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EXPLICIT SOLUTIONS OF MATRIX AND DYNAMICAL SCHRÖDINGER

EQUATIONS AND OF KDV EQUATION IN TERMS OF SQUARE

ROOTS OF THE GENERALISED MATRIX EIGENVALUES

ALEXANDER SAKHNOVICH

(Communicated by F. Gesztesy)

Abstract. In this paper, we consider matrix Schrödinger equation, dynamical Schrödinger equa-
tion and matrix KdV. We construct their explicit solutions using our GBDT version of Bäcklund–
Darboux transformation and square roots of the generalised matrix eigenvalues. A separate sec-
tion is dedicated to several examples including the case of strongly singular potentials.

1. Introduction

Schrödinger and KdV equations belong to the group of the most well-known and
actively studied equations and their explicit solutions are of great interest. In particular,
Bäcklund–Darboux transformations and related dressing procedures and commutation
methods are fruitful approaches to the construction of explicit solutions of linear and
integrable nonlinear equations (see, e.g., [2,3,7,8,12,15,16,17,18,20,21,23,24,25,27]
and references therein). GBDT (generalized Bäcklund-Darboux transformation), which
we use here, was first introduced in our paper [18], and a more general version of
GBDT for first order systems rationally depending on the spectral parameter was treated
in [19, 23] (see also some references therein).

We construct GBDT and explicit solutions for the matrix Schrödinger equation

−y′′(x,λ )+u(x)y(x,λ ) = λy(x,λ ) (u = u∗), y′ :=
d
dx

y, (1.1)

for the dynamical Schrödinger equation

i
∂ψ
∂ t

(x,t) = −∂ 2ψ
∂x2 (x,t)+u(x)ψ(x,t), (1.2)

and for the matrix KdV equation

∂u
∂ t

−3u
∂u
∂x

−3
∂u
∂x

u+
∂ 3u
∂x3 = 0. (1.3)

Here, i is the imaginary unit ( i2 = −1), λ is the so called spectral parameter (λ ∈ C ,
C stands for the complex plane), and u(x) and u(x,t) are h×h matrix functions.
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REMARK 1.1. In (1.1) and (1.2), we assume that x belongs to some finite or infi-
nite interval I (x ∈I ) , whereas t in (1.2) belongs to the real axis R . Without loss of
generality, we assume also that 0 ∈ I and speak later about parameter matrices S(0)
and Π(0) .

The main step in the construction of the explicit solutions of (1.1)–(1.3) via GBDT
is the construction of the generalised eigenfunctions Π(x) (or Π(x,t)). We consecu-
tively construct Π for our three systems using square roots of the generalised matrix
eigenvalues. In this way, the results of the papers [5, 9, 14] are further developed and
wider classes of Π and solutions of (1.1)–(1.3) are obtained.

The next section is dedicated to the general construction of the solutions of (1.1)–
(1.3). Interesting examples, including the case of strongly singular potentials, are
treated in Section 3.

As usual, N is the set of positive integer numbers and Ih is the h× h identity
matrix.

2. Matrix Schrödinger and KdV equations

1. GBDT for Schrödinger equation (1.1) is determined by 3 parameter matrices.
More precisely, we choose some initial system (1.1) (or, equivalently, the initial poten-
tial u = u∗ of Schrödinger equation (1.1)) and fix n∈N . Then, we fix n×n matrices A
and S(0) , and an n×m (m = 2h) matrix Π(0) such that the following relations hold:

AS(0)−S(0)A∗ = Π(0) jΠ(0)∗, S(0) = S(0)∗, j :=
[

0 Ih
−Ih 0

]
. (2.1)

Here, j∗ = j−1 = − j . GBDT for Schrödinger equation is summed up, for instance,
in [5, Sections 2,3]. In order to construct the potentials and solutions explicitly, we set
here (similar to [9]) u(x) ≡ 0. That is, our initial system is trivial.

The matrix functions Π(x) and S(x) with fixed values Π(0) and S(0) are deter-
mined by the relations (see [5, (3.7)]):

Π′(x) = AΠ(x)
[

0 0
Ih 0

]
−Π(x)

[
0 Ih
u(x) 0

]
, (2.2)

S′(x) = Π(x)
[

0 0
0 Ih

]
Π(x)∗. (2.3)

Setting u(x) ≡ 0 and partitioning Π into two n×h blocks

Π(x) =
[
Λ1(x) Λ2(x)

]
, Π(0) =

[
ϑ1 ϑ2

]
, (2.4)

we rewrite the relations (2.2) and (2.3) as

Λ′
1(x) = AΛ2(x), Λ′

2(x) = −Λ1(x); (2.5)

S(x) = S(0)+
∫ x

0
Λ2(ξ )Λ2(ξ )∗dξ . (2.6)
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The potential and solution of the GBDT-transformed Schrödinger equation are ex-
pressed in terms of Π(x) and S(x) [5,9], and it remains to calculate the matrix functions
Π(x) and S(x) determined by (2.5), (2.6) and the given triple {A,S(0),Π(0)} .

LEMMA 2.1. Let an n× n matrix Q be a square root of A: Q2 = A. Then, the
matrix functions

Λ1(x) := −iQ
(
eixQ f1 − e−ixQ f2

)
, Λ2(x) := eixQ f1 + e−ixQ f2, (2.7)

where f1 and f2 are n×h matrices, satisfy (2.5). Correspondingly, the matrix function
Π(x) :=

[
Λ1(x) Λ2(x)

]
satisfies (2.2) (where u ≡ 0) . In the case

− iQ( f1− f2) = ϑ1, f1 + f2 = ϑ2, (2.8)

the matrix
[
Λ1(x) Λ2(x)

]
takes the required value

[
ϑ1 ϑ2

]
(determined by the triple

{A,S(0),Π(0) =
[
ϑ1 ϑ2

]}) at x = 0 . Moreover, the integral part in (2.6) may ( for
each Q and Π(0)) be explicitly calculated.

Proof. Simple direct calculations show that Λ1 and Λ2 given by (2.7) satisfy (2.5)
or, equivalently, that

Π(x) :=
[
Λ1(x) Λ2(x)

]
(2.9)

satisfies (2.2). Clearly, Π(x) given by (2.7)–(2.9) takes the required value at x = 0.
Finally, we note that the entries of Λ2(x) are sums of the terms of the form pk(x)eixck ,
where ck ∈ C and pk(x) are polynomials. Hence, the last statement in the lemma is
valid. �

REMARK 2.2. If detA �= 0 square roots Q of A always exist (see, e.g., [6, Chap-
ter VIII, §6] with further details and references in [22, Section 2]) . Clearly, Q is
invertible in this case. Therefore, the matrices

f1 :=
(
ϑ2 + iQ−1ϑ1

)/
2, f2 :=

(
ϑ2− iQ−1ϑ1

)/
2 (2.10)

are well-defined. It is immediate that f1 and f2 given by (2.10) satisfy (2.8).

If the solutions Zk of the matrix equations

i(QZ1−Z1Q
∗) = f1 f ∗1 , i(QZ2 +Z2Q

∗) = f1 f ∗2 , −i(QZ3−Z3Q
∗) = f2 f ∗2 (2.11)

exist, formula (2.6) and the second equality in (2.7) yield the following representation
of S(x) :

S(x) = eixQZ1e
−ixQ∗

+ eixQZ2e
ixQ∗

+ e−ixQZ∗
2e−ixQ∗

+ e−ixQZ3e
ixQ∗

. (2.12)

In view of (2.5), the matrix functions Λk(x) also admit an essentially less conve-
nient than (2.7) representation[

Λ1(x)
Λ2(x)

]
= exA [ϑ1 ϑ2

]
, A =

[
0 A

−In 0

]
(2.13)
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(see [5, (3.21)]). In the case S(0) = In , explicit (although somewhat inconvenient)
expressions for S(x) are presented in [9] in terms of the matrix exponent eixAγ , where
Aγ is a 4n×4n matrix.

Assume that y(x,λ ) satisfies the trivial Schrödinger equation (1.1) (with u ≡ 0)

and put Y0(x,λ ) :=
[
y(x,λ )
y′(x,λ )

]
∈ Cm (m = 2h) . Using [5, Proposition 3.5] (for the case

u ≡ 0) and Lemma 2.1 above, we obtain the next theorem.

THEOREM 2.3. Let a triple {A,S(0),Π(0)} satisfy (2.1) and assume that Q2 = A.
Let the matrix functions Π(x) =

[
Λ1(x) Λ2(x)

]
and S(x) be explicitly defined by for-

mulas (2.6) and (2.7)–(2.9). Define ( in the points of invertibility of S(x)) the GBDT-
transformed h×h potential ũ(x) by the relations

ũ(x) = 2
(
X12(x)+X21(x)+X22(x)2), Xik(x) := Λi(x)∗S(x)−1Λk(x). (2.14)

Then, the function

ỹ(x,λ ) = [Ih 0]wA(x,λ )Y0(x,λ ), (2.15)

wA(x,λ ) := Im− jΠ(x)∗S(x)−1(A−λ In)−1Π(x). (2.16)

satisfies the transformed matrix Schrödinger equation

− ỹ ′′(x,λ )+ ũ(x)ỹ(x,λ ) = λ ỹ(x,λ ). (2.17)

REMARK 2.4. It is easy to see that the vector functions Y0 have the form

Y0(x,λ ) = W0(x,λ ) f0, W0(x,λ ) :=

[
eix

√
λ Ih e−ix

√
λ Ih

i
√

λ eix
√

λ Ih −i
√

λ e−ix
√

λ Ih

]
, (2.18)

where f0 ∈ Cm are arbitrary constant vectors.
It is also immediate from (2.14) that ũ = ũ∗ .

2. The same Π(x) and S(x) provide explicit solutions of the dynamical Schrödinger
systems

i
∂
∂ t

ψ̃(x,t) =
(
H̃ψ̃
)
(x,t), H̃ := − ∂ 2

∂x2 + ũ(x). (2.19)

Using again Lemma 2.1, we reformulate [5, Theorem 3.1] (for the case u ≡ 0).

THEOREM 2.5. Let a triple {A,S(0),Π(0)} satisfy (2.1) and assume that Q2 = A.
Let the matrix functions Π(x) =

[
Λ1(x) Λ2(x)

]
and S(x) be explicitly defined by for-

mulas (2.6) and (2.7)–(2.9). Define ( in the points of invertibility of S(x)) the GBDT-
transformed h×h potential ũ(x) by the relations (2.14).

Then, in the points of invertibility of S(x) , the m×n matrix function

ψ̃(x,t) =
[
0 Ih

]
Π(x)∗S(x)−1e−itA (2.20)

satisfies the transformed dynamical Schrödinger system (2.19).
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3. In order to construct explicit solutions of the matrix KdV

∂ ũ
∂ t

−3ũ
∂ ũ
∂x

−3
∂ ũ
∂x

ũ+
∂ 3ũ
∂x3 = 0, (2.21)

we add the variable t in our matrix functions and consider

Π(x, t) =
[
Λ1(x,t) Λ2(x,t)

]
and S(x,t) (x ∈ I1, t ∈ I2),

where I1 and I2 are intervals containing 0. Instead of the matrix identity (2.1), we
require

AS(0,0)−S(0,0)A∗ = Π(0,0) jΠ(0,0)∗
(
S(0,0) = S(0,0)∗

)
. (2.22)

We partition Π into the n×h blocks

Π(x,t) =
[
Λ1(x,t) Λ2(x,t)

]
, Π(0,0) =

[
ϑ1 ϑ2

]
. (2.23)

Equations (2.5) take the form

∂
∂x

Λ1(x,t) = AΛ2(x,t),
∂
∂x

Λ2(x, t) = −Λ1(x,t), (2.24)

and another pair of PDEs is added (see [9, p. 372]):

∂
∂ t

Λ1(x,t) = 4A2Λ2(x,t),
∂
∂ t

Λ2(x,t) = −4AΛ1(x,t). (2.25)

Finally, S(x, t) is determined by the relations (see [9, (5.6) and (5.9)]):

∂
∂x

S = Λ2Λ∗
2,

∂S
∂ t

= 4(AΛ2Λ∗
2 + Λ2Λ∗

2A
∗ + Λ1Λ∗

1). (2.26)

Similar to Lemma 2.1, we derive the following lemma.

LEMMA 2.6. Let an n× n matrix Q be a square root of A: Q2 = A. Then, the
matrix functions

Λ1(x,t) := −iQ
(
ei(xQ+4tQ3) f1 − e−i(xQ+4tQ3) f2

)
, (2.27)

Λ2(x,t) := ei(xQ+4tQ3) f1 + e−i(xQ+4tQ3) f2, (2.28)

where f1 and f2 are n×h matrices, satisfy (2.24) and (2.25). If (2.8) holds, we have[
Λ1(0,0) Λ2(0,0)

]
= Π(0,0) . Moreover, S(x,t) may be explicitly calculated ( for

each Q and Π(0,0)) using (2.26).

REMARK 2.7. If detA �= 0, the square root Q always exists and the matrices
f1, f2 satisfying (2.8) are given by (2.10) (similar to the case of Remark 2.2) .
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Equalities (2.24) and the first equality in (2.26) yield

∂
∂x

(AS−SA∗) =
∂
∂x

(Λ1Λ∗
2 −Λ2Λ∗

1). (2.29)

Equalities (2.25) and the second equality in (2.26) yield

∂
∂ t

(AS−SA∗) = 4
(
A2Λ2Λ∗

2 −Λ2Λ∗
2(A

∗)2 +AΛ1Λ∗
1 −Λ1Λ∗

1A
∗),

∂
∂ t

(Λ1Λ∗
2 −Λ2Λ∗

1) = 4
(
A2Λ2Λ∗

2−Λ2Λ∗
2(A

∗)2 +AΛ1Λ∗
1−Λ1Λ∗

1A
∗),

that is,

∂
∂ t

(AS−SA∗) =
∂
∂ t

(Λ1Λ∗
2−Λ2Λ∗

1). (2.30)

From (2.22), (2.29) and (2.30) we derive

AS(x,t)−S(x,t)A∗ = Π(x,t) jΠ(x,t)∗. (2.31)

According to the proof of [9, Theorem 0.5], relations (2.24)–(2.26) and (2.31) imply
that the matrix function

ũ(x,t) = 2
(
X12(x,t)+X21(x,t)+X22(x,t)2), (2.32)

where
Xik(x,t) := Λi(x,t)∗S(x,t)−1Λk(x, t), (2.33)

satisfies KdV (2.21). Using also Lemma 2.6, we obtain the following theorem.

THEOREM 2.8. Let a triple {A,S(0,0),Π(0,0)} satisfy (2.22) and assume that
Q2 = A. Let the matrix functions Λ1(x,t) , Λ2(x,t) and S(x, t) be explicitly defined by
formulas (2.26)–(2.28) and (2.8). Define ( in the points of invertibility of S(x,t)) the
GBDT-transformed h× h potential ũ(x,t) by the relations (2.32) and (2.33). Then, ũ
satisfies KdV equation (2.21).

3. Examples

Let us consider several useful examples of the potentials ũ of Schrödinger equa-
tions (2.17) and (2.19) generated (via relations (2.6), (2.7) and (2.14)) by some special
triples {A,S(0),Π(0) =

[
ϑ1 ϑ2

]} satisfying (2.1). The corresponding explicit solu-
tions ỹ and ψ̃ follow (in terms of Λ1(x) , Λ2(x) and S(x)) from Theorems 2.3 and 2.5,
respectively.

REMARK 3.1. Rational potentials (rational extensions) are of interest in applica-
tions (see, e.g., [10,11] and references therein) . If Q (or, equivalently, A) is nilpotent,
it follows from (2.6), (2.7) and (2.14) that the entries of the potential ũ(x) are rational
functions.
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The simplest example is the case A = 0.

EXAMPLE 3.2. [9, p. 371]. Assume that A = Q = 0 and ϑ1 = 0. Then, (2.1)
holds for any S(0) = S(0)∗ and any ϑ2 . The equalities (2.8) are valid in the case
f1 + f2 = ϑ2 . Thus, by virtue of (2.6), (2.7) and (2.14) we have

Λ1(x) = 0, Λ2(x) = ϑ2, S(x) = S(0)+ xϑ2ϑ ∗
2 ,

ũ(x) = 2
(
ϑ ∗

2

(
S(0)+ xϑ2ϑ ∗

2

)−1ϑ2
)2

(3.1)

REMARK 3.3. The expression (3.1) for ũ may be simplified (especially for the
scalar case h = 1) in an easy way, see (3.5) below.

Indeed, assume that S(0) is invertible and rewrite (3.1) as

ũ(x) = 2
(
ϑ ∗

2

(
In + xθϑ ∗

2

)−1θ
)2

, θ := S(0)−1ϑ2. (3.2)

Then, using geometric progressions, we rewrite the resolvent
(
In + xθϑ ∗

2

)−1
in the

form

(
In + xθϑ ∗

2

)−1 = In− xθ

(
∞

∑
k=1

(−xϑ ∗
2 θ )k−1

)
ϑ ∗

2

= In− xθ (Ih + xϑ ∗
2 θ )−1ϑ ∗

2 . (3.3)

The equality (3.3) holds for small x and so (in view of the analyticity) for all points of
invertibility. Taking into account (3.3), we obtain

ϑ ∗
2

(
In + xθϑ ∗

2

)−1θ = ϑ ∗
2 θ +(Ih + xϑ ∗

2 θ )−1ϑ ∗
2 θ − (Ih + xϑ ∗

2 θ )(Ih + xϑ ∗
2 θ )−1ϑ ∗

2 θ

= (Ih + xϑ ∗
2 θ )−1ϑ ∗

2 θ . (3.4)

Relations (3.2) and (3.4) yield

ũ(x) = 2
(
(Ih + xϑ ∗

2 θ )−1ϑ ∗
2 θ
)2

. (3.5)

Our next example deals with a slightly more complicated subcase of the case
A = 0.

EXAMPLE 3.4. Let h = 1, n = 2, A = 0 and

Q =
[
0 1
0 0

]
, ϑ1 =

[
b
0

]
, ϑ2 =

[
c
0

]
, S(0) =

[
0 0
0 d

]
(d �= 0), (3.6)

where b,c,d ∈ R . Clearly, we have Q2 = A = 0.
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In the case of the given above ϑ1 and ϑ2 , we also have Π(0) jΠ(0)∗ = 0. Thus,

(2.1) holds for any S(0) = S(0)∗ and we choose S(0) as in (3.6). For fi =
[

fi1
fi2

]
(i = 1,2) relations (2.8) are equivalent to

f11 + f21 = c, f12 = − f22 = ib/2. (3.7)

Further we assume that (3.7) (and so (2.8)) is valid and use Theorems 2.3 and 2.5. Since
Q2 = 0, the series representations of e±ixQ and relations (2.7) and (2.8) imply that

Λ1(x) = −iQ( f1 − f2) = ϑ1, Λ2(x) = f1 + f2 + iQx( f1− f2) = ϑ2− xϑ1. (3.8)

Using (2.6) and taking into account (3.6) and (3.8), we obtain

S(x) =
[

γ(x) 0
0 d

]
, γ(x) := (b2/3)x3−bcx2 + c2x. (3.9)

Finally, relations (2.14), (3.8) and (3.9) yield

ũ(x) =
4b

γ(x)
(c−bx)+

2
γ(x)2 (c−bx)4

=
2(bx− c)

γ(x)2

(
(b3/3)x3−b2cx2 +bc2x− c3). (3.10)

REMARK 3.5. The case of the singularities and strong singularities of ũ(x) , for
instance,

ũ(x) ∼ �(�+1)/x2 for x → 0, (3.11)

is of special interest (see, e.g., [4, 11, 13, 14] and the references therein) . Formula
(3.10) (for the Example 3.4 above) shows that

ũ(x) =
2
x2

(
1+O(x)

)
for c �= 0, x → 0; (3.12)

ũ(x) =
6
x2 for c = 0, b �= 0. (3.13)

Thus, we have the case � = 1 for c �= 0 and � = 2 for c = 0.

Another example for the case � = 1 and an example for the case � = 3 have been
treated in [13] and [14], respectively. (In both cases, we had S(0) = 0 but detA �= 0.)

EXAMPLE 3.6. Let us simplify formulas for fundamental solutions in our exam-
ple (3.13) where � = 2. Since h = 1 and c = 0, relations (3.6)–(3.9) and (2.16) yield
A = 0, ϑ2 = 0 and

Π(x) =
[
b −bx
0 0

]
, S(x) =

[
(b2/3)x3 0

0 d

]
, (3.14)[

1 0
]
wA(x,λ ) =

[
1− 3

λ x2
3

λ x

]
. (3.15)
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Hence, Theorem 2.3 and formulas (2.15) and (2.18) imply that

φ(x,λ ) :=
[
1 0

]
wA(x,λ )W0(x,λ )

[
1
0

]
= eix

√
λ
(

1+
3i√
λ x

− 3
λx2

)
(3.16)

satisfies Schrödinger equation with the potential ũ(x) = 6/x2 :

− ỹ ′′(x,λ )+
6
x2 ỹ(x,λ ) = λ ỹ(x,λ ). (3.17)

In view of (2.15) and (2.18), another solution χ(x,λ ) of this equation is obtained by
the substitution of −√

λ instead of
√

λ on the right-hand side of (3.16), that is,

χ(x,λ ) = e−ix
√

λ
(

1− 3i√
λ x

− 3
λx2

)
. (3.18)

Clearly, the branch of
√

λ in (3.16) and (3.18) may be chosen in an arbitrary way ( the
same branch for both formulas) .

Now, it is easy to construct a nonsingular at x = 0 solution Y of the Schrödinger
equation (3.17) as a linear combination of φ and χ .

Namely, we take Y (x,λ ) := φ(x,λ )− χ(x,λ ). In view of (3.16) and (3.18), it is
easily verified that

Y (x,λ ) =(1+ ix
√

λ)
(

1+
3i√
λ x

− 3
λx2

)
− (1− ix

√
λ )
(

1− 3i√
λ x

− 3
λx2

)
+O(1) =

6i√
λ x

− 6i√
λ x

+O(1)

for x → 0. That is, Y (x,λ ) is nonsingular at x = 0.

Using double commutation method, S. Albeverio, R. Hryniv, and Ya. Mykytyuk
[1] studied the change of � in the term (�/x)σ1 in a radial Dirac system when an
eigenvalue is removed or inserted. (See also a related paper [26].) The change of � in
the case of GBDT for radial Dirac systems was studied in [23, pp. 237–239] (see also
the references therein) and the analog of this result for the Schrödinger equations would
be of interest.
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