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Abstract. In this short note we demonstrate that the definition of the density of states of a
Schrödinger operator with bounded potential in general depends on the choice of the domain
undergoing the thermodynamic limit.

1. Introduction

The density of states of a Schrödinger operator is defined as the averaged number
of states per unit of volume and is a quantity of great importance in condensed matter
physics. The Laplace transform of the density of states is the partition function which
often serves as the initial point of theoretical investigation of a statistical mechanical
system, see e.g. [9]. Its definition involves restriction of the system to a sequence of
finite volume domains {Ωn}∞

n=0 such that Ωn → R
d and taking the thermodynamic

limit n → ∞. This process involves ambiguities in the choice of boundary conditions
and of the shape of the domains {Ωn}∞

n=0. It is well-known that the sequence {Ωn}∞
n=0

must at least satisfy some Følner condition for the limit to be meaningful.
It has been known for some time that in general the density of states is independent

of the boundary conditions [5], [11, Theorem C.7.4]. Most of the literature is devoted
to potentials which are periodic or almost periodic, or random potentials satisfying
some ergodicity condition. In these cases it is usually the case that the choice of Følner
sequence {Ωn}∞

n=0 is irrelevant [1, 3, 4]. The result of this note is that in general the
choice of approximating Følner sequence does matter.

We prove that there exist potentials V ∈ L∞(Rd) such that the density of states
defined with the sequence of balls {B(0,n)}∞

n=0 differs from that defined by the se-
quence of boxes {[−n,n]d}∞

n=0 . The potentials which we use for this purpose are radi-
ally homogeneous. That is, the ones which obey the condition V (tx) = V (x), x ∈ R

d ,
t > 0. Besides our paper [2], a handful of articles concerning Schrödinger operators
with radially homogeneous potentials exist [6, 7, 8]. The idea of the proof is that the
thermodynamic limit Ωn → R

d for radially homogeneous potentials corresponds to the
semi-classical limit h̄ → 0.
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2. Proofs

For a bounded open subset 0 ∈ Ω of R
d , we denote by ΔΩ the Laplace operator

in Ω with Dirichlet boundary conditions, and by |Ω| we denote the Lebesgue measure
of Ω . Let L2(Ω) denote the Hilbert space of almost-everywhere equivalence classes of
square integrable functions on Ω with the Lebesgue measure. Denote by TrL2(Ω) the
operator trace on the ideal L1(L2(Ω)) of trace class operators on L2(Ω). Let V be a
bounded measurable real-valued function on R

d . We denote by MV the operator on
L2(Rd) of pointwise multiplication by V . It is known that if for all t > 0 there exists
the limit

lim
R→∞

1
|RΩ|TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) (2.1)

then there exists a unique measure νV,Ω on R such that

lim
R→∞

1
|RΩ|TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) =

∫
R

exp(−tλ )dνV,Ω(λ ), t > 0.

See [11, Proposition C.7.2]. The measure νV,Ω is called the density of states.

THEOREM 2.1. Let V ∈ L∞(Rd) be a radially homogeneous potential, that is, for
all t > 0 and for all x∈R

d we have V (tx) =V (x) . Then for every bounded open set Ω
containing zero and with piecewise smooth boundary, the density of states νV,Ω exists
and is given by the formula

∫
R

exp(−tλ )dνV,Ω(λ ) = (4πt)−
d
2

1
|Ω|

∫
Ω

exp(−tV(x))dx, t > 0.

The above formula for the Laplace transform of νV,Ω yields the following for the
integrated density of states function λ �→ νV,Ω(−∞,λ ],

νV,Ω(−∞,λ ] =
1

|∂Ω|
∫

∂Ω
νV (σ),Ω(−∞,λ ]dσ .

Here, |∂Ω| is the (d − 1)-Hausdorff measure of ∂Ω and dσ is the corresponding
measure, and V (σ) is the value of V at the point σ ∈ ∂Ω. This is a generalisation of
the formula in [2, Theorem 2.1] to arbitrary domains, but Theorem 2.1 is stronger in
that it also proves existence of the density of states.

We give a proof of Theorem 2.1 based on the following well-known semiclassical
Weyl law, see e.g. [11, Theorem C.6.2], [12, Theorem 10.1]. For the special case of
smooth V , see [13, Chapter 6].

THEOREM 2.2. Let Ω⊂R
d be a bounded open set with piecewise smooth bound-

ary, and let V ∈ L∞(Ω) . Then

lim
h̄→0

h̄dTrL2(Ω)(exp(−t(−h̄2ΔΩ +MV ))) = (4πt)−
d
2

∫
Ω

exp(−tV (x))dx.

The following lemma is a key observation.
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LEMMA 2.3. Let R > 0 , and let 0∈Ω⊂R
d be an open set with piecewise smooth

boundary. If V ∈ L∞(Rd) is homogeneous, then

TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) = TrL2(Ω)(exp(−t(−R−2ΔΩ +MV ))).

Proof. Let UR denote the unitary mapping UR : L2(RΩ) → L2(Ω) given by

(URu)(x) = R
d
2 u(Rx), x ∈ Ω.

For any operator T ∈ L1(L2(RΩ)) , we have

TrL2(RΩ)(T ) = TrL2(Ω)(URTU∗
R). (2.2)

Since URMVU∗
Ru(x) =V (Rx)u(x) and since V is radially homogeneous we have MV =

URMVU∗
R (on the left hand side, MV is understood as acting on L2(Ω) and on the right

it acts on L2(RΩ)). Combining this with URΔRΩU∗
R = R−2ΔΩ, we conclude that

TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) (2.2)= TrL2(Ω)(UR exp(−t(−ΔRΩ +MV ))U∗
R)

= TrL2(Ω)(exp(−t(−R−2ΔΩ +MV ))). �

Proof of Theorem 2.1. By Lemma 2.3, we have

1
|RΩ|TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) =

1
|Ω|R

−dTrL2(Ω)(exp(−t(−R−2ΔΩ +MV ))).

Let h̄ = R−1 , so that

1
|RΩ|TrL2(RΩ)(exp(−t(−ΔRΩ +MV ))) =

1
|Ω| h̄

dTrL2(Ω)(exp(−t(−h̄2ΔΩ +MV ))).

According to Theorem 2.2, the limit as h̄ → 0 (equivalently, as R → ∞) exists, and

lim
R→∞

1
|RΩ|TrL2(RΩ)(exp(−t(−ΔRΩ +MV )))

=
1
|Ω| lim

h̄→0
h̄dTrL2(Ω)(exp(−t(−h̄2ΔΩ +MV )))

=
1
|Ω| (4πt)−

d
2

∫
Ω

exp(−tV(x))dx.

Hence in this case the limit in (2.1) exists, and we deduce the existence of a density of
states measure νV,Ω. The above computation yields the formula

∫
R

exp(−tλ )dνV,Ω(λ ) =
1
|Ω|(4πt)−

d
2

∫
Ω

exp(−tV (x))dx, t > 0. �
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THEOREM 2.4. There exist radially homogeneous potentials V ∈L∞(Rd) for which
νV,[−1,1]d �= νV,B(0,1), where B(0,1) is the open ball of radius 1 in R

d .

Proof. It follows from Theorem 2.1 that for any bounded open set Ω containing
zero and with piecewise smooth boundary we have

∫ ∞

−∞
exp(−tλ )dνV,Ω(λ ) = (4πt)−

d
2

(
1+

t
|Ω|

∫
Ω

V (x)dx+O(t2)
)

, t → 0.

Hence, to prove the claim it suffices to give an example of a radially homogeneous
potential V ∈ L∞(Rd) such that

1
|[−1,1]d|

∫
[−1,1]d

V (x)dx �= 1
|B(0,1)|

∫
B(0,1)

V (x)dx.

Such an example is given by the function

V (x) =
|x1x2|

|x1|2 + |x2|2 , x = (x1, . . . ,xd) ∈ R
d .

Indeed, for d = 2 we may compute

1
|[−1,1]2|

∫
[−1,1]2

V (x)dx =
∫ 1

0

∫ 1

0

x1x2

x2
1 + x2

2

dx1dx2 =
1
2

log(2)

and
1

|B(0,1)|
∫

B(0,1)
V (x)dx =

4
π

∫ π
2

0

∫ 1

0
rcos(θ )sin(θ )drdθ =

1
π

.

For d > 2 the computation is identical. �
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