ B×B : e ≺ f}

Note that A(≈) = ranδ and that A(≺) = kerδ , if the domain of δ is restricted to
A(�). Note also since δ is a homomorphism on A(�) , A(≺) is a two-sided ideal in
A(�) .

EXAMPLE 3. If � is an inorder, A(�) = A(≈).

EXAMPLE 4. If B is finite then the diagonal algebra is the set of all ‘block diag-
onal’ matrices. After a suitable ordering of the elements of B , A(�) is a subalgebra of
the set of all ‘block upper triangular’ matrices, and A(≺) consists of all ‘block strictly
upper triangular’ matrices in A(�) . If � is a total order, A(�) is the set of all ‘block
upper triangular’ matrices.
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REMARK 1. As remarked earlier, if � is a total order L(�) is a nest. As in [4]
we can define, for each non-zero x ∈ X ,

M(x) =
⋂
{M : x ∈ M and M ∈ L(�)}

and
M(x)− =

⋃
{M : x /∈ M and M ∈ L(�)}.

Suppose that T ∈L(X). It is easy to check that suppT ⊆G(≺)⇐⇒ TM(x)⊆M(x)−
for all non-zero x∈X . So the definition of the strictly triangular ideal given here agrees
with that given in [4].

LEMMA 3. The diagonal algebra A(≈) is abelian if and only if L(�) is simple.

Proof. Suppose that L(�) is simple, i.e., [≈ e] = {e} for each e∈B . So for each
T ∈ A(�) , there exists a set of scalars {te : e ∈ B} such that δ (T ) = ∑e∈B tePe . It is
easy to check that

δ (S)δ (T ) = ∑
e∈B

setePe = ∑
e∈B

tesePe = δ (T )δ (S)

If L(�) is not simple, dimX[≈e] > 1 for some e ∈ B. Choose x ∈ X[≈e] and
S,T ∈L(X[≈e]) such that STx �= TSx . Let S′ = P[≈e]SP[≈e] and T ′ = P[≈e]TP[≈e] . Then
S′,T ′ ∈ A(≈) and

δ (S′)δ (T ′)x = P[≈e]SP[≈e]TP[≈e]x = STx �= TSx = P[≈e]TP[≈e]SP[≈e]x = δ (T ′)δ (S′)x.

So A(≈) is not abelian. �

DEFINITION 7. The radical RadA(�) of A(�) is defined by:

RadA(�) = {T ∈ A(�) : (I−AT) has an inverse in A(�) for all A ∈ A(�)}
It is easy to check that I +TBA = (I−TA)−1 if B = (I −AT )−1. Similarly, I +

ACT = (I−AT )−1 if C = (I−TA)−1. So (I−AT ) has an inverse in A(�) if and only
if (I−TA) has an inverse in A(�). So

RadA(�) = {T ∈ A(�) : (I−TA) has an inverse in A(�) for all A ∈ A(�)}
The radical is also a two sided ideal in A(�).

LEMMA 4. RadA(�) ⊆ A(≺).

Proof. Suppose that T ∈ A(�) \A(≺) . Then P[≈e]TP[≈e]x �= 0 for some e ∈ B
and some x ∈ X. Choose S ∈ L(X) such that SP[≈ e]TP[≈ e]x = P[e]x , and let A =
P[≈e]SP[≈e] . Then A ∈ A(�) , and

ATP[≈e]x = P[≈e]SP[≈e]TP[≈e]x = P[≈e]x.
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So (I−AT )P[≈e]x = 0. Since P[≈e]x �= 0, it follows that I−AT is not invertible and so
T /∈ RadA(�) . �

We now seek conditions on the quasi-order � which are necessary and sufficient
for the equality of the radical RadA(�) and the ideal A(≺). The notion of local nilpo-
tence will be useful.

DEFINITION 8. We say that T ∈ L(X) is nilpotent at x ∈ X if Tnx = 0 for suffi-
ciently large n . We say that T is locally nilpotent if it is nilpotent at each x ∈ X .

Clearly T is locally nilpotent if and only if Tn → 0 as n→ ∞ in the strict operator
topology.

LEMMA 5. Suppose that T ∈ L(X) , and that T is not nilpotent at x . Then T is
not nilpotent at Tx and T is not nilpotent at e for some e ∈ suppx.

Proof. The first conclusion is obvious. The second follows from the fact that x is
a finite linear combination of basis vectors. �

LEMMA 6. Suppose that T ∈A(�) and is locally nilpotent, then (I−T )−1 exists

and is in A(�) . Furthermore (I−T )−1 is the strict limit of the partial sums of
∞
∑

n=0
Tn.

Proof. Suppose that x∈X . Then TN+1x = 0 for some N ∈N . So the partial sums
of ∑∞

n=0 Tn converge strictly. Furthermore,(
∞

∑
n=0

Tn

)
(I−T )x = (I−T )

∞

∑
n=0

Tnx = (I−T )
N

∑
n=0

Tnx = x−TN+1x = x

i.e., (I−T)−1 =
∞
∑

n=0
Tn . Since A(�) is strictly closed,

∞
∑

n=0
Tn ∈ A(�). �

COROLLARY 2. Suppose that T ∈A(≺) and I−T has no inverse in A(�) . Then
there exists an infinite sequence (e j)∞

j=1 in B such that (e j+1,e j) ∈ suppT for j =
1,2,3, · · · .

Proof. Since I−T ∈A(�) , it follows from Lemma 6 that T is not locally nilpo-
tent. Choose x ∈ X such that T is not nilpotent at x . By Lemma 5 there exist e1

∈ suppx such that T is not nilpotent at e1 . Lemma 5 can also be used for the recur-
sive steps of construction of the sequence (e j)∞

j=1 which has the desired properties:
if T is not nilpotent at e j , then by Lemma 5 T is not nilpotent at e j+1 for some
e j+1 ∈ suppTe j . Clearly (e j+1,e j) ∈ suppT for j = 1,2,3, · · · . �

Note that any sequence (e j)∞
j=1 in B with the property (e j+1,e j) ∈ suppT for

j = 1,2,3, · · · , and some T ∈ A(≺), is necessarily strictly deceasing, i.e., e j+1 ≺ e j

for j = 1,2,3, · · · .
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LEMMA 7. Suppose that T ∈A(≺)\RadA(�). Then there exist infinite sequences
(e j)∞

j=1 and ( f j)∞
j=1 in B which have the following properties:

(e j, f j) ∈ suppT, and f j+1 � e j ≺ f j for j = 1,2,3, · · · . (2.2)

Proof. Since T /∈ RadA(�) , there exists A ∈ A(�) such that I −AT has no in-
verse in A(�) . Now AT ∈ A(≺) , and so by Corollary 2 there exists an infinite se-
quence ( f j)∞

j=1 in B such that ( f j+1, f j) ∈ suppAT for each j ∈ N. Since ( f j+1, f j) ∈
suppAT, , there exists e j ∈B such that (e j, f j)∈ suppT and ( f j+1,e j)∈ suppA . Since
T ∈ A(≺) , e j ≺ f j, and since A ∈ A(�) , f j+1 � e j . The sequences (e j)∞

j=1 and
( f j)∞

j=1 are strictly decreasing because e j+1 ≺ f j+1 � e j ≺ f j for j = 1,2,3, · · · . �

COROLLARY 3. RadA(�) is strictly dense in A(≺).

Proof. Suppose that S ∈ A(≺) and that F is a finite subset of X . We need to
show that there exists T ∈ RadA(�) such that Sx = Tx for all x ∈ F .

Choose a finite subset Φ of B with the properties x = PΦx and Sx = PΦSx for
each x ∈ F . Such a subset Φ exists because F is finite and suppx and suppSx are
finite for all x ∈X . Let T = PΦSPΦ. Then Sx = PΦSx = PΦSPΦx = Tx for each x ∈ F .
Furthermore, T ∈ kerδ ∩A(�), since PΦ ∈ A(�) and S ∈ A(≺) .

Now suppT ⊆ Φ×Φ and is finite. So there are no infinite sequences (e j)∞
j=1 and

( f j)∞
j=1 in B which satisfy (2.2). So T ∈ RadA(�) . �

The following result is a converse of Lemma 7.

LEMMA 8. Suppose that T ∈ A(≺) , and that (e j)
∞
j=1 and ( f j)

∞
j=1 are infinite

sequences in B with properties (2.2). Then T /∈ RadA(�).

Proof. By taking subsequences of (e j)∞
j=1 and ( f j)∞

j=1 if necessary, we construct
a sequence (λ j)∞

j=1 of non-zero scalars and a sequence of operators (Aj)∞
j=1 of opera-

tors in L(X) with the properties

PejT f f = λ je j and Aj = λ−1
j ( f j+1 ⊗ e′j)

for each j = 1,2,3, · · · . To do this we start by noting that since (e1, f1) ∈ suppT ,
Pe1T f1 = λ1e1 where λ1 �= 0. By eliminating finitely many of the pairs (e j, f j) , j >
1, and relabelling if necessary, we may assume that e j /∈ suppT f1 if j > 1. This is
possible since suppT f is finite. Now let A1 = λ−1

1 ( f2 ⊗ e′1). Then A1 ∈ A(�) and
A1T f1 = f2 .

Since (e2, f2) ∈ suppT , Pe2T f2 = λ2e2 where λ2 �= 0. By eliminating finitely
many pairs (e j, f j) , j = 2,3,4, · · · , and relabelling if necessary, we may assume that
e j /∈ suppT f2 if j > 2. Again this is possible since suppT f2 is finite. Now let
A2 = λ−1

2 ( f j ⊗ e′2). Then A2 ∈ A(�) and A2T f2 = f3. By continuing this process
inductively, we obtained sequences (λ j)∞

j=1 and (Aj)∞
j=1 with the desired properties.
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Let A =
∞
∑
j=1

Aj . This sum converges strictly, A ∈ A(�), and AT f j = f j+1 for

j = 1,2,3, · · · . Suppose that S = (I−AT )−1 ∈ A(�) . Then

S(I− (AT )n) f1 = S(I−AT)(I +AT +(AT )2 + · · ·+(AT )n−1) f1
= f1 + f2 + · · ·+ fn

and so S f1 = f1 + f2 + · · ·+ fn +S fn+1.
Now fn+1 ∈ span[� fn+1] , and since S∈A(�) , S fn+1 ∈ [� fn+1] . So { f1, f2, · · · ,

fn} ∩ [� fn+1] = ∅ , it follows that { f1, f2, · · · , fn} ⊆ suppS f1 for each n � 1. But
this is impossible since suppS f1 is finite. So I − AT has no inverse in A(�) , and
T /∈ RadA(�). �

Lemmas 7 and 8 together provide the proof of the following:

THEOREM 2. Suppose that T ∈ A(≺) . Then T �∈ RadA(�) if and only if there
are infinite sequences (e j)∞

j=1 and ( f j)∞
j=1 in B satisfying property (2.2).

DEFINITION 9. We say that an infinite sequence ( f j)∞
j=1 in B(�) is decreasing

if f j+1 � f j for all j ∈ N .

DEFINITION 10. We say that B(�) satisfies the descending chain condition if
every decreasing infinite sequence in B(�) is eventually constant.

LEMMA 9. Suppose that B(�) does not satisfy the descending chain condition.
Then RadA(�) �= A(≺).

Proof. Suppose that B(�) does not satisfy the descending chain condition. Then
there exists a strictly decreasing infinite sequence ( f j)∞

j=1 in B(�) . Let T = ∑∞
j=1( f j+1

⊗ f ′j). This sum converges strictly and so T is well defined. Furthermore

suppT =
∞⋃

j=1

supp( f j+1⊗ f ′j) =
∞⋃

j=1

( f j+1, f j) ⊆ G(�)

and so T ∈ A(≺) . It follows from Lemma 8 (with e j = f j+1 for each j ∈ N), that
T /∈ RadA(�) . �

Lemmas 7 and 9 provide a proof of the following:

THEOREM 3. RadA(�) = A(≺) if and only if B(�) satisfies the descending
chain condition.

EXAMPLE 5. Suppose that X1 and X2 are vector spaces over the same field F ,
and that Lk(�k) is an atomic lattice of subspaces of Xk , for k ∈ {1,2}. The direct sum
L1(�1)⊕L2(�2) is the lattice of subspaces of X = X1⊕X2 defined by

L1(�1)⊕L2(�2) = {N1⊕N2 : Nk ∈ Lk(�k) for k ∈ {1,2}},
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where N1⊕N2 = {x1⊕ x2 : xk ∈ Nk for k ∈ {1,2}}.
Clearly L1(�1)⊕L2(�2) is atomic, with generating basis B given by

B = {e⊕0 : e ∈ B1}∪{0⊕ f : f ∈ B2},

where B1 and B2 are generating bases of L1(�1) and L2(�2) respectively. The
quasi-order � on B is defined by:

e⊕0� e∗ ⊕0 ⇔ e �1 e∗ and 0⊕ f � 0⊕ f ∗ ⇔ f �2 f ∗.

Let A = Alg(L1(�1)⊕L2(�2)) , and let Ak = AlgLk(�k), for k ∈ {1,2}, It is

easy to see that A=A1⊕A2 , i.e., if T =
(

A1 B
C A2

)
∈L(X), then T ∈A if and only if

B =C = 0 and Ak ∈Ak for k ∈ {1,2}. Similarly, A− = (A1)−⊕ (A2)− and RadA =
RadA1⊕RadA2 . So RadA = A− if and only if RadAk = (A−)k for k ∈ {1,2}.

It is also easy to verify that B(�) satisfies the descending chain condition if and
only B1(�1) and B1(�1) both satisfy the descending chain condition.

EXAMPLE 6. Suppose that X1 and X2 are vector spaces over the same field F ,
and that Lk(�k) is an atomic lattice of subspaces of Xk with generating basis Bk,
for k ∈ {1,2} . A Hamel basis for the tensor product vector space X1 ⊗X2 is the set
B1⊗B2 = {e⊗ f : e ∈ B1 and f ∈ B2}. The tensor product L1(�1)⊗L2(�2) is the
atomic subspace lattice of subspaces of X1⊗X2 for which B is a generating basis, and
where the quasi-order on B is the ‘product order’ defined by:

e⊗ f � e∗ ⊗ f ∗ ⇔ e �1 e∗and f �2 f ∗.

The subspaces in L1(�1)⊗L2(�2) correspond to subsets of B1⊗B2 which are initial
segments with respect to the quasi-order � . Let Λ denote a map from B1 into 2B2 ,
the set of all subsets of B2 . and let DΛ = {e⊗ f : e ∈ B1 and f ∈ Λ(e)}. The subset
DΛ ∈ B(�) if and only if the ‘sectional map’ Λ has the properties:

Λ(e) ∈ B2(�2) for each e ∈ B1 and

Λ is decreasing, in the sense that e �1 e∗ ⇒ Λ(e∗) ⊆ Λ(e)

It is also easy to verify that B(�) satisfies the descending chain condition if
and only B1(�1) and B1(�1) both satisfy the descending chain condition. Let A =
Alg(L1(�1)⊗L2(�2)) , and let Ak = AlgLk(�k), for k∈ {1,2}. It follows that RadA
= A− if and only if RadAk = (A)− for k ∈ {1,2}.

3. Finite-rank operators in A(�)

The rank of an operator in L(X) is defined as the dimension of its range. In this
section we examine the properties of operators in A(�) whose ranks are finite. Let R
denote the set of finite-rank operators in L(X) , and let R(�) = R∩A(�) . Various
authors have investigated the properties of R(�) in the Hilbert space context. For



1136 D. HADWIN AND K. J. HARRISON

example, Erdos proved [3] that if L(�) is a nest, i.e., totally ordered, then the strong
closure of R(�) is A(�) .

Operators in A(�) with rank one also have an important role in the Hilbert space
context. Let R1 denote the set of all rank one operators in L(X) , and let R1(�) =
R1∩A(�). Each rank one operator on X has the form x⊗ϕ , where x∈X and ϕ ∈X′ ,
and (y⊗ϕ)(y) = ϕ(y)x for all y ∈ X .

3.1. Reflexivity

There is a rich supply of rank one operators in A(�) . In particular there are
enough to determine L(�) as the invariant subspace lattice of A(�) . The following
propositions are easy adaptations of results obtained by Longstaff [7] that apply in the
Hilbert space context.

PROPOSITION 1. Suppose that x∈X and ϕ ∈X′ . Then x⊗ϕ ∈A(�) if and only
if there exists M ∈ L(�) with the properties: x ∈ M and N ⊆ kerϕ if N ∈ L(�)
and M � N .

Proof. Suppose that x⊗ ϕ ∈ A(�) . Let M =
⋂{N ∈ L(�) : x ∈ N}. Then

x ∈ M . Suppose that N ∈ L(�) and M � N . Then x /∈ N . Since (x⊗ϕ)(N ) ⊆
span{x} ⊆N , it follows that (x⊗ϕ)(N ) = {0} .

Now suppose that x ∈M ∈ L(�) and N ⊆ kerϕ if N ∈ L(�) and M � N .
Suppose that N ∈L(�) . If M⊆N , then (x⊗ϕ)N ⊆ span{x}⊆M⊆N . If M�N
then N ⊆ kerϕ , and so (x⊗ϕ)N = {0} ⊆ N . So x⊗ϕ ∈ AlgL(�) = A(�). �

PROPOSITION 2. L(�) = LatR1(�) .

Proof. Since R1(�) ⊆ A(�) , it is enough to prove that LatR1(�) ⊆ L(�) .
Suppose that M∈ LatR1(�) , and let Φ = suppM =

⋃{suppx : x ∈M} . Then
M⊆ XΦ . We shall show that M = XΦ ∈ L(�) . Since Pe ∈R1(�) for each e ∈ B , it
follows that e ∈M for each e ∈ Φ . So M = XΦ . Suppose that e ∈ Φ and f � e , and
consider the rank one operator R = f ⊗e′ . Since suppR = {( f ,e)} ⊆G(�) , R∈R1(�
). So f = Re∈M . So Φ∈B(�) and M∈L(�). Therefore L(�) = LatR1(�) . �

3.2. Decomposability

Let R∗
1(�) = spanR1(�) , the set of all finite sums of operators in R1(�). Clearly

R∗
1(�)⊆R(�) , but in the Hilbert space context there are examples of subspace lattices

L(�) for which R∗
1(�) �= R(�) . For example, Hopenwasser and Moore [5] showed

that there exists a ‘totally atomic’, commutative subspace lattice L(�) with the prop-
erty that R(�) contains a rank two operator that is not in R∗

1(�) . The Hopenwasser-
Moore example does not have an analogue in the general linear algebra context because
it uses infinite combinations of the basis vectors. The following theorem shows that in
the operator algebra A(�) , as defined in Section 1 of this paper, every finite rank oper-
ator in A(�) is indeed a finite sum of rank one operators in A(�).
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THEOREM 4. R∗
1(�) = R(�).

Proof. Since R∗
1(�) ⊆ R(�) , we need to show that R(�) ⊆ R∗

1(�) . Suppose
that T ∈ R(�) . Since Pe ∈ A(�), PeT ∈ R1(�) or PeT = 0 for each e ∈ B . Let
Φ = supp(ranT ) =

⋃{suppTx : x ∈ X}. Note that Φ is finite since ranT is finite-
dimensional, and suppTx is finite for all x ∈ X . Now T = ∑e∈B PeT , and PeT ∈
R1(�) , and so T ∈R∗

1(�). �

3.3. Density

Laurie and Longstaff [6] showed that a commutative subspace lattice L(�) is
completely distributive if and only if R∗

1(�) is dense in A(�) in any of the following
four topologies: the weak operator topology, the strong operator topology, the ultraweak
operator topology and the ultra strong operator topology. This suggests the following
possibility, namely that in the general linear algebra context as outlined in Section 1,
A(�) is the strict closure of R∗

1(�).

THEOREM 5. The strict closure of R∗
1(�) is A(�) .

Proof. Suppose that F is a finite subset of X and that T ∈ A(�) . Let Φ =⋃{suppx : x ∈ F} , and note that Φ is finite. Note also that Tx = ∑e∈Φ TPex for each
x ∈ F , each Pe has rank one, and Pe ∈ A(�) . Furthermore, Tx = ∑e∈Φ TPex for each
x ∈ F , and so T ∈R∗

1(�) . �
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