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UNITARY, SELF–ADJOINT AND J−SYMMETRIC WEIGHTED

COMPOSITION OPERATORS ON FOCK–SOBOLEV SPACES

REN-YU CHEN, ZI-CONG YANG ∗ AND ZE-HUA ZHOU

(Communicated by E. Fricain)

Abstract. In this paper, we characterize the boundedness and compactness for weighted compo-
sition operators on the Fock-Sobolev space F p,m(Cn) , 0 < p < ∞ . We prove that no nontrivial
unitary or self-adjoint weighted composition operators exist on F 2,m(Cn) when m � 1 . As
an application, we also prove that there exist only trivial J -symmetric weighted composition
operators on F 2,m(Cn) when m � 1 .

1. Introduction

Let Cn be the n -dimensional complex Euclidean space. For any two points
z = (z1, · · · ,zn) and w = (w1, · · · ,wn) in Cn , the inner product of z,w is given by

〈z,w〉 = ∑n
j=1 z jw j . We also write |z| = 〈z,z〉 1

2 . Denote by H(Cn) the space of all
entire functions on Cn . Given a function ψ ∈ H(Cn) and an entire map ϕ : Cn → Cn ,
the weighted composition operator Wψ,ϕ is defined on H(Cn) by Wψ,ϕ f = ψ( f ◦ϕ) .
When the function ψ is identical to 1, Wψ,ϕ reduces to the composition operator Cϕ .

For 0 < p < ∞ , we denote by F p(Cn) the classical Fock space over Cn , which
consists of all functions f ∈ H(Cn) such that

‖ f‖p :=
[( p

2π

)n ∫
Cn

| f (z)|pe− p
2 |z|2dVn(z)

] 1
p

< ∞,

where dVn is the ordinary volume measure on Cn . Then for any non-negative integer
m , the Fock-Sobolev space F p,m(Cn) consists of all functions f ∈ H(Cn) such that
∑|α |�m ‖∂ α f‖p < ∞ , where α = (α1, · · · ,αn) is a multi-index of non-negative integers
and we write |α| = α1 + · · ·+ αn and ∂ α = ∂ α1

1 · · ·∂ αn
n , where ∂k(k = 1,2, . . . ,n) de-

notes partial differentiation with respect to the k -th component. The space F p,m(Cn)
was first studied by Cho and Zhu in [3] and they obtained an equivalent characteri-
zation, which showed that f ∈ F p,m(Cn) if and only if every function zα f (z) with
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|α| = m is in F p(Cn) , here zα = zα1
1 · · · zαn

n . Then the “norm” on F p,m(Cn) can be
defined as follows:

‖ f‖p
p,m := ω(n, p,m)

∫
Cn

| f (z)|p|z|mpe−
p
2 |z|2dVn(z),

where

ω(n, p,m) =
( p

2

)mp
2 +n (n−1)!

πnΓ(mp
2 +n)

is the normalized constant so that the constant function 1 has norm 1 in F p,m(Cn) .
According to [8, Proposition 2.1] or [3, Lemma 3], for any f ∈ F p,m(Cn) and z ∈ Cn ,
we have

| f (z)| � e
|z|2
2

1+ |z|m‖ f‖p,m. (1.1)

Here, for convenience, we write U � V (or equivalently V � U ) for two real valued
non-negative quantities U and V , whenever there is a constant c > 0 independent of
the argument such that U � cV . We write U 	V if both U � V and V � U .

When p = 2, the space F 2,m(Cn) is a Hilbert space with the following inner
product

〈 f ,g〉m =
(n−1)!

πnΓ(m+n)

∫
Cn

f (z)g(z)|z|2me−|z|2dVn(z), f , g ∈ F 2,m(Cn).

(1.1) tells us that the point evaluations are bounded linear functionals on F p,m(Cn) . It
follows the Riesz representation theorem in Hilbert space theory that for each w ∈ Cn ,
there exists a unique function Km,w in F 2,m(Cn) such that

f (w) = 〈 f ,Km,w〉m
for any f ∈ F 2,m(Cn) . By [3, Theorem 12] (see also [8]), we have

Km,w(z) =
(n+m−1)!

(n−1)!

∞

∑
k=0

(n+ k−1)!
(n+m+ k−1)!

〈z,w〉k
k!

, z, w ∈ C
n.

(1.1), along with [8, Proposition 2.2], implies that

‖Km,w‖p,m 	 e
1
2 |w|2

1+ |w|m (1.2)

for any w ∈ Cn .
The reasearch of (weighted) composition operators reflects deep relationship be-

tween operator theory and function theory. Recently, much progress was made in the
study of (weighted) composition operators on the Fock spaces. Le [11] obtained some
characterizations for the boundedness and compactness of Wψ,ϕ on the classical Fock
space F 2(C) . And then, in [15], Tien and Khoi generalized Le’s results to Wψ,ϕ act-
ing between different Fock spaces. Later, following the same route, they extended their
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results to several variables in [17]. In [4], Choe, Izuchi and Koo showed that a linear
sum of two composition operators is bounded (compact, resp.) on F 2(Cn) if and only
if both composition operators in the sum are bounded (compact, resp.). And then, in
[16], Tien and Khoi studied the differences of weighted composition operators between
different Fock spaces. In [1], Cho, Choe and Koo solved the problem raised in [4].
They studied linear combination of composition operators acting on the Fock-Sobolev
space F 2,m(Cn) , and showed that such an operator is bounded only when all the com-
position operators in the combination are bounded individually. Mengetie [13] studied
the weighted composition operators from F p,m(Cn) to F q,m(Cn) via (p,q) Fock-
Carleson measures and obtained some characterizations for the boundedness and com-
pactness of Wψ,ϕ . For more information about Fock space and Fock-Sobolev space,
one can see [2], [8] and [22].

This paper is organized as follows. In section 2, inspired by [17], we investigate the
boundedness and compactness of Wψ,ϕ on F p,m(Cn) by singular value decomposition
of an n× n matrix. In section 3, we study unitary weighted composition operators on
F 2,m(Cn) , and prove that there are only trivial unitary weighted composition operators
on F 2,m(Cn) when m � 1. More precisely, we show that Wψ,ϕ is unitary on F 2,m(Cn)
when m � 1 if and only if ϕ(z) = Az for some unitary n× n matrix A and ψ is a
constant function of unimodule. Self-adjoint and J -symmetric weighted composition
operators on F 2,m(Cn) with m � 1 are described in section 4. We also show that
no nontrivial self-adjoint or J -symmetric weighted composition operators exist on
F 2,m(Cn) when m � 1.

2. Boundedness and compactness

In this section we study the boundedness and compactness for weighted composi-
tion operators on F p,m(Cn) . The idea derives from [17].

Firstly we need the following lemma.

LEMMA 2.1. Suppose m is a non-negative integer, then for any R > 0 , there
exists a constant C =CR > 0 such that

x
1+R

− log(1+Rm)+CR > 0

for all x � 0 . Moreover, lim
R→∞

CR
R = 0 .

Proof. Assume m � 1, without loss of generality. Fix R > 0, consider the function
f (x) = log(1+xm)− x

1+R . Let xR be the maximum point of f . By a simple calculation,
we get xR � m(R+1) . Set CR = f (xR) , then we have

0 � lim
R→∞

CR

R
= lim

R→∞

log(1+ xm
R)− xR

R+1

R

� lim
R→∞

log{1+[m(R+1)]m}
R

+ lim
R→∞

m(R+1)
R(R+1)

= 0.
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The proof is complete. �
We will apply Lemma 2.1 to get the following proposition which is a modification

of [11, Proposition 2.1].

PROPOSITION 2.2. Let ϕ and ψ be entire functions on C with ψ(0) 
= 0 . m is
a non-negative integer. If there is a constant M > 0 such that

|ψ(z)|2 1+ |z|2m

1+ |ϕ(z)|2m e|ϕ(z)|2−|z|2 � M (2.1)

for all z ∈ C . Then ϕ(z) = ϕ(0)+ az for some a ∈ C with |a| � 1 . If |a| = 1 , then

ψ(z) = ψ(0)e−aϕ(0)z .
Furthermore, if

lim
|z|→∞

|ψ(z)|2 1+ |z|2m

1+ |ϕ(z)|2m e|ϕ(z)|2−|z|2 = 0, (2.2)

then ϕ(z) = ϕ(0)+az for some a ∈ C with |a| < 1 .

Proof. Taking logarithms on both sides of (2.1), we obtain

|ϕ(z)|2 −|z|2 +2log |ψ(z)|+ log(1+ |z|2m)− log(1+ |ϕ(z)|2m) � logM

for all z ∈ C . By Lemma 2.1, for any R > 0, there exists a constant CR > 0 with
lim
R→∞

CR
R = 0, such that

R
R+1

|ϕ(z)|2 −|z|2 +2log |ψ(z)|+ log(1+ |z|2m)−CR � logM

for all z ∈ C . Taking z = Reiθ and integrating with respect to θ on [0,2π ] , we obtain

R
R+1

∫ 2π

0
|ϕ(Reiθ )|2 dθ

2π
−R2 +2

∫ 2π

0
log |ψ(Reiθ )|dθ

2π
+ log(1+R2m)−CR � logM.

Jensen’s inequality tells us that∫ 2π

0
log |ψ(Reiθ )|dθ

2π
� log |ψ(0)|.

And we consider the power expansion ϕ(z) = ϕ(0) + az + ∑∞
j=2 a jz j for z ∈ C . It

follows that ∫ 2π

0
|ϕ(Reiθ )|2 dθ

2π
= |ϕ(0)|2 + |a|2R2 +

∞

∑
j=2

|a j|2R2 j.

Therefore, we get the following inequality,

R
R+1

|ϕ(0)|2 +
( R

R+1
|a|2−1

)
R2 +

R
R+1

∞

∑
j=2

|a j|2R2 j

+2log |ψ(0)|+ log(1+R2m)−CR � logM.
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Then we have

limsup
R→∞

( R
R+1

|a|2−1
)
R+

∞

∑
j=2

|a j|2R2 j−1 � 0,

which yields that a j = 0 for j � 2 and |a| � 1. Thus ϕ(z) = ϕ(0)+az with |a| � 1.

If |a|= 1, then we have |ϕ(z)|2−|z|2 = |ϕ(0)|2+2Re(aϕ(0)z) and lim
|z|→∞

1+|z|2m

1+|ϕ(z)|2m

= 1. The inequality (2.1) yields that

|ψ(z)eaϕ(0)z|2 � Me−|ϕ(0)|2

for all z ∈ C , which implies that ψ(z)eaϕ(0)z is a constant function by Liouville’s theo-

rem. Then ψ(z) = ψ(0)e−aϕ(0)z . Moreover, when |a|= 1, the limit in (2.2) as |z| → ∞
is |ψ(0)|2e|ϕ(0)|2 
= 0. This contradiction shows that |a| < 1 if (2.2) holds. The proof
is complete. �

Assume f ∈ H(Cn) , for any ζ ∈ Cn , we denote by fζ (u) = f (uζ ) (u ∈ C) . Then
fζ is called the slice function of f at ζ which is an entire function on C . Given an
n× n matrix A , denote by ‖A‖ the operator norm of A . Now we are going to extend
Proposition 2.2 to several variables as follows.

PROPOSITION 2.3. Let ψ ∈ H(Cn) with ψ(0) 
= 0 and ϕ be an entire map on
Cn . If there exists a constant M > 0 such that

|ψ(z)|2 1+ |z|2m

1+ |ϕ(z)|2m e|ϕ(z)|2−|z|2 � M

for every z ∈ Cn , then ϕ(z) = Az + b for some n× n matrix A with ‖A‖ � 1 and
b∈Cn . And for u∈C , ψζ (u) = ψ(0)e−u〈Aζ ,b〉 whenever |Aζ |= |ζ | for some ζ ∈Cn .

In particular, if A is unitary, then ψ(z) = ψ(0)e−〈z,A∗b〉,z ∈ Cn .

Furthermore, if lim
|z|→∞

|ψ(z)|2 1+|z|2m

1+|ϕ(z)|2m e|ϕ(z)|2−|z|2 = 0 , then ϕ(z)= Az+b for some

matrix A with ‖A‖ < 1 and b ∈ Cn .

Proof. The proof is a modification of [18, Lemma 6], so we omit the details. �
For simplicity, we will use the following notations.

mz(ψ ,ϕ) = |ψ(z)| 1+ |z|m
1+ |ϕ(z)|m e

|ϕ(z)|2−|z|2
2 , z ∈ C

n

and
m(ψ ,ϕ) = sup{mz(ψ ,ϕ) : z ∈ C

n}.
Then we have the following necessary conditions for the boundedness of Wψ,ϕ .

THEOREM 2.4. Let ψ ∈ H(Cn) and ϕ be an entire map on Cn . If Wψ,ϕ is
bounded on F p,m(Cn) , then ψ ∈ F p,m(Cn) and m(ψ ,ϕ) < ∞ . In this case, ϕ(z) =
Az+b for some n×n matrix A with ‖A‖ � 1 and b ∈ C

n .
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Proof. It is clear that ψ(z) =Wψ,ϕ (1)∈ F p,m(Cn) . For any w ∈ Cn , by (1.1), we
have

‖Wψ,ϕKm,w‖p,m � |Wψ,ϕKm,w(z)|1+ |z|m
e

1
2 |z|2

= |ψ(z)||Km,w(ϕ(z))|1+ |z|m
e

1
2 |z|2

.

In particular, with w = ϕ(z) , it follows from (1.2) that m(ψ ,ϕ) � ‖Wψ,ϕ‖ . In this case,
by proposition 2.3, we have ϕ(z) = Az+b with ‖A‖ � 1 and b ∈ Cn . �

REMARK 2.5. If A is a zero matrix, i.e. ϕ(z) ≡ b , then Wψ,ϕ is an operator of
finite rank. In this case, Wψ,ϕ is bounded on F p,m(Cn) if and only if ψ ∈ F p,m(Cn) .

REMARK 2.6. If A is invertible, the condition in Theorem 2.4 is also sufficient.

As in [17], when A is not a zero matrix and not invertible, the method we use
in this case is the so-called singular value decomposition of an n× n matrix (see [10,
Theorem 2.6.3]).

LEMMA 2.7. If A is an n× n matrix of rank r , then A can be written as A =
U1ΛU2 , where U1 and U2 are n× n unitary matrices and Λ = diag{λ1, · · · ,λn} is a
diagonal matrix with λ1 � λ2 � · · · � λr > λr+1 = · · · = λn = 0 . The λi(i = 1, · · · ,n)
are the non-negative square roots of the eigenvalues of AA∗ . Moreover, if we require
that they are listed in decreasing order, then Λ is uniquely determined from A.

We notice that if U is unitary, then the composition operator CU ia an isometry
on the Fock-Sobolev spaces for any 0 < p < ∞ with C−1

U = CU∗ . Let ψ ∈ H(Cn) and
ϕ(z) = Az+b is an entire map of Cn with ‖A‖ � 1. If A = U1ΛU2 is the singular de-
composition of A , then Wψ,ϕ =CU2WΨ,ΦCU1 , where Ψ(z) = ψ(U∗

2 z) and Φ(z) = Λz+
U∗

1 b . Thus, Wψ,ϕ is bounded(compact) if and only if WΨ,Φ is bounded(compact). We
call (Ψ,Φ) is the normalization of (ψ ,ϕ) respect to the decomposition A = U1ΛU2 .

For each z = (z1, · · · ,zn) ∈ Cn and 0 � r � n , as in [17], we denote by z[r] =
(z1, · · · ,zr) if r 
= 0 and otherwise z[r] = /0 , z′[r] = (zr+1, · · · ,zn) if r 
= n and otherwise

z′[r] = /0 . For each n×n matrix A , we denote by A[r] the first r× r sub-matrix of A .

For any ψ ∈ H(Cn−r) and 0 < r � n , let

Fψ,p(z[r]) =
(∫

Cn−r
|ψ(z[r],z

′
[r])|p(1+ |(z[r],z′[r])|mp)e−

p
2 |z′[r]|2dVn−r(z′[r])

) 1
p

.

Then we can characterize the boundedness and compactness for the operator Wψ,ϕ in
terms of the following quantities:

M[z[r] ](ψ ,ϕ) =
Fψ,p(z[r])

1+ |ϕ(z)|m e
|ϕ(z)|2−|z[r]|2

2 , z[r] ∈ C
r

and M(ψ ,ϕ) = sup{Mz[r] (ψ ,ϕ) : z[r] ∈ C
r} .
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LEMMA 2.8. Let 0 < p < ∞ and 0 < r � n, then we have

Ff ,p(z[r]) � e
1
2 |z[r]|2‖ f‖p,m

for all f ∈ H(Cn) and all z[r] ∈ Cr .

Proof. By the proof of [8, Proposition 2.1], we get

| f (z[r],z′[r])|p � e
p
2 |z[r] |2

∫
|w[r]−z[r]|<1

| f (w[r],z
′
[r])|pe−

p
2 |w[r]|2dVr(w[r]).

It follows that

e−
p
2 |z[r]|2F p

f ,p(z[r])

�
∫

Cn−r
(1+ |(z[r],z′[r])|mp)e−

p
2 |z′[r]|2dVn−r(z′[r])

×
∫
|w[r]−z[r]|<1

| f (w[r],z
′
[r])|pe−

p
2 |w[r]|2dVr(w[r])

�
∫

Cn−r
e
− p

2 |z′[r] |2dVn−r(z′[r])∫
|w[r]−z[r]|<1

| f (w[r],z
′
[r])|pe−

p
2 |w[r]|2

(
1+[(1+ |w[r]|)2 + |z′[r]|2]

)mp
2

dVr(w[r])

�
∫

Cn
| f (z)|p(1+ |z|mp)e−

p
2 |z|2dVn(z)

	‖ f‖p
p,m.

The proof is complete. �

THEOREM 2.9. Let 0 < p < ∞ , m is a non-negative integer, ψ ∈ F p,m(Cn) and
ϕ(z) = Az + b is an entire map of Cn , where A is an n× n matrix of rank r with
‖A‖ � 1 and 0 < r � n. (Ψ,Φ) is the normalization of (ψ ,ϕ) with respect to the
singular value decomposition A = U1ΛU2 . Then

(i) Wψ,ϕ is bounded on F p,m(Cn) if and only if M(Ψ,Φ) < ∞ .

(ii) Wψ,ϕ is compact on F p,m(Cn) if and only if lim
|z[r]|→∞

Mz[r] (Ψ,Φ) = 0 .

Proof. If Wψ,ϕ is bounded, then so is WΨ,Φ . By Lemma 2.8, we have

‖WΨ,ΦKm,w‖m
p,m � F p

ΨKm,w◦Φ,p(z[r])e
− p

2 |z[r]|2

for each w ∈ Cn . Since Km,w(Φ(z)) is only dependent on z[r] , we have

FΨKm,w◦Φ,p(z[r]) = |Km,w(Φ(z))|FΨ,p(z[r]).
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In particular, taking w = Φ(z) yields that

FΨ,p(z[r])
1+ |Φ(z)|m e

|Φ(z)|2−|z[r]|2
2 � ‖WΨ,Φ‖ � ‖Wψ,ϕ‖

for all z[r] ∈ Cn .

Conversely, denote by b̂ = U∗
1 b . Then for any f ∈ F p,m(Cn) , we have

‖WΨ,Φ f‖p
p,m

�
∫

Cn
|Ψ(z)|p| f ◦Φ(z)|p|z|mpe−

p
2 |z|2dVn(z)

	
∫

Cr
| f ◦Φ(z)|pF p

Ψ,p(z[r])e
− p

2 |z[r] |2dVr(z[r])

�M(Ψ,Φ)p
∫

Cr
| f ◦Φ(z)|p(1+ |Φ(z)|m)pe−

p
2 |Φ(z)|2dVr(z[r])

	M(Ψ,Φ)p|detΛ−1
[r] |2

×
∫

Cr
| f (w[r], b̂

′
[r])|p(1+ |(w[r], b̂

′
[r])|m)pe

− p
2 (|(w[r]|2+|b̂′[r])|2)dVr(w[r])

Then it follows from Lemma 2.8 that ‖WΨ,Φ f‖p
p,m � M(Ψ,Φ)p|detΛ−1

[r] |2‖ f‖p
p,m , which

implies that WΨ,Φ is bounded, then so is Wψ,ϕ . Furthermore, ‖Wψ,ϕ‖ 	 M(Ψ,Φ) .
Now we assume that Wψ,ϕ is compact, then so is WΨ,Φ . For each w∈Cn , consider

the function km,w(z) = 1+|w|m
e|w|2/2

Km,w(z) , z ∈ Cn . Then ‖km,w‖p,m 	 1 and converges to

zero as |w| → ∞ uniformly on compact subsets of Cn . It follows that km,w converges
to zero weakly in F p,m(Cn) . Thus

lim
|w|→∞

‖WΨ,Φkm,w‖p,m = 0. (2.3)

By the proof of the necessity for the boundedness, we have

Mz[r] (Ψ,Φ) � ‖WΨ,Φkm,w(Φ(z))‖p,m.

This, together with (2.3), implies that lim|z[r]|→∞ Mz[r] (Ψ,Φ) = 0.

Conversely, let { fk} be an arbitrary bounded sequence in F p,m(Cn) , which con-
verges to zero as k → ∞ uniformly on compact subsets of Cn . Then for any R > 0, we
have

‖WΨ,Φ fk‖p
p,m �

∫
Cn

|Ψ(z)|p| fk ◦Φ(z)|p|z|mpe−
p
2 |z|2dVn(z)

�
∫

Cr
| fk ◦Φ(z)|pF p

Ψ,p(z[r])e
− p

2 |z[r] |2dVr(z[r])

�
(∫

|z[r] |�R
+
∫
|z[r] |>R

)
| fk ◦Φ(z)|pF p

Ψ,p(z[r])e
− p

2 |z[r]|2dVr(z[r])

:= I1(R)+ I2(R),
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where

I1(R) =
∫
|z[r] |�R

| fk ◦Φ(z)|pF p
Ψ,p(z[r])e

− p
2 |z[r]|2dVr(z[r])

� ‖Ψ‖p
p,m max

|z[r]|�R
| fk ◦Φ(z)|p.

And by the proof of the sufficiency for the boundedness, we have

I2(R) =
∫
|z[r] |>R

| fk ◦Φ(z)|pF p
Ψ,p(z[r])e

− p
2 |z[r]|2dVr(z[r])

� |detΛ−1
[r] |2‖ fk‖p

p,m

(
sup

|z[r]|>R
Mz[r] (Ψ,Φ)

)p

.

Letting R → ∞ and then k → ∞ yields that limk→∞ ‖WΨ,Φ fk‖ = 0, which shows that
WΨ,Φ is compact by [8, Lemma 3.2], then so is Wψ,ϕ . The proof is complete. �

3. Unitary weighted composition operators

In this section, we investigate unitary weighted composition operators on F 2,m(Cn) .
When m = 0, it was studied by Zhao in [19], which showed that Wψ,ϕ is unitary on
F 2(Cn) if and only if there exist an unitary matrix A , a vector b ∈ Cn and a constant

α with |α| = 1 such that ϕ(z) = Az+b and ψ(z) = αe〈z,A−1b〉− |b|2
2 . However, we will

show that no nontrivial unitary weighted composition operators exist on F 2,m(Cn)
when m � 1, which corresponds with the result on the Dirichlet space over the unit
disk (see [12]).

Firstly, by modifying the proof of [18, Theorem 8], we can characterize the invert-
ible bounded weighted composition operators on F 2,m(Cn) , and we omit the details of
the proof.

PROPOSITION 3.1. Let ψ ∈ H(Cn) and ϕ be an entire map on Cn . Then the
operator Wψ,ϕ is invertible on F 2,m(Cn) if and only if the following two conditions
holds:

(i) ϕ(z) = Az+b, where A is an invertible n×n matrix with ‖A‖= ‖A−1‖= 1 and
b ∈ Cn .

(ii) there exist positive constants M1 and M2 , such that M1 � mz(ψ ,ϕ) � M2 for all
z ∈ C

n .

For any b ∈ Cn , let ϕb(z) = z−b . By Proposition 2.3 and Theorem 2.4, if Wψ,ϕb

is bounded on F 2,m(Cn) , then ψ(z) = ψ(0)e〈z,b〉 . In this case,

W ∗
ψ,ϕb

Km,b(z) = ψ(b)Km,ϕb(b)(z) = ψ(0)e|b|
2

(3.1)

for every z ∈ C
n . We will prove b = 0 if Wψ,ϕb is unitary on F 2,m(Cn) when m � 1.
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LEMMA 3.2. Suppose m is a positive integer, then for any b ∈ Cn ,∫
Cn

|z+b|2me−|z|2dVn(z) �
∫

Cn
|z|2me−|z|2dVn(z).

Equality holds if and only if b = 0 .

Proof. Without loss of generality, by taking a proper unitary transform if neces-
sary, we may assume that b = |b|e1 , where e1 = (1,0, · · · ,0) . Then we have∫

Cn
|z+b|2me−|z|2dVn(z) =

∫
Cn

(|z|2 + |b|2 +2Re|b|z1)me−|z|2dVn(z)

=
∫

Cn
|z|2me−|z|2dVn(z)+ I(b),

where

I(b) = ∑
k1 
=m

k1+k2+k3=m

Ck1,k2,k3

∫
Cn

|z|2k1 |b|2k2(2|b|Rez1)k3e−|z|2dVn(z)

and Ck1,k2,k3 > 0.
We integrate in polar coordinates to get∫

Cn
|z|2k1 |b|2k2(2|b|Rez1)k3e−|z|2dVn(z)

=2k3+1n|b|2k2+k3

∫ ∞

0
r2n+2k1+k3−1e−r2dr

∫
Sn

(Reζ1)k3dσn(ζ ).

Here, Sn = {z ∈ Cn : |z| = 1} and dσn is the normalized area measure on Sn . If n = 1,
then we have ∫

S1

(Reζ )k3dσ1(ζ ) =
1
2π

∫ 2π

0
cosk3θdθ .

It is easy to verify that
∫ 2π
0 cosk3θdθ � 0 when k3 is even and

∫ 2π
0 cosk3θdθ = 0 when

k3 is odd. If n � 2, then by [22, Lemma 1.9], we have∫
Sn

(Reζ1)k3dσ(ζ ) = (n−1)
∫

D

(1−|z|2)n−2(Rez)k3dA(z)

= (n−1)
∫ 2π

0
cosk3θdθ

∫ 1

0
rk3−1(1− r2)n−2dr � 0.

Here, D denotes the unit disk of the complex plane C and dA denotes the normalized
area measure on C . Consequently, we get I(b) � 0 and equality holds if and only if
b = 0. �

PROPOSITION 3.3. Let m be a positive integer and ψ ∈ H(Cn) . Then Wψ,ϕb is
unitary on F 2,m(Cn) if and only if b = 0 and ψ is a constant function of unimodule.
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Proof. The sufficiency is trivial. Now we assume Wψ,ϕb is unitary on Cn , then we
have

Km,w(z) = Wψ,ϕbW
∗
ψ,ϕb

Km,w(z) = ψ(z)ψ(w)Km,ϕb(w)(ϕb(z))

for all z, w ∈ C
n . Taking z = w = 0, we get

|ψ(0)|2‖Km,b‖2
2,m = |ψ(0)|2Km,b(b) = 1. (3.2)

Because every unitary operator is an isometry, we have ‖W ∗
ψ,ϕb

Km,b‖2,m = ‖Km,b‖2,m .

This, together with (3.1) and (3.2), implies that |ψ(0)|2e|b|2 = 1. Notice that ψ(z) =
ψ(0)e〈z,b〉 , then by a change of variables, we obtain

‖Wψ,ϕb f‖2
2,m = ω(n,2,m)

∫
Cn

| f (z)|2|z+b|2me−|z|2dVn(z)

for every f ∈ F 2,m(Cn) . In particular, taking f = 1, then Lemma 3.2 tells us that
b = 0. And then ψ is a constant function of unimodule. �

THEOREM 3.4. Let m be a positive integer, ψ ∈ H(Cn) and ϕ be an entire map
on Cn . Then Wψ,ϕ is unitary on F 2,m(Cn) if and only if ϕ(z) = Az for some unitary
n×n matrix A and ψ is a constant function of unimodule.

Proof. If Wψ,ϕ is unitary, then by Proposition 3.1, we have ϕ(z) = Az + b for
some invertible n×n matrix with ‖A‖ = ‖A−1‖ = 1 and b ∈ Cn . Assume A =U1ΛU2

is the singular value decomposition of A , then Λ is invertible and ‖Λ‖ = ‖Λ−1‖ = 1,
which shows that Λ must be an identity matrix. Denote by (Ψ,Φ) the normalization
of (ψ ,ϕ) , where Ψ(z) = ψ(U∗

2 z) and Φ(z) = z+U∗
1 b . It follows from Proposition 3.3

that U∗
1 b = 0 and Ψ is a constant function of unimodule. Therefore, b = 0 and ψ is

a constant function of unimodule. Furthermore, we have Wψ,ϕW ∗
ψ,ϕKm,w(z) = Km,w(z)

for all z, w ∈ Cn . By taking w = z , we obtain |ϕ(z)| = |z| for every z ∈ Cn , which
implies that A is a unitary matrix.

The sufficiency is trivial. We complete the proof. �

4. Self-adjoint and J -symmetry

A bounded operator T on a separate complex Hilbert space H is called complex
symmetric if there exists a conjugation C , such that T = C T ∗C . In this case, T is also
called C -symmetric. Here, a conjugation is a conjugate linear, isometric involution on
H . Precisely, C is called a conjugation on H if it satisfies the following conditions:

(i) C (λ f + μg) = λC f + μC g for all f , g ∈ H and λ , μ ∈ C ;

(ii) 〈C f ,C g〉 = 〈g, f 〉 for all f , g ∈ H ;

(iii) C 2 = I is the identity map on H .
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For example, for any f ∈H(Cn) and z ∈ Cn , let (J f )(z) = f (z) , then J is a conju-
gation on F 2,m(Cn) . In [6] and [7], Hai and Khoi studied complex symmetric weighted
composition operators on the classical Fock space. In [9], Hu, Yang and Zhou proved
that Wψ,ϕ is J -symmetric on the Dirichlet space in the unit ball if and only if Wψ,ϕ
is normal. In this section, we firstly characterize self-adjoint weighted composition op-
erators on F 2,m(Cn) with m � 1 and as an application, we show that there exist no
nontrivial J -symmetric weighted composition operators on F 2,m(Cn) with m � 1,
which corresponds with the result on the Dirichlet space in the unit ball.

For each w ∈ C
n and each multi-index α = (α1, · · · ,αn) , we denote by K[α ]

m,w the
reproducing kernel for the partial derivative of mixed order α at w , that is

(∂ α f )(w) = 〈 f ,K[α ]
m,w〉m, f ∈ F 2,m(Cn).

It can be shown that K[α ]
m,w(z) = ∂ |α|Km,w(z)

∂w1
α1 ···∂wn

αn .

LEMMA 4.1. Let m be a nonnegative integer, ψ ∈ H(Cn) and ϕ(z) = Az for
some n× n matrix with ‖A‖ � 1 . If Wψ,ϕ is self-adjoint on F 2,m(Cn) , then A is
self-adjoint and ψ ≡ c for some c ∈ R .

Proof. If Wψ,ϕ is self-adjoint on F 2,m(Cn) , then we have

ψ(w)Km,Aw(z) = (W ∗
ψ,ϕKm,w)(z) = (Wψ,ϕKm,w)(z) = ψ(z)Km,w(Az) (4.1)

for any z,w∈ Cn . In particular, with w = 0, we have ψ(z)≡ ψ(0) . And then by taking
z = 0, we get ψ(z) ≡ ψ(0) ∈ R . Therefore, according to (4.1), we have

Km,Aw(z) = Km,w(Az)

for any z,w ∈ C . It follows that 〈z,Aw〉 = 〈Az,w〉 for any z,w ∈ Cn . Thus A is self-
adjoint. The proof is complete. �

LEMMA 4.2. Let m be a nonnegative integer, ψ ∈ H(Cn) , ϕ(z) = Az + b for
some nonzero matrix A with ‖A‖ � 1 and b ∈ Cn . Suppose A j = 0 for some j ∈
{1,2, . . . ,n} , here A j denotes the j-th column of A. If Wψ,ϕ is self-adjoint on F 2,m(Cn) ,
then b = 0 and A is self-adjoint.

Proof. Suppose Wψ,ϕ is self-adjoint on F 2,m(Cn) , then for any z,w ∈ Cn , we
have

ψ(z)Km,w(ϕ(z)) = (Wψ,ϕKm,w)(z) = (W ∗
ψ,ϕKm,w)(z) = ψ(w)Km,ϕ(w)(z). (4.2)

In particular, with w = 0, we get

ψ(z) = ψ(0)Km,ϕ(0)(z). (4.3)
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And the by taking z = 0, we get ψ(0) ∈ R . Therefore, according to (4.2) and (4.3), we
obtain

Km,ϕ(0)(z)Km,w(ϕ(z)) = Km,w(ϕ(0))Km,ϕ(w)(z).

Let w = w( j) = (0, . . . ,wj, . . . ,0) , wj 
= 0, then ϕ(w( j)) = ϕ(0) = b . If b 
= 0, then

Km,w( j) (ϕ(0)) = Km,w( j) (ϕ(z))

for all z ∈ Cn , which is impossible since A 
= 0. This contradiction shows that b = 0.
Then A is self-adjoint by Lemma 4.1. �

We note that under the condition of Lemma 4.2, we have b = 0 whenever A is not
invertible.

THEOREM 4.3. Let m be a positive integer, ψ ∈ H(Cn) and ϕ be an entire map
on Cn . Then Wψ,ϕ is self-adjoint on F 2,m(Cn) if and only if there exist a self-adjoint
matrix A with ‖A‖ � 1 and a constant c ∈ R such that ϕ(z) = Az and ψ ≡ c.

Proof. We begin to prove the sufficiency. If ϕ(z) = Az and ψ ≡ c , where A is
self-adjoint and c ∈ R . Then we have

W ∗
ψ,ϕKm,w(w) = ψ(w)Km,Aw(z) = cKm,w(Az) = Wψ,ϕKm,w(z)

for any z,w∈C
n . Since the space spanned by the reproducing kernel functions is dense

in F 2,m(Cn) , thus W ∗
ψ,ϕ f = Wψ,ϕ f for any f ∈ F 2,m(Cn) , which shows that Wψ,ϕ is

self-adjoint.
Now we prove the necessity. By Theorem 2.4, we know that ϕ(z) = Az + b for

some matrix A with ‖A‖ � 1 and b ∈ Cn . Then by Lemma 4.1, it is enough to prove
b = 0. Through a simple calculation, we have

W ∗
ψ,ϕK

[e j ]
m,w(z) = (∂ jψ)(w)Km,ϕ(w)(z)+ ψ(w)

n

∑
k=1

(∂ jϕk)(w)K[ek ]
m,ϕ(w)(z)

for all z, w ∈ Cn and j = 1,2, . . . ,n . Here e j is the multi-index that has 1 in the j th
spot and 0 everywhere else and ϕk is the k th coordinate function of ϕ . If Wψ,ϕ is
self-adjoint, then

ψ(z)K
[e j ]
m,w(ϕ(z)) = (∂ jψ)(w)Km,ϕ(w)(z)+ ψ(w)

n

∑
k=1

(∂ jϕk)(w)K[ek ]
m,ϕ(w)(z)

for all z, w ∈ Cn and j = 1,2, . . . ,n .
In particular, by taking w = 0, we get

n
n+m

ψ(z)ϕ j(z) = (∂ jψ)(0)Km,ϕ(0)(z)+ ψ(0)
n

∑
k=1

(∂ jϕk)(0)K[ek]
m,ϕ(0)(z). (4.4)
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Then according to (4.3) and (4.4), we have

n
n+m

ϕ j(z) =
(∂ jψ)(0)

ψ(0)
+

n

∑
k=1

(∂ jϕk)(0)K[ek ]
m,ϕ(0)(z)

Km,ϕ(0)(z)
, j = 1,2, . . . ,n. (4.5)

If there is some j ∈ {1,2, . . . ,n} , such that
(
∂ jϕk( j)

)
(0) = 0 for all k = 1,2, . . . ,n , then

b = 0 by Lemma 4.2. So we assume that for any j ∈ {1,2, . . . ,n} , there is some k( j) ,
such that (∂ jϕk( j))(0) 
= 0, and k( j) runs over 1,2, . . . ,n when j runs over 1,2, . . . ,n .
Otherwise some row of A must be 0, which then implies b = 0 by Lemma 4.2. Taking
z = z(k( j)) = (0, . . . ,zk( j), . . . ,0) in (4.5), we obtain

n
n+m

ϕ j(z(k( j))) =
(∂ jψ)(0)

ψ(0)
+ (∂ jϕk( j))(0)

K
[ek( j)]
m,ϕ(0)(z

k( j))

Km,ϕ(0)(zk( j))
.

Since ϕ j is linear with respect to zk( j) and m � 1, we must have ϕk( j)(0) = 0. There-
fore, b = 0. The proof is complete. �

THEOREM 4.4. Let m be a positive integer, ψ ∈ H(Cn) and ϕ be an entire map
on Cn . Then Wψ,ϕ is J -symmetric on F 2,m(Cn) if and only if there exist a symmetric
matrix A with ‖A‖ � 1 and a constant c ∈ C such that ϕ(z) = Az and ψ ≡ c.

Proof. The proof for the sufficiency is similar to Theorem 4.3. So we only need
to prove the necessity. If Wψ,ϕ is J -symmetric, then

Wψ,ϕJ Km,w(z) = JW ∗
ψ,ϕKm,w(z)

and
Wψ,ϕJ K

[e j ]
m,w(z) = JW ∗

ψ,ϕK
[e j ]
m,w(z)

for all z, w ∈ C
n and j = 1, · · · ,n . It follows that

ψ(z)Km,w(ϕ(z)) = ψ(w)Km,ϕ(w)(z) (4.6)

and

ψ(z)K[e j ]
m (ϕ(z),w) = (∂ jψ)(w)Km,ϕ(w)(z)+ ψ(w)

n

∑
k=1

(∂ jϕk)(w)K[ek ]
m,ϕ(w)

(z)

for all z, w ∈ Cn and j = 1, · · · ,n . According to the argument of Theorem 4.3, we get
ϕ(z) = Az for some matrix A with ‖A‖ � 1 and ψ ≡ c for some c ∈ C . Take these
into (4.6), we have 〈Az,w〉 = 〈z,Aw〉 for all z, w ∈ Cn , which implies A is symmetric.
The proof is complete. �

LEMMA 4.5. If U is a unitary symmetric matrix, then JCUz if a conjugation on
F 2,m(Cn) .
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Proof. If U is a symmetric unitary matrix, then by Theorem 3.4 and Theorem 4.4,
we have CUz if unitary and J -symmetric on F 2,m(Cn) . And the result follows from
a direct calculation. �

THEOREM 4.6. Let m be a positive integer, ψ ∈ H(Cn) and ϕ be an entire map
on Cn . Suppose U is a symmetric unitary matrix. Then Wψ,ϕ is complex symmetric
with respect to the conjugation JCUz if and only if there exists a symmetric matrix
A with ‖A‖ � 1 , which commutes with U such that ϕ(z) = AUz and ψ ≡ c for some
c ∈ C .

Proof. The sufficiency follows from a simple calculation. Now we assume Wψ,ϕ
is JCUz -symmetric, then we have

JCUzWψ,ϕ = W ∗
ψ,ϕJCUz = (CuzWψ,ϕ)∗J .

By Theorem 4.4, we get ϕ ◦U(z) = Az for some symmetric matrix A with ‖A‖ � 1
and ψ ◦U ≡ c for some c ∈ C . It follows that ϕ(z) = AUz and ψ ≡ c . Let ϕ̃ = ϕ ◦U ,
then Cϕ̃ is J -symmetric, which implies AU is symmetric and then AU = UA . �

5. Further remarks

In [11], Le characterized normal weighted composition operators on the classical
Fock space F 2(C) . Then Zhao, in [20], extends Le’s results to several variables. In
[12], the authors proved no nontrivial normal weighted composition operators exist on
the Dirichlet space on the unit disc. Therefore, we have the following conjecture:

Wψ,ϕ is normal on F 2,m(Cn) with m � 1 if and only if ϕ(z) = Az for some
normal matrix A with ‖A‖ � 1 and ψ ≡ c for some c ∈ C .
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