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Abstract. Motivated by an influential result of Bourgain and Tzafriri, we consider continuous
matrix functions A : R → Mn×n and lower �2 -norm bounds associated with their restriction
to certain subspaces. We prove that for any such A with unit-length columns, there exists a
continuous choice of subspaces t �→U(t) ⊂ Rn such that for v ∈U(t) , ‖A(t)v‖ � c‖v‖ where
c is some universal constant. We provide two methods. The first relies on an orthogonality
argument and it yields an optimal asymptotic dependence for dim(U(t)) on n and supt∈R ‖A(t)‖
but it does not preserve any structure for U(t) . The second is probabilistic and combinatorial in
nature and it does not yield the optimal bound for dim(U(t)) but the U(t) obtained in this way
are guaranteed to have a canonical representation as joined-together spaces spanned by subsets
of the unit vector basis.

1. Introduction

This paper concerns itself with continuous matrix functions A : R → Mn×n re-
stricted to linear subspaces and certain lower �2 -norm bounds satisfied on these sub-
spaces. It is motivated by specific results in the non-continuous (static) setting. Inspired
by problems in harmonic analysis and the geometry of Banach spaces, a seminal 1987
article by Bourgain and Tzafriri ([5]) proved the following.

THEOREM 1.1. ([5]) There exist universal constants c0,d0 > 0 such that for any
A ∈ Mn×n(R) with ‖Aei‖ = 1 for 1 � i � n there exists σ ⊂ {1, . . . ,n} with |σ | �
d0n‖A‖−2 such that for any set of scalars {a j} j∈σ ,

∥∥∥∥∥∑
j∈σ

a jAe j

∥∥∥∥∥
2

� c0

(
∑
j∈σ

|a j|2
)1/2

. (1)

Equivalently, for Uσ = 〈e j : j ∈ σ〉 and for any v ∈Uσ , ‖Av‖ � c0‖v‖.
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For the remainder of the paper, let c0 and d0 be a pair of constants satisfying
the conclusion of Theorem 1.1. We point out that a dimensional estimate of order
n‖A‖−2 is optimal up to a constant (see Remark 3.7). Intuitively, the Bourgain-Tzafriri
result guarantees the existence of a “large” coordinate subspace of Rn on which A
does not shrink vectors “excessively.” The above result implies that A is invertible
when restricted to U which was the original motivation for [5], and hence the term
restricted invertibility. The U from the above theorem is a particularly simple type of
subspace namely one spanned by a subset of standard basis vectors.

The coordinate structure of the subspace U is a central aspect of Theorem 1.1. A
far more elementary spectral decomposition argument also yields a high-dimensional
subspace U , without any structure, on which A satisfies a lower �2 bound. For any
A ∈ Mn×n(R) and any γ ∈ (0,1) there exist a subspace U of Rn with such that for any
x ∈U , ‖Ax‖ � γ‖x‖ and

dim(U) >
(‖A‖2

HS

n
− γ2

)
n‖A‖−2. (2)

If A has unit-length columns then ‖A‖2
HS = n and thus dim(U) > (1− γ2)n‖A‖−2 (see

Section 2).
Theorem 1.1 from [5] and subsequent work of Bourgain and Tzafriri ([6], [7]) are

strongly related to the famous Kadison-Singer conjecture [10]. This was a central prob-
lem in C∗ -algebras that was restated by Anderson in [2] as a problem about matrices
and it was proved by Casazza and Tremain in [8] that a certain statement that is related
to Theorem 1.1 is equivalent to this conjecture. Within this context (and others), The-
orem 1.1 has been studied, reproved, and generalized many times including results by
Vershynin in [21], by Spielman and Srivastava in [20] (who showed that for 0 < ε < 1
one can choose c0 = ε2 and d0 = (1− ε)), and by Naor and Youssef in [18]. Using
some of the techniques developed in [20], Marcus, Spielman, and Srivastava eventually
solved the Kadison-Singer conjecture in [16].

The preservation of lower �2 -norm bounds on subspaces is also related to a prob-
lem from infinite-dimensional Banach space theory, namely the factorization property
of bounded linear operators with large diagonal. This problem has its origins in An-
drew’s paper [3] and it has been further developed by Laustsen, Lechner, and Müller
in [11], by Lechner in [12], by Lechner, Müller, Schlumprecht, and the third author
in [13] and [14], and others. In the finite-dimensional Euclidean setting, the problem
can be stated as follows: Given n ∈ N and θ > 0, determine C > 0 and m ∈ N such
that every norm-one n×n matrix A = (ai, j) with min |ai,i| � θ is a C/θ -factor of the
m×m identity matrix Im . This means that there exist matrices L and R of appropriate
dimension such that ‖L‖‖R‖ � C/θ and LAR = Im . By (2) one may take C = 2 and
m � (3/4)nθ 2 . The continuous version of this problem was investigated by Dai, Hore,
Jiao, Lan, and the third author in [9] where non-optimal estimates were given.

We turn out attention towards formulating a version of Theorem 1.1 in the setting
of a continuous matrix function A : R → Mn×n . A point-wise application of Theo-
rem 1.1 gives that there exists a choice of coordinate subspaces of constant dimension
U(t) ⊂ Rn , for all t ∈ R such that v ∈ U(t) , ‖A(t)v‖ � c‖v‖ . However, the collec-
tion {U(t)}t∈R is not a priori known to satisfy any useful properties. The property
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of focus in this paper is continuity. We say that a collection {U(t)}t∈R of subspaces
varies continuously or is a continuous collection of subspaces if the matrix function
P : R → Mn×n , assigning to each t ∈ R the orthogonal projection P(t) onto U(t) , is
continuous (see Definition 2.3 and Theorem 2.5). We focus on generalizing Theorem
1.1 by formulating two problems.

PROBLEM 1. Given a continuous matrix function A : R → Mn×n(R) satisfying
pointwise the same hypotheses as those in Theorem 1.1, is it possible to find subspaces
{U(t)}t∈R that vary continuously satisfying a similar lower �2 -norm bound? If so, are
there obtainable bounds on dim(U(t))?

Without involving the Bourgain-Tzafriri theorem we use elementary techniques
from linear algebra and analysis to obtain the desired collection {U(t)}t∈R with a lower
bound of the dimension which is indeed optimal up the imposed restriction on the ma-
trix function A and up to a universal constant. More precisely, in Section 3 we prove
the following result, in which no structure for the subspaces U(t) is guaranteed.

THEOREM 1.2. Let A : R→Mn×n be a continuous matrix function, satisfying the
property that for all t ∈ R , ‖A(t)ei‖ = 1 for every 1 � i � n. Let Λ = supt ‖A(t)‖
and γ ∈ (0,1) . Then, there exists a continuous family of m-dimensional subspaces
{U(t)}t∈R where m � (1− γ2)n/(7Λ2) such that for every t ∈ R, and every v ∈U(t) ,
‖Av‖ � γ‖v‖ .

Note that the Hilbert-Schmidt norm of each A(t) is
√

n and therefore Λ � √
n .

If we wish to obtain a more rigid collection of subspaces {U(t)}t∈R , and thus a
statement that is more similar to the Bourgain-Tzafriri theorem, then we must reformu-
late the problem. To that end we introduce the following notion, that is compatible to
continuously varying subspaces.

DEFINITION 1.3. An m-dimensional subspace U of Rn is called a quadratic con-
vex combination of disjoint basis vectors if there exist disjoint subsets σ1 = {i1 < · · ·<
im} , σ2 = { j1 < · · · < jm} of {1, . . . ,n} and λ ∈ [0,1] such that U is spanned by the
orthonormal sequence uk = λ 1/2eik + (1− λ )1/2e jk , k = 1, . . . ,m . If we wish to be
more specific, we will say that U is a λ -quadratic convex combination of Uσ1 and
Uσ2 .

PROBLEM 2. Given a continuous matrix function A : R → Mn×n(R) satisfying
pointwise the same hypotheses as those in Theorem 1.1, is it possible to find subspaces
{U(t)}t∈R that vary continuously, satisfy a similar lower �2 -norm bound, and such that
for all t ∈ R , U(t) is a quadratic convex combinations of disjoint basis vectors? If so,
are there obtainable bounds on dim(U(t))?

Following the original proof of Bourgain and Tzafriri from [5], we deploy prob-
abilistic and combinatorial techniques to give an answer to Problem 2. As a trade-off
for the structural properties of the obtained continuous choice of subspaces, the dimen-
sional estimate is weakened. The following, is the main result of our paper.
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THEOREM 1.4. There exists universal constants c,d > 0 such that for all contin-
uous matrix functions A : R → Mn×n with the property that ‖A(t)ei‖ = 1 for all t ∈ R

and 1 � i � n, there exists a continuous family of m-dimensional subspaces {U(t)}t∈R

of Rn with m � dn/Λ4 where Λ = supt ‖A(t)‖ such that ‖Av‖ � c‖v‖ for every t ∈ R

and every v ∈U(t) . Furthermore, each subspace U(t) is a quadratic convex combina-
tion of disjoint basis vectors.

The impact of this improved choice of subspaces on the dimensional estimate is on
the exponent of Λ . In light of Theorem 1.2, it is important to justify why such a steep
price in dimension must be paid in the second method, which is presented in Section
4. We begin with a consideration of the issues that arise with a pointwise application
of the Bourgain-Tzafriri result. Were we to try to merely apply Theorem 1.1 pointwise
given A : R → Mn×n , we would be able to generate a suitable collection {σt}t∈R of
subsets of {1, . . . ,n} . Of course, this is not enough: Uσt cannot be chosen uniformly
with respect to t , so there is no reason to suppose that for two arbitrarily close points
t1,t2 the corresponding Uσt1

,Uσt2
would serendipitously satisfy the required continuous

transition property. To see this, it is enough to notice that satisfactory sets σt at a point
need not be unique.

Instead we find a suitable countable sequence of points (ti)i∈Z , apply a static result
à la Bourgain-Tzafriri at each such ti to first find a subset σi of {1, . . . ,n} and then
conclude by means of a “stitching” argument. By this, we mean that we continuously
pass between Uσi and Uσi+1 on [ti,ti+1] via quadratic convex combinations U(t) of
Uσi and Uσi+1 while simultaneously preserving the desired lower �2 -norm bound of
A(t) on U(t) . Importantly, it is necessary that on the whole interval [ti,ti+1] , A(t)
already satisfies this bound on both Uσi and Uσi+1 . But this alone is not sufficient.
Without further stipulations, U(t) could fail to preserve the desired properties at some
point (e.g., U(t) and kerA(t) may momentarily intersect for some t ∈ [ti,ti+1] , which
would immediately violate the lower �2 -norm bound). From this, it becomes clear that
there must be some relationship between σi and σi+1 that would preserve the minimal
stretch property during the “stitching” procedure. It is sufficient to require that for all
t ∈ [ti, ti+1] , A(t) satisfies the desired bound on the whole subspace Uσi∪σi+1 .

To achieve this, we rely on an iterative application of a modified Bourgain-Tzafriri
argument. The modification introduces a dependence of each subsequent column set
on the one that precedes it; the iteration consists of passing to subsets of the generated
column sets, and allows for the modification to be bilateral. Then, each column set
depends on both the one that precedes it and on the one that will follow. This is where
the loss of optimality occurs.

Because the iterative application of the modified Bourgain-Tzafriri result incurs
the loss of optimal dimension, in the proof of Theorem 1.2, we base the argument on a
different way of refining the column sets. We introduce a dependence that allows for a
different “stitching” argument to be made which takes place at the level of the spaces
A(t)(Uσi) and A(t)(Uσi+1) . This is based on nice properties of orthogonal subspaces,
to which one may conveniently pass with a judicious construction. As the spectral
decomposition estimate is applied once and subsequent modifications come only at the
cost of worse universal constants, this optimally solves Problem 1.
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Closely related to Problem 1, is the following problem considered in [9].

PROBLEM 3. Given n ∈ N and θ > 0, determine C > 0 and m ∈ N such that
for every continuous matrix function A = (ai, j) : R → Mn×n with ‖A(t)‖ � 1 and
mini |ai,i(t)| � θ for every t ∈ R there exists continuous matrix functions L : R →
Mm×n , R : R → Mn×m so that L(t)A(t)R(t) = Im and supt ‖L(t)‖‖R(t)‖ � C/θ .

In Theorem 3.10 we will show that a solution to Problem 1 also offers one for
Problem 3.

The paper is organized as follows. Section 2 recalls the preliminaries of matrices
and continuous matrix functions. Section 3 is devoted to the proof of Theorem 1.2 using
elementary tools. The expert reader may wish to skip directly to Section 4, in which
we prove Theorem 1.4 by adapting the original approach of Bourgain and Tzafriri from
[5]. In Section 5 we briefly discuss possible future directions of this line of research.

2. Preliminaries

In this section we recall various norms, recall the concept of continuous matrix
functions, and discuss continuously varying subspaces of Rn . We denote the standard
basis for Rn by {e1, . . . ,en} and assume the norm on Rn to be the 2-norm: ‖x‖ =
(∑n

i=1 x2
i )

1
2 for all x ∈ Rn . We begin by defining useful quantities on Mm×n , the space

of all real valued m×n matrices.

DEFINITION 2.1. Let A = (ai, j) ∈ Mm×n .

(i) The operator norm of A is defined as

‖A‖ = sup
{
‖Ax‖ : x ∈ Rn,‖x‖ = 1

}
.

If U is a subspace of Rn , let ‖A|U‖ = sup{‖Ax‖ : x ∈U,‖x‖ = 1} .

(ii) The minimal stretch of A is defined as

mA = inf
{
‖Ax‖ : x ∈ Rn,‖x‖ = 1

}
.

If U is a subspace of Rn , let mA|U = inf{‖Ax‖ : x ∈U,‖x‖ = 1} .

(iii) The Hilbert-Schmidt norm of A is defined as

‖A‖HS =
( n

∑
i=1

‖Aei‖2
)1/2

=
( m

∑
i=1

n

∑
j=1

a2
i j

)1/2
.

We point out that these quantities can be equivalently defined as follows. Let
(σi)m∧n

i=1 denote sequence of the singular values of A . Then ‖A‖ = maxσi whereas
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mA = minσi and ‖A‖HS = (tr(AT A))1/2 = (∑m∧n
i=1 σ2

i )1/2 (see, e.g., [15, Theorem7.4.3]).
These yield the following estimates.

‖A‖ � ‖A‖HS �
(
rank(A)

)1/2‖A‖.

For an n×n matrix the formula ‖A‖HS = (∑n
i=1 σ2

i )1/2 is also used to deduce (2).
Take a singular value decomposition A = WΣVT , where Σ = diag(σ1, . . . ,σn) is the
singular value matrix of A and W , V = [v1 · · · vn] are orthogonal matrices. Then, for
any γ ∈ (0,1) the space U = 〈{vi : σi � γ}〉 satisfies the property that for all x ∈U ,
‖Ax‖ � γ‖x‖ . Set E = {vi : σi � γ} and observe

‖A‖2
HS = ∑

i∈E
σ2

i + ∑
i/∈E

σ2
i < #E‖A‖2 + γ2n.

Solving for #E yields (2).

DEFINITION 2.2. Let I be an interval of R . A matrix function A = (ai, j) : I →
Mm×n is said to be continuous if its entries ai, j : I → Mm×n are continuous.

It is well known that A is continuous if and only if it is continuous as a function
from the metric space (I, | · |) to the normed linear space (Mm×n,‖ · ‖) (see, e.g., [9,
Lemma 3.1]).

DEFINITION 2.3. Let I be an interval of R and let {U(t)}t∈I be a family of
subspaces of Rn .

(i) The family {U(t)}t∈I is said to be a continuous choice of subspaces of Rn if the
function P : I → Mn×n where P(t) is the orthogonal projection onto U(t) for all
t ∈ I is continuous.

(ii) The family {U(t)}t∈I is said to admit a continuous choice of basis if, for some m∈
N , there exist continuous γ1, . . . ,γm : I →Rn so that for each t ∈ I , γ1(t), . . . ,γm(t)
form a basis of U(t) .

LEMMA 2.4. If I is an interval of R and a family {U(t)}t∈I of subspaces of Rn

admits a continuous choice of basis γ1, . . . ,γm : I →Rn then it also admits a continuous
choice of orthonormal basis u1, . . . ,um : I → Rn . Therefore {U(t)}t∈I is a continuous
choice of subspaces of Rn .

Proof. Define u1(t) = ‖γ1(t)‖−1γ1(t) . By induction on k = 2, . . . ,m let ũk(t) =
γk(t)−∑k−1

i=1 〈γk(t),ui(t)〉ui(t) and uk(t) = ‖ũk(t)‖−1ũk(t) . This yields a continuous
choice of orthonormal basis u1, . . . ,um : I → Rn . Finally, note that for each t ∈ I ,
putting W (t) = [u1(t) · · ·um(t)] we have that P(t) =W (t)WT (t) the orthogonal projec-
tion onto U(t) and P : I → Mn×n is continuous. �

Our next goal is to show that (i) and (ii) of Definition 2.3 are in fact equivalent.
Note it is essential that the domain I is a subset of R . Indeed if we replace I with the
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unit circle S1 then this would no longer be true since we are working with subspaces of
Rn . For example, for all x = (cos(θ ),sin(θ )) in S1 let

U(cos(θ ),sin(θ )) = 〈(cos(θ/2),sin(θ/2))〉 ⊂ R2.

Then {U(x)}x∈S1 is a continuous choice of subspaces of R2 for which a continuous
choice of basis is impossible.

THEOREM 2.5. Let I be an interval of R . A family of subspaces {U(t)}t∈I of Rn

is continuous if and only if it admits a continuous choice of orthonormal basis.

The proof of the above requires some preparatory steps. For each of the following
lemmata, let I be an interval of R and P : I → Mn×n be a continuous matrix function
such that P(t) is an orthogonal projection for all t ∈ R .

LEMMA 2.6. The rank of P(t) is constant for all t ∈ I .

Proof. Since the rank of an orthogonal projection is equal to the trace of the or-
thogonal projection, and since tr(P(t)) : I → R is continuous when P is continuous,
the result follows. �

LEMMA 2.7. For all t0 ∈ I there is an ε > 0 and continuous functions γ1, . . . ,γk :
(t0−ε, t0+ε)∩I →Rn such that for all t ∈ (t0−ε,t0+ε)∩I, ℑ(P(t))= 〈γ1(t), . . . ,γk(t)〉 .

Proof. Let t0 ∈ I . By assumption, rank(P(t0)) = k , so there exist k linearly inde-
pendent columns of P(t0) , {Pei j(t0)}k

j=1 , which span ℑ(P(t0)) . That is,

ℑ(P(t0)) = 〈Pei1(t0) . . .Peik(t0)〉.

Since rank(Pei1(t0) . . .Peik(t0))= k , we can find k suitable rows of the matrix [Pei1(t) . . .
Peik(t)] to obtain B : R → Mk×k such that B(t0) is invertible (by virtue of satisfy-
ing detB(t0) �= 0). The continuity of the determinant function guarantees the exis-
tence of an ε > 0 such that for any t ∈ (t0 − ε,t0 + ε)∩ I, detB(t) �= 0. Thus, for any
t ∈ (t0− ε, t0 + ε)∩ I, rank(Pei1(t) . . .Peik(t)) = k and so

ℑ(P(t)) = 〈Pei1(t) . . .Peik(t)〉 as rank(P(t)) = k

(where B(t) is the minor of P(t) defined using the same components as B(t0)). �

LEMMA 2.8. Let a < c < b < d and P : (a,d) → Mn×n be continuous and let
k = rank(P(t)) for all t ∈ R . Assume that ℑ(P(t)) admits a continuous choice of basis
γ1, . . . ,γk : (a,b) → Rn on (a,b) and another continuous choice of basis on (c,d) .
Then, γ1, . . . ,γk may be extended to a continuous choice of basis on (a,d) .
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Proof. By Lemma 2.7, it is sufficient to show that we can “stitch together” contin-
uous bases with intersecting domains. Let

α1, . . . ,αk : (a,b) → Rn s.t. ∀t ∈ (a,b), Im(P(t)) = 〈α1(t), . . . ,αk(t)〉
β1, . . . ,βk : (c,d) → Rn s.t. ∀t ∈ (c,d), Im(P(t)) = 〈β1(t), . . . ,βk(t)〉

for some a < c < b < d . Let t0 ∈ (c,b) . Then we can write the αi(t0) as linear
combinations of β1(t0), . . . ,βk(t0) since 〈α1(t0), . . . ,αk(t0)〉 = 〈β1(t0), . . . ,βk(t0)〉 . In

other words, for each i ∈ {1, . . . ,k} , there are (λi j)k
j=1 s.t. αi(t0) =

k

∑
j=1

λi jβ j(t0) .

Since the (αi(t0))
k
i=1 and (βi(t0))

k
i=1 are bases of Im(P(t0)) , the λi j uniquely

determine an invertible matrix F = (λi j) ∈ Mk×k(R) , for which

⎡
⎢⎣

α1(t0)T

...
αk(t0)T

⎤
⎥⎦ = F

⎡
⎢⎣

β (t0)T

...
βk(t0)T

⎤
⎥⎦ .

Define (γ1, . . . ,γk) : (a,d) → Mn×k(R) by:

(γ1(t), . . . ,γk(t)) =

{
(α1(t), . . . ,αk(t)) t � t0
(β1(t), . . . ,βk(t))FT t > t0.

Then for every t ∈ (a,d), Im(P(t)) = 〈γ1(t), . . . ,γk(t)〉 (since detF �= 0), and the γi

are continuous. �

Proof of Theorem 2.5. Let P : I → Mn×n be continuous such that for all t ∈ I ,
P(t) is an orthogonal projection. We want to construct ui : I → Rn continuous such
that u1(t), . . . ,uk(t) form a basis of Im(P(t)) for every t ∈ I . For simplicity, let us
assume that I = R as the other cases are similar.

We work first with [−1,1] . As it is compact, by Lemma 2.7, [−1,1] admits a
finite cover by open intervals (a j,b j) so that there exist continuous γ ji : (a j,b j) → Rn

such that for t ∈ (a j,b j),(γ j1(t), . . . ,γ jk(t)) is a basis of Im(P(t)) .
Without loss of generality, we assume a j+1 < b j to obtain a cover by “interlock-

ing” intervals (with non-empty sequential intersections). A finite, step-by-step applica-
tion of Lemma 2.8 allows for the construction of continuous γi : [−1,1]→ Rn such that
(γ1(t), . . . ,γk(t)) is a basis of Im(P(t)) for each t ∈ [−1,1] .

Suppose γi(t) is defined for all t ∈ [−m,m] . We will extend γi to [−(m+1),m+
1] . We similarly use Lemma 2.7 and the compactness of [−(m+1),m+1] to obtain a
suitable finite open cover, whereupon we apply Lemma 2.8 as above to define γi(t) for
t ∈ [−(m+1),m+1] without modifying γi on [−m,m] . Notice that γi is well-defined
as it is independent of the choice of m (subsequent extensions of γi do not alter the
behaviour of the function on a domain on which it was previously defined). �
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3. Method I: Optimal Dimensional Bound

In this section we prove Theorem 1.2 and then show how it can be used to provide
a solution to Problem 3.

3.1. The proof of Theorem 1.2

We start by proving some statements that will allow us to find appropriate sub-
spaces of Rn and then stitch them together. Although this proof combines well known
concepts, we have chosen to present some of their proofs for the purpose of making the
paper as self contained as possible.

PROPOSITION 3.1. If X and Y are linear subspaces of Rn and dimX = dimY =
m, then there exist linear subspaces X̃ ⊂ X ,Ỹ ⊂ Y such that dim X̃ ,dimỸ � �m

2 � and
X̃ ⊥ Ỹ .

We will prove Proposition 3.1 by using the notion of principal angles of subspaces
(see, e.g., [1]), as it will also be used later.

LEMMA 3.2. Given two subspaces X and Y of Rn of dimension m, there exist
orthonormal bases {x1,x2, . . . ,xm} and {y1,y2, . . . ,ym} of X and Y respectively, such
that 〈xi,y j〉 = 0 for any i �= j .

Proof. Define P : Rn → Y to be the projection map onto Y . Let P̃ = P|X , and
so, P̃ : X → Y . Define A = P̃∗P̃ : X → X . Then A is self-adjoint, so the Spectral
Theorem implies there is an orthonormal basis {x1, . . . ,xm} of X such that each xi is
an eigenvector of A . Now, let ỹi = P̃xi and σ = {1 � i � m : ỹi �= 0} . For i ∈ σ let
yi = ‖ỹi‖−1ỹi . Note for i, j ∈ σ with i �= j that

〈ỹi, ỹ j〉 = 〈P̃xi, P̃x j〉 = 〈xi, P̃
∗P̃x j〉 = 〈xi,Ax j〉 = λ j〈xi,x j〉 = 0

so the sequence (yi)i∈σ is orthonormal. Extend (yi)i∈σ to an orthonormal basis (yi)m
i=1

of Y . It now remains to check that 〈xi,y j〉 = 0 for i �= j . If P̃xi = 0, then xi is
orthogonal to every vector in Y . Otherwise, notice that ui ∈ Rn = Y ⊕Y⊥ , and so we
can express it as xi = ỹi + y′i where y′i = xi − ỹi ∈ Y⊥ . Then, it follows:

〈xi,y j〉 = 〈ỹi + y′i,y j〉 = 〈ỹi,y j〉+ 〈y′i,y j〉 = 0. �

We can now proceed with the proof of Proposition 3.1

Proof. Lemma 3.2 yields orthonormal bases {x1, . . . ,xm} and {y1, . . . ,ym} of X
and Y respectively, such that 〈xi,y j〉 = 0 when i �= j . When m is odd, define X̃ =
〈{x1, . . . ,x�m

2 �}〉 and Ỹ = 〈{y�m
2 �, . . . ,ym−1,ym}〉 . Then 〈xi,y j〉 = 0 for all 1 � i �

�m
2 �,�m

2 � � j � m .
If m is even, define X̃ = 〈{x1, . . . ,xm

2
}〉 and Ỹ = 〈{ym

2 +1, . . . ,ym−1,ym}〉 . Then

〈xi,y j〉 = 0 for all 1 � i � m
2 , m

2 +1 � j � m . Thus, X̃ ⊥ Ỹ . �
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By Proposition 3.1, given any two subspaces, we can always find orthogonal sub-
spaces at the cost of reducing the dimension by half. The following result again appeals
to Lemma 3.2 in order to show that given two subspaces of a fixed dimension, it is pos-
sible to traverse from one subspace to another through a continuously varying choice of
subspaces of the same dimension. Note that this is also a standard argument used, e.g.,
to show the path-connectedness of the Grassmannian.

PROPOSITION 3.3. Let X ,Y ⊂ Rn , with dim(X) = dim(Y ) = m. Then, for any
a < b∈ R , there exists a continuous choice of subspaces {U(t)}t∈[a,b] of Rn , such that
X = U(a) and Y = U(b) , and U(t) lies in X +Y for all t ∈ [a,b] .

Proof. Using Lemma 3.2, we can find an orthonormal bases {x1, . . .xm} and
{y1, . . .ym} of X and Y respectively such that 〈xi,y j〉= 0 whenever i �= j . Now define
for 1 � i � m ,

ui(t) =

⎧⎨
⎩
(

1− t−a
b−a

)
xi +

(
t−a
b−a

)
yi if xi, yi are linearly independent

yi if xi, yi are linearly dependent.

Let U(t) = 〈u1(t),u2(t), . . . ,um(t)〉 . Observe that U(a) = X and U(b) = Y . No-
tice that for any t ∈ [a,b] , at no point do we have linear dependence between the ui ’s as,
in fact, they are always orthogonal. Thus, {U(t)}t∈[a,b] as defined above is our required
family of subspaces. �

The following lemma guarantees the existence of a discrete collection of points in
Rn such that the application of Theorem 1.1 on all points of this collection preserves
the desired minimal stretch property on overlapping intervals covering R .

LEMMA 3.4. Let ε > 0 and A : R → Mn×n(R) be a continuous matrix function.
Then there exists a sequence (ti)i∈Z in R such that the following are satisfied.

(i) For all i ∈ Z , ti < ti+1 , supi ti = ∞ , and infi ti = −∞ .

(ii) For all i ∈ Z and t in [ti−1,ti+1] , ‖A(ti)−A(t)‖� ε .

In particular, if i ∈ Z , c > 0 , and U is a subspace of Rn such that mA(ti)|U � c then
for all t ∈ [ti−1, ti+1] , mA(t)|U � c− ε .

Proof. By the uniform continuity of A on each compact interval [i, i + 1] , there
exists ki ∈ N such that for all s,t in [i, i+1] with |s− t| � 1/ki , ‖A(s)−A(t)‖ � ε/2.
Denote Fi = {i+ j/ki : j = 0,1, . . . ,ki − 1} and define F = ∪i∈ZFi . Clearly, this is a
discrete subset of R that is unbounded above and unbounded below. Enumerating it in
increasing order yields the desired sequence (ti)i∈Z that satisfies (i) and (ii).

For the final part let i ∈ Z , c > 0, and U be a subspace of Rn such that mA(ti)|U �
c . Then, for all x ∈U with ‖x‖ = 1 and t ∈ [ti−1,ti+1] ,

‖A(t)x‖ � ‖A(ti)x‖−‖A(ti)−A(t)‖‖x‖� c− ε.
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In other words, mA(t)|U � c− ε . �
We can now prove Theorem 1.2, which we restate for convenience.

THEOREM 3.5. Let A : R→Mn×n be a continuous matrix function, satisfying the
property that for all t ∈ R , ‖A(t)ei‖ = 1 for every 1 � i � n. Let Λ = supt ‖A(t)‖
and γ ∈ (0,1) . Then, there exists a continuous family of m-dimensional subspaces
{U(t)}t∈R where m � (1− γ2)n/(7Λ2) such that for every t ∈ R, and every v ∈U(t) ,
‖Av‖ � γ‖v‖ .

Proof. To begin, note it is always possible to find a continuous choice of one-
dimensional subspaces by taking U(t) = 〈e1〉 , for all t ∈ R . Let m0 = �(1− γ2)n/Λ2� .
We will show that there is continuous choice of �m0/4�-dimensional subspaces that
satisfies the conclusion. Therefore, we can achieve 1∨�m0/4� which dominates m0/7
for all possible values of m0 .

Apply Lemma 3.4 to A for 0 < ε < (1− γ)/2 to find an increasing sequence of
points (ti)i∈Z satisfying the conclusion of that lemma. As we will see later, ε may
need to be smaller. We now argue that we can find subspaces Ui , i ∈ Z , of common
dimension m0 such that for all i ∈ Z and t ∈ [ti−1,ti+1] we have mA(ti)|Ui

� γ + ε .
Let γ̃ = γ +2ε < 1 and for each i∈Z apply (2) to A(ti) to obtain a subspace Ui of

common dimension m̃0 > (1− γ̃2)n/Λ2 such that for all t ∈ [ti−1,ti+1] , mA(t)|Ui
� γ̃ −

ε = γ +ε . As m̃0 � �(1− γ̃2)n/Λ2�+1 = �(1−(γ +2ε)2)n/Λ2�+1, for ε sufficiently
small, we have m̃0 � �(1−γ2)n/Λ2�= m0 . Later, ε may need to be made even smaller.

Let i ∈ Z be given. We will outline the mechanism by which one produces the
required subspaces on [ti,ti+1] , and then conclude by extending the construction to all
of R by working on each interval and “stitching” together at the boundaries. Given i
and t ∈ [ti−1, ti+1] let Vi,t := 〈A(t)e j : j ∈ σi〉 = A(t)(Ui) .

A diagram illustrating the choice of subspaces on the interval [ti, ti+2] is included
below for the reader’s convenience.

σi σi+1 σi+2

ti ti+1 ti+2si si+1

UL
i

UR
i+1

UL
i+1

UR
i+2

˜

˜

˜

˜

Ui Ui+1 Ui+2

V L
i ⊥ V R

i+1

UL
i+1 ⊥ UR

i+2
UL
i ⊥ UR

i+1

V L
i+1 ⊥ V R

i+2
˜ ˜

˜ ˜

˜

˜ ˜

˜

Fix an si ∈ (ti, ti+1) . At si , we apply Proposition 3.1 to the subspaces Vi,si and
Vi+1,si to obtain subspaces Ṽ L

i,si
⊂ Vi,si and Ṽ R

i+1,si
⊂Vi+1,si such that Ṽ L

i,si
⊥ Ṽ R

i+1,si
and

dimṼ L
i,si

= dimṼ R
i+1,si

= �m0
2 � .
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We once more invoke Proposition 3.1 at the pre-images of Ṽ R
i+1,si

and Ṽ L
i,si

under A

to obtain subspaces ŨL
i ⊂ (A(si)|Ui)

−1
(
Ṽ R

i+1,si

)
⊂Ui and ŨR

i+1 ⊂ (A(si)|Ui+1)
−1

(
Ṽ L

i,si

)
⊂ Ui+1 such that ŨL

i ⊥ ŨR
i+1 . The iterative application of Proposition 3.1 incurs a

further loss of dimension: for all t ∈ [ti,ti+1],

dimŨL
i,t = dimŨR

i+1,t =
⌊

1
2

⌊m0

2

⌋⌋
=
⌊m0

4

⌋
.

Now, we must find a way to continuously “stitch” ŨL
i and ŨR

i+1 around si , and
similarly between ŨR

i+1 and ŨL
i+1 to pass to the next interval. This second “stitch” will

be necessary as there is no reason to suppose that ŨR
i+1 = ŨL

i+1 .

To this end, we pick some ηi ∈ (0,min{ si−ti
2 ,

ti+1−si
2 }) . This will be the margin

through at which the “stitching” occurs (that is, there will be two instances of “stitching
together”: on (si −ηi,si + ηi) and on (ti+1−ηi,ti+1]).

Observe that an application of Proposition 3.3 allows us to switch from ŨL
i at

si −ηi to ŨR
i+1 at si + ηi , through subspaces of dimension m0 without violating the

minimal stretch property as the collection of subspaces are contained in ŨL
i ⊕ ŨR

i+1 .
This will be verified in Lemma 3.6.

It therefore remains only to “stitch” together on (ti+1−ηi, ti+1] � (si,ti+1] . Notice
that ŨR

i+1 ⊂ Ui+1 , and ŨL
i+1 ⊂ Ui+1 . As the minimal stretch property holds for all

vectors in Ui+1 , the minimal stretch property also holds in ŨR
i+1 +ŨL

i+1 . Thus, we may
appeal to Proposition 3.3 once again, and find a collection of subspaces of dimension
�m0

4 � to traverse from ŨR
i+1 at ti+1−ηi , to ŨL

i+1 at ti+1 .
To recapitulate, on each [ti,ti+1] , we take:

ŨL
i for t ∈ [ti,si −ηi],

“stitch” ŨL
i and ŨR

i+1 for t ∈ (si −ηi,si + ηi),

ŨR
i+1 for t ∈ [si + ηi, ti+1−ηi],

“stitch” ŨR
i+1 and ŨL

i+1 for t ∈ (ti+1 −ηi,ti+1),

ŨL
i+1,t for t = ti+1. �

LEMMA 3.6. For any vector x lying in ŨL
i ⊕ ŨR

i+1, i ∈ Z , the vector x satisfies
‖A(t)x‖ � γ‖x‖ , when t ∈ [ti,ti+1] .

Proof. If x ∈ ŨL
i ⊕ ŨR

i+1 , then x = f + g , where f ∈ ŨL
i and g ∈ UR

i+1 . As ŨL
i

and ŨR
i+1 satisfy the minimal stretch property, we know that ‖A(t) f‖ � (γ + ε)‖ f‖ for

t ∈ [ti−1, ti+1] , and ‖A(t)g‖ � (γ + ε)‖g‖ for t ∈ [ti,ti+2] . Then for t ∈ [ti−1, ti+1] , we
have

‖A(t)x‖2 = ‖A(t) f‖2 +‖A(t)g‖2 +2〈A(t) f ,A(t)g〉
� (γ + ε)2‖ f‖2 +(γ + ε)2‖g‖2 +2〈A(t) f ,A(t)g〉
= (γ + ε)2‖x‖2 +2〈A(t) f ,A(t)g〉. (3)
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Now recall that A(si) f ∈ Ṽ R
i+1,si

and A(si)g ∈ Ṽ L
i,si

so

|〈A(t) f ,A(t)g〉| = |〈A(t) f −A(si) f ,A(t)g〉+ 〈A(si) f ,A(t)g−A(si)g〉+ 〈A(si) f ,A(si)g〉|
�
(∥∥A(t)−A(si)

∥∥‖ f‖)(∥∥A(t)
∥∥‖g‖)

+
(∥∥A(si)

∥∥‖ f‖)(∥∥A(t)−A(si)
∥∥‖g‖)+0

� Λ‖A(t)−A(si)‖‖x‖2.

From Lemma 3.4 (ii), we know that ‖A(t)−A(si)‖ � ε . Substituting this in (3), we
obtain

‖A(t)x‖2 � (γ + ε)2
(
1−2Λε(γ + ε)−2

)
‖x‖2.

By taking ε sufficiently small we obtain ‖A(t)x‖ � γ‖x‖. �

REMARK 3.7. We sketch an argument that demonstrates that the dimensional es-
timate n/‖A‖2 in Theorem 1.1 (and hence also in Theorem 1.2) is optimal, up to a
constant. Assume that for n ∈ N and 1 � λ � √

n , there is a m(n,λ ) ∈ N such that for
any n×n matrix A with unit-length columns and ‖A‖� λ , there exists σ ⊂ {1, . . . ,n}
with |σ | � m(n,λ ) and mA|Uσ

> 0. We will show that necessarily m(n,λ ) < 4n/λ 2 .

To find an A that confirms this, take m = �n/λ 2� and using Euclidean division write
n = dm+ r . Find an orthonormal sequence u1, . . . ,um in Rn such that 〈u1, . . . ,um〉 ⊥
〈e1, . . . ,er〉 . Define U = [u1 · · ·um] ∈Mn×m , B = [U | · · · |U ] ∈Mn×dm (take d copies of
U ), D = [e1 · · ·er] ∈ Mn×r and A = [D|B] ∈ Mn×n . Then, A has unit-length columns,
‖A‖=

√
d � λ , and rank(A) = m+r < 2m � 4n/λ 2 . Therefore, for any σ ⊂{1, . . . ,n}

such that mA|Uσ
> 0 must satisfy m(n,λ ) � |σ | � rank(A) < 4n/λ 2 .

REMARK 3.8. Although the dimensional estimate n/‖A‖2 is optimal relative to
the quantity ‖A‖ and presupposing that A has unit-length columns. This does not
preclude the existence of better dimensional estimates relative to other quantities related
to a matrix A such as the stable rank, the p -stable rank, and the entropic stable rank
of A . These quantities are based in the singular values of A and can be more useful
in some settings (e.g., when studying matrices that don’t necessarily have unit length
columns). This topic has been studied, e.g., in [21], [20], [18], and [17].

3.2. Continuous factorization of the identity

In this subsection we explain how Theorem 1.2 yields a solution to Problem 3.
We begin with a lemma that will help us find the left matrix in the factorization of the
identity.

LEMMA 3.9. Let I be an interval of R and A : I →Mn×m be a continuous matrix
function such that there exists c > 0 with mA(t) � c for all t . Then there exists a
continuous matrix function L : R → Mm×n such that L(t)A(t) = Im and ‖L(t)‖ � 1/c
for all t ∈ I .



1204 FAN ET AL.

Proof. For each fixed t ∈ I we have that mA(t) > 0 and thus A(t) has trivial kernel.
This implies that the m×m matrix AT (t)A(t) has trivial kernel and is thus invertible.
Since the matrix function AT A : I → Mm×m is continuous and pointwise invertible,
(AT A)−1 : I → Mm×m is continuous as well (see, e.g., [9, Lemma 3.2]). Then, L =
(AT A)−1AT : I →Mm×n is continuous and for each t ∈ I , L(t)A(t)= Im . To find ‖L(t)‖ ,
for fixed t ∈ I , write the singular value decomposition A(t) = UΣVT where U,V are
unitary and Σ is rectangular diagonal. A direct computation yields L(t) = V Σ̃UT ,
where Σ̃ = (ΣT Σ)−1ΣT , which is the matrix formed by taking reciprocals of all non-
zero diagonal elements of Σ and then taking the transpose. Since V,U are unitary and
thus preserve the matrix norm under multiplication, ‖L(t)‖ = ‖Σ̃‖ � 1/c . �

To find the right matrix, we will use Theorem 1.2 and Theorem 2.5.

THEOREM 3.10. Let A : R → Mn×n be a continuous matrix function and θ > 0
with ‖A(t)ei‖ � θ for 1 � i � n and ‖A(t)‖ � 1 for t ∈ R . Then for any γ ∈ (0,1)
and m � �(1− γ2)nθ 2/7� there exist continuous matrix functions L,R of appropriate
dimensions such that L(t)A(t)R(t) = Im with ‖L(t)‖‖R(t)‖ � (γθ )−1 for all t ∈ R .

Proof. Let ak(t) denote the k th column of A(t) ,

D(t) =
[

e1

‖a1(t)‖ · · ·
en

‖an(t)‖
]

and Ã(t) = A(t)D(t).

Note that

‖Ã(t)‖ � ‖A(t)‖ max
1�i�n

‖ai(t)‖−1 � 1
θ

.

Also, A satisfies the hypothesis of Theorem 3.5, so that we have the existence of a
collection of m-dimensional subspaces {U(t)}t∈R that vary continuously such that
mÃ(t)|U(t)

� γ for all t ∈ R , where

m � 1− γ2

7
n

supt ‖Ã(t)‖2
� 1− γ2

7
nθ 2.

By Theorem 2.5 there exists a continuous choice of orthonormal basis u1, . . . ,um :
R → Rn . Define W (t) = [u1(t) · · ·um(t)] , which is a continuous matrix function with
the property Im(W (t))=U(t) and for all x∈Rm , ‖W (t)x‖= ‖x‖ . Let R(t)= D(t)W(t) ,
which is continuous and satisfies ‖R(t)‖ = ‖D(t)‖ � 1/θ .

Now since

mA(t)R(t) = inf
{
‖Ã(t)W (t)x‖ : x ∈ Rm,‖x‖ = 1

}
= inf

{
‖Ã(t)x‖ : x ∈U(t),‖x‖ = 1

}
� γ

we can apply Lemma 3.9 to A(t)R(t) to show the existence of a continuous left inverse
L(t) of A(t)R(t) that satisfies ‖L(t)‖ � γ−1 for all t ∈ R . �
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4. Method II: Column Space Approach

In this section, we prove Theorem 1.4. The goal is to attain a continuous choice
of subspaces on which a given matrix function satisfies the desired minimal stretch
property that more closely resembles spaces spanned by a subset of the unit vector basis.
These will be quadratic convex combinations of disjoint basis vectors (see Definition
1.3). Therefore, we require a statement that guarantees the existence of suitable pairs
of subspaces spanned by disjoint basis vectors that behave sufficiently well with one
another so that they can be “stitched” together.

4.1. A Bourgain-Tzafriri Theorem for disjoint subsets of the basis

We first prove the static result that is necessary in the proof of Theorem 1.4.

THEOREM 4.1. There exist constants 1 > d1 > d2 > d3 > 0 such that the follow-
ing holds. For every n× n matrix A with ‖Aei‖ = 1 for i = 1, . . . ,n, and for every
σ1 ⊂ {1, . . . ,n} with |σ1| � d1n‖A‖−2 , there exists

σ2 ⊂ {1, . . . ,n} \σ1 with |σ2| � d2n‖A‖−2

such that for any choice of scalars {a j} j∈σ1∪σ2 , we have

∥∥∥ ∑
j∈σ1∪σ2

a jAe j

∥∥∥ � 1

16
√

2

(
∑
j∈σ2

|a j|2
)1/2

.

If we additionally assume that |σ1| � d2n‖A‖−2 and d1d2n‖A‖−4 � 1 then there also
exist

τ1 ⊂ σ1 and σ̃2 ⊂ σ2 with |τ1| � d3n‖A‖−4 and |σ̃2| � d3n‖A‖−4

such that for any choice of scalars {a j} j∈τ1∪σ̃2 , we have

∥∥∥ ∑
j∈τ1∪σ̃2

a jAe j

∥∥∥� 1
32

(
∑

j∈τ1∪σ̃2

|a j|2
)1/2

.

In order to make the theorem more tractable, the proof is broken down into lem-
mata that follow the general shape of the argument first made by Bourgain and Tzafriri
in [5]. The main difference is that the selection is performed in the complement of a
fixed subset of the index set. Lemma 4.3 follows the outline of [5, Lemma 1.4], Lemma
4.4 follows the outline of [5, Theorem 1.5] and Lemma 4.4 follows the outline of the
final step of [5, proof of Theorem 1.2, page 145]. It is worth pointing out that Bourgain
and Tzafriri in [5] offered two arguments for the final step of the proof of their main
theorem. The first one is based on an exhaustion argument and Khintchine’s inequality.
The second one uses a Maurey-Nikishin factorization argument that involves the little
Grotherndieck Theorem. We have opted to follow the more elementary first approach
(see, e.g., also [4, Lemma B]).

In Lemmata 4.3, 4.4, and 4.5 below it is assumed that we are given an n×n matrix
A that satisfies the assumptions of Theorem 4.1 (i.e., ‖Aei‖ = 1 for i = 1, . . . ,n ).
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REMARK 4.2. The constants in the Theorem 4.1 are d1 = 1/256 (proof of Lemma
4.3), d2 = d1/4 (Lemma 4.4), and d3 = d2

2/2 (proof of Lemma 4.5).

LEMMA 4.3. There exists a constant d1 > 0 such that the following holds: For
every σ1 ⊂ {1, . . . ,n} with |σ1| � d1n‖A‖−2 there exists σ2 ⊂ {1, . . . ,n} \ σ1 with
σ2 � d1n‖A‖−2 such that for every i ∈ σ2 ,

∥∥P〈Aej : j∈(σ1∪σ2)\{i}〉Aei
∥∥<

1√
2
.

Proof. Take δ = 1/(8‖A‖2) and d1 = 1/(8 · 32) . Let {ξi}i∈σ c
1

be a sequence

of independent random variables of mean δ over a probability space (Ω,Σ,μ) taking
only the values 0 and 1. For each i ∈ σ c

1 , Var(ξi) = δ (1− δ ) and by independence we
obtain Var(∑i∈σ c

1
ξi) = |σ c

1 |δ (1− δ ) . Define

D =
{

ω ∈ Ω :
∣∣∣ ∑
i∈σ c

1

ξi(ω)− δ |σ c
1 |
∣∣∣� δ |σ c

1 |/2
}
.

By Chebyshev’s inequality,

μ(D) � 4
Var(∑i∈σ c

1
ξi)

δ 2|σ c
1 |2

� 4(δ |σ c
1 |)−1. (4)

For each ω ∈ Ω , let

σ(ω) =
{

j ∈ σ c
1 : ξ j(ω) = 1

}
.

We will show that there must be at least one σ(ω) which can be modified slightly to
have the desired property. Set V = 〈Aei : i ∈ σ1〉 . Then

∫
Ω

∑
i∈σ c

1

ξi(ω)
∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2
dμ

= ∑
i∈σ c

1

(∫
Ω

ξi(ω)dμ
)(∫

Ω

∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc
1
(Aei)

∥∥∥2
dμ

)

= δ
∫

Ω
∑

i∈σ c
1

∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc
1
(Aei)

∥∥∥2
dμ

� δ
∫

Ω
∑

i∈σ c
1

∥∥∥P〈ξ j(ω)Aej∪V 〉 j∈σc
1
(Aei)

∥∥∥2
dμ

where the first equality used the fact that ξi(ω) and
∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2
are

independent (since the latter is a function of (ξ1, . . .ξi−1,ξi+1, . . .ξn) so that we may
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split up the integral into a product) and the last line used the monotonicity of projection
norms. By letting W (ω) = {ξ j(ω)Ae j : j ∈ σ c

1}∪V, we have

∫
Ω

∑
i∈σ c

1

ξi(ω)
∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2
dμ

� δ
∫

Ω
∑

i∈σ c
1

∥∥P〈W(ω)〉(Aei)
∥∥2

dμ

� δ
∫

Ω

n

∑
i=1

∥∥P〈W(ω)〉(Aei)
∥∥2

dμ

= δ
∫

Ω

∥∥P〈W(ω)〉A
∥∥2

HS
dμ

� δ‖A‖2
∫

Ω

⎛
⎝|σ1|+ ∑

j∈σ c
1

ξ j(ω)

⎞
⎠ dμ

= δ‖A‖2 (|σ1|+ δ |σ c
1 |)

where we used the standard inequality ‖A‖2
HS � ‖A‖2rank(A) and then made use of

the fact that rank(P〈W(ω)〉A) is bounded above by the number of non-zero vectors in
{ξi(ω) : i ∈ σ c

1}∪{Aei : i ∈ σ1} which has the crude bound |σ1|+ ∑ j∈σ c
1

ξ j(ω) .
Since all functions involved are non-negative this yields:

∫
Ω\D ∑

i∈σ c
1

ξi(ω)
∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2
dμ

�
∫

Ω
∑

i∈σ c
1

ξi(ω)
∥∥∥P〈ξ j(ω)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2
dμ

� δ‖A‖2 (|σ1|+ δ |σ c
1 |)

which, with (4), implies that there exists a point ω0 ∈ Ω\D such that

∑
i∈σ(ω0)

∥∥∥P〈Aej∪V 〉 j∈σ(ω0)\{i}(Aei)
∥∥∥2

= ∑
i∈σ c

1

ξi(ω0)
∥∥∥P〈ξ j(ω0)Aej∪V 〉 j �=i, j∈σc

1
(Aei)

∥∥∥2

� δ‖A‖2(|σ1|+ δ |σ c
1 |)

1− μ(D)

� δ‖A‖2(|σ1|+ δ |σ c
1 |)

1−4(δ |σ c
1 |)−1 .

The denominator can be dealt with by working with working with two separate cases:
Case 1 : δn < 32. In this case since d1 = 1/(8 ·32) we have that

d1
n

‖A‖2 =
nδ
32

< 1
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so that |σ1| = 0, and for any σ2 ⊂ {1, . . .n} , with |σ2| = 1 the statement is vacuously
true.
Case 2 : δn � 32. Note that the assumption made on the columns of A imply that
‖A‖2 � 1. So since d1 < 1/2 and |σ1|� d1n‖A‖−2 we must have that |σ c

1 |� n/2, i.e.,
4(δ |σ c

1 |)−1 � 8(δn)−1 � 1/3. Therefore,

∑
i∈σ(ω0)

∥∥∥P〈Aej∪V 〉 j∈σ(ω0 )\{i}(Aei)
∥∥∥2

� δ‖A‖2(|σ1|+ δ |σ c
1 |)

1−1/3
� 3

2
δ‖A‖2(|σ1|+ δ |σ c

1 |).

By definition of D , we also have:

|σ(ω0)| = ∑
i∈σ c

1

ξi (ω0) � δ |σ c
1 |/2.

Let

σ2 =
{

i ∈ σ(ω0) :
∥∥∥P〈Aej∪V 〉 j∈σ(ω0 )\{i}(Aei)

∥∥∥ < 2‖A‖
√

δ
}

.

Note that, given our choice of δ , σ2 satisfies the desired conclusion. We just need to
provide a lower bound on its size. Now,

∑
i∈σ(ω0)\σ2

∥∥∥P〈Aej∪V 〉 j∈σ(ω0)\{i}(Aei)
∥∥∥2

� ∑
i∈σ(ω0)

∥∥∥P〈Aej∪V 〉 j∈σ(ω0)\{i}(Aei)
∥∥∥2

� 3
2

δ‖A‖2 (|σ1|+ δ |σ c
1 |) .

so, using the definition of σ2 ,

4‖A‖2δ |σ(ω0)\σ2| � 3
2

δ‖A‖2(|σ1|+ δ |σ c
1 |).

Since |σ1| � d1n‖A‖−2 and |σ(ω0)| � δ |σ c
1 |/2, we have

4‖A‖2δ |σ(ω0)\σ2| � 3
2

δ‖A‖2
(

d1
n

‖A‖2 +2|σ(ω0)|
)

.

Solving this inequality for |σ2| yields

|σ2| � 1
4
|σ(ω0)|− 3

8
d1

n
‖A‖2 � δ

|σ c
1 |
8

−d1
n

‖A‖2 =
|σ c

1 |
64‖A‖2 −

n
200‖A‖2

� n
128‖A‖2 −

n
200‖A‖2 � n

320‖A‖2 = d1
n

‖A‖2 . �

LEMMA 4.4. For every σ1 ⊂ {1, . . . ,n} with |σ1| � d1n‖A‖−2 there exists σ2 ⊂
{1, . . . ,n} \σ1 with σ2 � (d1/2)n‖A‖−2 such that for every {a j} j∈σ1∪σ2 :∥∥∥∥∥ ∑

j∈σ1∪σ2

a jAe j

∥∥∥∥∥� 1

4
√

2|σ2| ∑
j∈σ2

|a j|.
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Proof. From Lemma 4.3 there exists σ ⊂ {1, . . . ,n} \σ1 with |σ | � d1n/‖A‖2 ,
such that if for every i ∈ σ we let Aei = xi , then∥∥P〈Aek:k∈(σ1∪σ)\{i}〉xi

∥∥ <
1√
2
.

For every i ∈ σ , let u′i = xi −P〈Aek:k∈(σ1∪σ)\{i}〉xi . Then, by orthogonality,∥∥u′i
∥∥2 = ‖xi‖2−∥∥P〈Aek:k∈(τ∪σ)\{i}〉xi

∥∥2
> 1− 1

2
=

1
2

and ‖u′i‖ � 1. In addition, for i ∈ σ1∪σ and j ∈ σ with i �= j ,

〈xi,u
′
j〉 = 〈xi,x j −P〈Aek:k∈(σ1∪σ)\{ j}〉x j〉

= 〈xi,x j〉− 〈xi,P〈Aek:k∈(σ1∪σ)\{ j}〉x j〉
= 〈xi,x j〉− 〈P〈Aek:k∈(σ1∪σ)\{ j}〉xi,x j〉 = 0.

Similarly, for i ∈ σ
〈xi,u

′
i〉 = ‖xi‖2−〈xi,P〈Aek:k∈(σ1∪σ)\{i}〉xi〉

= 1−‖P〈Aek:k∈(σ1∪σ)\{i}〉xi‖2 > 1/2.

For i ∈ σ let ui = ‖u′i‖−1u′i , so that 1 � 〈xi,ui〉 > 1/2.
If E(X) denotes the expected value of the random variable X over {−1,1}σ with

the uniform probability measure, a simple calculation yields

E
(∥∥∥∑

i∈σ
εiui

∥∥∥2)
= ∑

i∈σ
‖ui‖2 = |σ |.

Thus if
E =

{
(εi)i∈σ ∈ {−1,1}σ :

∥∥∥∑
i∈σ

εiui

∥∥∥ � 2
√
|σ |

}
,

it follows then by Markov’s inequality that

|E | � 3
4
2|σ |.

By a theorem of Sauer and Shelah (see, e.g., [5, Page 144] or [19]), whenever k satisfies

|E | >
k−1

∑
i=0

(|σ |
i

)
, (5)

then there exists a subset σ2 ⊂ σ of cardinality k such that for each tuple (εi)i∈σ2 there

exists an extension (εi)i∈σ which belongs to E . Note that (5) holds for k � |σ |
2 and

therefore we may choose σ2 with |σ2| � (d1n)/(2‖A‖2) and |σ2| � |σ |/2.
To see that σ2 satisfies the conclusion, let {a j} j∈σ1∪σ2 be given. Define θi ∈

{−1,1} for each i ∈ σ2 so that θiai = |ai| . Then let (εi)i∈σ be an extension of (θi)i∈σ2

that belongs to E . It follows that∣∣∣〈 ∑
j∈σ

ε ju j, ∑
j∈σ1∪σ2

a jx j

〉∣∣∣� ∥∥∥ ∑
j∈σ

ε ju j

∥∥∥∥∥∥ ∑
j∈σ1∪σ2

a jx j

∥∥∥ � 2
√
|σ |

∥∥∥ ∑
j∈σ1∪σ2

a jx j

∥∥∥
� 2

√
2|σ2|

∥∥∥ ∑
j∈σ1∪σ2

a jx j

∥∥∥.
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Hence

2
√

2
√

|σ2|
∥∥∥ ∑

j∈σ1∪σ2

a jx j

∥∥∥ �
∣∣∣〈 ∑

j∈σ
ε ju j, ∑

j∈σ1∪σ2

a jx j

〉∣∣∣
= ∑

j∈σ2

|a j|〈x j,u j〉 � 1
2 ∑

j∈σ2

|a j|. �

In the next step, we will require Khintchine’s inequality which states the following.
Let {1,−1}n be endowed with the uniform probability measure. For {b�}n

�=1 in R we
have

E

(∣∣∣∣∣
n

∑
�=1

ε�b�

∣∣∣∣∣
)

� 1√
2

(
n

∑
�=1

|b�|2
)1/2

.

LEMMA 4.5. For every σ1 ⊂ {1, . . . ,n} with |σ1|� d1n‖A‖−2 , there exists σ2 ⊂
{1, . . . ,n} \σ1 with σ2 � (d1/4)n‖A‖−2 such that for every {a j} j∈σ1∪σ2 in R:∥∥∥∥∥ ∑

j∈σ1∪σ2

a jAe j

∥∥∥∥∥� 1

16
√

2

(
∑
j∈σ2

|a j|2
)1/2

.

Proof. Consider the set σ supplied by applying Lemma 4.4 and denote c′ =
1/(4

√
2) . We need to establish a subset σ2 ⊂ σ of cardinality |σ2| � |σ |/2 such

that for any choice of coefficients in {a j} j∈σ1∪σ2 :∥∥∥∥∥ ∑
j∈σ1∪σ2

a jAe j

∥∥∥∥∥� c′

4

(
∑
j∈σ2

|a j|2
)1/2

.

Suppose, for contradiction, that such a subset does not exist. Let Aej = x j . Put
υ1 = σ . Then there exists a vector y1 = ∑k∈υ1∪σ1

b1,kxk such that ‖y1‖ < c′/4, but

∑k∈υ1

∣∣b1,k
∣∣2 = 1.

Assume that we have already constructed subsets υ1 ⊃ υ2 ⊃ ·· · ⊃ υp with |υp|�
|σ |/2, and vectors {y�}p

�=1 such that y� = ∑k∈υ�∪σ1
b�,kxk and ‖y�‖ < c′/4 and

∑k∈υ�

∣∣b�,k

∣∣2 = 1, for 1 � � � p . Consider the set

υp+1 =

{
k ∈ υp :

p

∑
�=1

∣∣b�,k

∣∣2 < 1

}
.

If |υp+1| < |σ |/2, then stop the procedure. On the other hand, if |υp+1| � |σ |/2, then
there exists a vector

yp+1 = ∑
k∈υp+1∪σ1

bp+1,kxk

such that ‖yp+1‖ < c′/4 and ∑k∈υp+1

∣∣bp+1,k

∣∣2 = 1.
By the pigeon-hole principle, this algorithm must eventually terminate, say after

m steps. Then

|υm+1| < |σ |
2
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and thus, for k ∈ σ \υp+1 , we have that
m

∑
�=1

∣∣b�,k
∣∣2 � 1

with the convention that b�,k = 0 for those � and k for which b�,k has not been defined.
Hence

m =
m

∑
�=1

∑
k∈υ�

∣∣b�,k

∣∣2 = ∑
k∈σ

m

∑
�=1

∣∣b�,k

∣∣2 � ∑
k∈σ\υm+1

m

∑
�=1

∣∣b�,k

∣∣2 � |σ \υm+1|

and this implies that m � |σ |/2.
On the other hand, we have

c′
√

m
4

>

(
m

∑
�=1

‖y�‖2

) 1
2

=

⎛
⎝∫ ∥∥∥∥∥

m

∑
�=1

ε�y�

∥∥∥∥∥
2

dε

⎞
⎠

1
2

�
∫ ∥∥∥∥∥

m

∑
�=1

ε�y�

∥∥∥∥∥dε

=
∫ ∥∥∥∥∥ ∑

k∈σ∪σ1

(
m

∑
�=1

ε�b�,k

)
xk

∥∥∥∥∥dε

� c′√|σ | ∑
k∈σ

∫ ∣∣∣∣∣
m

∑
�=1

ε�b�,k

∣∣∣∣∣dε (6)

� c′√
2 |σ | ∑

k∈σ

(
m

∑
�=1

∣∣b�,k

∣∣2)
1
2

(7)

where (6) follows from Lemma 4.4, and (7) follows from Khintchine’s inequality.
However, the inductive construction implies

m

∑
�=1

∣∣b�,k
∣∣2 � 2 (8)

for all k ∈ σ . This is clear if k ∈ υm+1 because of how we construct υm+1 , while if
k ∈ (υp \υp+1) for some 1 � p � m , we have that

m

∑
�=1

∣∣b�,k

∣∣2 =
p−1

∑
�=1

∣∣b�,k

∣∣2 +
∣∣bp,k

∣∣2 < 2.

It follows from (7) and (8) that√
m |σ |
2

>
√

2 ∑
k∈σ

(
m

∑
�=1

∣∣b�,k
∣∣2)

1
2

� ∑
k∈σ

(
m

∑
�=1

∣∣b�,k
∣∣2)

1
2
(

m

∑
�=1

∣∣b�,k
∣∣2)

1
2

= ∑
k∈σ

m

∑
�=1

∣∣b�,k

∣∣2 = m.

Thus m < |σ |/4 which contradicts the fact that m � |σ |/2. �
We now prove Theorem 4.1.

Proof of Theorem 4.1. First apply Lemma 4.5 to obtain σ2 that satisfies the desired
conclusion for d2 = d1/4. We will next assume |σ1|� d2n‖A‖−2 and d1d2n‖A‖−4 � 1.
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Let d3 = d2
2 . Choose σ̃2 ⊂ σ2 with the largest possible cardinality that satisfies the

implicit bound |σ̃2| � d1(|σ1|+ |σ̃2|)/‖A‖2 (such sets exist; the empty set is one such
example). Define n′ = |σ1|+ |σ̃2| and note that

n′ � |σ1| � d2
n

‖A‖2 .

Since |σ2|� d2n/‖A‖2 , the set σ2 is sufficiently large to have allowed us to choose σ̃2

such that

|σ̃2| � �d1d2n/‖A‖4� � (d1d2n/‖A‖4)/2 (because d1d2n/‖A‖4 � 1)

� d3n/‖A‖4.

Now we define V = 〈e j : j ∈ σ1 ∪ σ̃2〉 and A′ = A|V . An application of Lemma 4.5 to
the matrix A′ and the set σ̃2 , yields a subset τ1 ⊂ σ1 such that

|τ1| � d2n
′/‖A′‖2 � d2

2n/‖A‖4 � d3n/‖A‖4,

and for any choice of scalars {a j} j∈τ1∪σ̃2 , we have∥∥∥∥∥ ∑
j∈τ1∪σ̃2

a jAe j

∥∥∥∥∥� 1

16
√

2

(
∑
j∈τ1

|a j|2
)1/2

. (9)

As σ2 was provided by Lemma 4.5 and τ1 ⊂ σ1 , σ̃2 ⊂ σ2 we also have∥∥∥∥∥ ∑
j∈τ1∪σ̃2

a jAe j

∥∥∥∥∥� 1

16
√

2

(
∑
j∈σ̃2

|a j|2
)1/2

. (10)

Recall that for any two non-negative numbers x , y we have max{x,y} � (1/
√

2)(x2 +
y2)1/2 , which in conjunction with (9) and (10) yields the desired inequality. �

The above theorem guarantees the existence of subsets of columns that can be
“stitched” together without violating the minimal stretch property.

4.2. The proof of Theorem 1.4

Recall that an m-dimensional subspace U of Rn is a λ -quadratic convex combi-
nation of Uσ1 and Uσ2 , where λ ∈ [0,1] and σ1 = {i1 < · · ·< im} , σ2 = { j1 < · · ·< jm}
are disjoint subsets of {1, . . . ,n} , such that U is spanned by the orthonormal sequence
uk = λ 1/2eik +(1−λ )1/2e jk , k = 1, . . . ,m .

In order to prove Theorem 1.4, we will combine Theorem 4.1 with a continuous
traversal between disjoint subsets of the basis via quadratic convex combinations.

LEMMA 4.6. Let A : [a,b] → Mn×n be a continuous matrix function and let σ1 ,
σ2 ⊂ {1, . . . ,n} such that |σ1| = |σ2| and σ1 ∩σ2 = /0 . Let U = 〈ei : i ∈ σ1∪σ2〉 and
suppose there exists a c > 0 such that mA(t)|U � c for all t ∈ [a,b] . Let {U(t)}t∈[a,b]
be such that, for each t ∈ [a,b] , U(t) is the (1− (t − a)/(b− a))-quadratic convex
combination of Uσ1 and Uσ2 . Then {U(t)}t∈[a,b] is a continuous choice of subspaces
of Rn such that U(a) = Uσ1 , U(b) = Uσ2 , and mA(t)|U(t)

� c for all t ∈ [a,b] .
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Proof. Write σ1 = {i1 < · · · < im} , σ2 = { j1 < · · · < jm} so that for every t ∈
[a,b] ,

uk(t) =
(
1− t−a

b−a

)1/2
eik +

( t −a
b−a

)1/2
e jk , k = 1, . . . ,m

is an orthonormal basis for U(t) . As this is a continuous choice of orthonormal basis,
by Lemma 2.4, {U(t)}t∈[a,b] is a continuous choice of subspaces and clearly U(a) =
Uσ1 , U(b) = Uσ2 .

To complete the proof, for t ∈ [a,b] note that

mA(t)|U(t)
= inf{‖A(t)x‖ : x ∈U(t),‖x‖ = 1}
� inf{‖A(t)x‖ : x ∈U,‖x‖ = 1} (as U(t) ⊂U)

= mA(t)|U � c. �

We now have all the tools at our disposal to prove Theorem 1.4, which is restated
for convenience.

THEOREM 4.7. There exist universal constants c = 1/33 and d = 2−21 such that
for all continuous matrix functions A : R → Mn×n with the property that ‖A(t)ei‖ =
1 for all t ∈ R and 1 � i � n, there exists a continuous family of m-dimensional
subspaces {U(t)}t∈R of Rn with m � dn/Λ4 where Λ = supt∈R ‖A(t)‖ such that
‖A(t)v‖ � c‖v‖ for every t ∈ R and every v ∈ U(t) . Furthermore, each subspace
U(t) is a quadratic convex combination of disjoint basis vectors.

Proof. Note that c = 1/33 is a perturbation of 1/32 and d = d3 , which are from
the conclusion of Theorem 4.1 and Remark 4.2. If d1d2n/Λ4 � 1, then we may simply
select U(t) = 〈e1〉 , for all t ∈ R . Hence, we may assume d1d2n/Λ4 � 1. Note that⌈

d2
n

Λ2

⌉
=
⌈1
4
d1

n
Λ2

⌉
� d1

n
Λ2 ,

since d1n/Λ2 � d1d2n/Λ4 � 1. Furthermore,⌈
d3

n
Λ4

⌉
� d3

n
Λ4 +1 � d2

2Λ2

(
d2

n
Λ2

)
+

d1

Λ2

(
d2

n
Λ2

)
� 2d1

(
d2

n
Λ2

)
<

1
3

⌈
d2

n
Λ2

⌉
.

(11)

By Lemma 3.4 we can find an increasing sequence of points (ti)i∈Z such that for
all i∈Z and t in [ti−1,ti+1] , ‖A(ti)−A(t)‖� ε = 1/32−1/33. Moreover, by Theorem
4.1 applied to the matrix A(t0) and the empty set, there exists a subset σ0 ⊂ {1, . . . ,n}
with |σ0| = �d2n/Λ2� � d1n/Λ2 such that for any choice of coefficients {a j} j∈σ0 we
have ∥∥∥ ∑

j∈σ0

a jA(t0)e j

∥∥∥� 1

16
√

2

(
∑
j∈σ0

|a j|2
)1/2

� 1
32

(
∑
j∈σ0

|a j|2
)1/2

.

By using ‖A(t0)−A(t)‖ � ε = 1/32−1/33 we obtain that if U = 〈e j : j ∈ σ0〉 , then
mA(t)|U � 1/33 for all t ∈ [t−1,t1] (see the last part of Lemma 3.4).

We now focus on the interval [t0,∞) as a symmetric argument can be applied to
(−∞, t0] . In reality, an extra stitching needs to be performed at t0 to concatenate the
two solutions. We omit this as it is essentially contained in the ensuing argument.
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Iteratively applying Theorem 4.1, for i � 0, we can obtain the sets with following
properties:

(i) σi+1 ⊂ {1, . . . ,n} \σi with |σi+1| = �d2n/Λ2� � d1n/Λ2 such that, for U = 〈e j :
j ∈ σi+1〉 , we have mA(t)|U � 1/33 for t ∈ [ti,ti+2] .

(ii) ˜̃σi+1 ⊂ σi+1 and τ̃i ⊂ σi with | ˜̃σi+1| = |τ̃i| = �d3n/Λ4� such that, for U = 〈e j :
j ∈ τ̃i ∪ ˜̃σi+1〉 , we have mA(t)|U � 1/33 for t ∈ [ti, ti+1] .

Indeed, suppose σi has been constructed with |σi|= �d2n/Λ2�� d1n/Λ2 such that, for
U = 〈e j : j ∈ σi〉 , we have mA(t)|U � 1/33 for t ∈ [ti, ti+2] . To obtain the sets σi+1 , τ̃i

and ˜̃σi+1 , we apply Theorem 4.1 to the matrix A(ti+1) and the set σi . Because |σi| �
d1n/Λ2 , we first get σi+1 ⊂ {1, . . . ,n} with |σi+1| � d2n/Λ2 (which, after truncating,
we may assume satisfies |σi+1| = �d2n/Λ2�) such that, for any choice of coefficients
{a j} j∈σi∪σi+1 , ∥∥∥ ∑

j∈σi∪σi+1

a jA(ti+1)e j

∥∥∥ � 1
32

(
∑

j∈σi+1

|a j|2
)1/2

.

Using ‖A(ti+1)−A(t)‖� ε = 1/32−1/33 we obtain that, if U = 〈e j : j ∈ σi+1〉 , then
mA(t)|U � 1/33 for all t ∈ [ti,ti+2] . Since |σi| = �d2n/Λ2� � d2n/Λ2 , the second part
of Theorem 4.1 yields τ̃i ⊂ σi and ˜̃σi+1 ⊂ σi+1 with |τ̃i|, | ˜̃σi+1| � d3n/Λ4 (which
after truncating we may assume |τ̃i| = | ˜̃σi+1| = �d3n/Λ4�) such that for any choice of
coefficients {a j} j∈τ̃i∪ ˜̃σi+1

we have∥∥∥ ∑
j∈τ̃i∪ ˜̃σi+1

a jA(ti+1)e j

∥∥∥ � 1
32

(
∑

j∈τ̃i∪ ˜̃σi+1

|a j|2
)1/2

.

By using ‖A(ti+1)−A(t)‖� ε = 1/32−1/33 we obtain that, if U = 〈e j : j ∈ τ̃i∪ ˜̃σi+1〉 ,
then mA(t)|U � 1/33 for all t ∈ [ti,ti+1] .

To construct our continuous collection of subspaces, consider the interval [ti, ti+1] .
Using 〈e j : j ∈ τ̃i〉 at ti and 〈e j : j ∈ ˜̃σi+1〉 at ti+1 , we will invoke Lemma 4.6 to con-
struct a continuous collection of subspaces {U(t)}t∈[ti,ti+1] , that has dimension �d3n/Λ4�
for every i � 0. A diagram of the construction has been provided below for the reader’s
convenience:

σi σi+1 σi+2

τi τi+1

σi+1 σi+2

˜ ˜
˜̃ ˜̃

ti ti+1
ti+2
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As indicated on the diagram there is no reason to suppose τ̃i+1 = ˜̃σi+1 , so we
must devise a way to “stitch” together the collection of subspaces at each endpoint, in
order to construct a continuous collection of subspaces {U(t)}t∈R . We choose an ηi ∈
(0,

ti+1−ti
2 ) and allow for another instance of “stitching” in the interval [ti+1 −ηi, ti+1) .

This allows for us to continuously switch between [ti,ti+1] and [ti+1,ti+2] .
It is necessary to observe here that both τ̃i+1 and ˜̃σi+1 are subsets of σi+1 . Thus

the minimal stretch property holds for U = 〈e j : j ∈ τ̃i+1 ∪ ˜̃σi+1〉. We would like to
switch from 〈e j : j ∈ ˜̃σi+1〉 at ti−1−ηi to 〈e j : j ∈ τ̃i+1〉 at ti+1 . To do this, it suffices
to choose a new subset ξi+1 ⊂ σi+1 \ (τ̃i+1 ∪ ˜̃σi+1) with |ξi+1| = |τ̃i+1| = | ˜̃σi+1| =
�d3n/Λ4� . This is possible because

|τ̃i+1 ∪ ˜̃σi+1| � 2
⌈
d3

n
Λ4

⌉
<

2
3

⌈
d2

n
Λ2

⌉
=

2
3
|σi+1| (by (11)).

We can now switch between the following subspaces for each [ti, ti+1] :

At ti : Begin with U(ti) = 〈e j : j ∈ τ̃i〉.
At ti+1−ηi : Switch to U(ti+1−ηi) = 〈e j : j ∈ ˜̃σi+1〉 using Lemma 4.6.

At ti+1−ηi/2 : Switch to U(ti+1−ηi/2) = 〈e j : j ∈ ξi〉 using Lemma 4.6.

At ti+1 : Switch to U(ti+1) = 〈e j : j ∈ τ̃i+1〉 using Lemma 4.6. �

5. Future research directions

In Theorem 1.4 the continuous choice of subspaces preserves a strong type of co-
ordinate structure. This comes at a steep price that needs to be paid in the dimensional
estimate, which is of the order n/‖A‖4 , compared to the point-wise order n/‖A‖2 pro-
vided by Theorem 1.1. The reason is the iterative application of the Bourgain-Tzafriri
type Theorem 4.1. Therefore, there is potential room for improvement in answering
Problem 2 in the introduction, e.g., by lowering the exponent 4 to which ‖A‖ is raised,
while preserving some of the coordinate structure of the subspaces.

An alternative direction is the achievement of kindred results to Theorem 1.4 with
proxies of stable rank, e.g., the p -stable rank or entropic rank (see Remark 3.8) of an
continuous A : R → Mn×n , that does not necessarily have unit-length columns. It may
be possible to obtain a continuous choice of subspaces which preserve some coordinate
structure on which A is well invertible and with dimensional estimates similar to those
found in [21], [20], [18], and [17].

It is also important noting that the topology of the domain R of the continuous
matrix function plays a big role on how the dimensional estimate n/‖A‖4 is obtained
in the proof of Theorem 1.4. Increasing the dimension of the domain might require
further applications of a Bourgain-Tzafiri type theorem and thus further worsening the
exponent of the estimate n/‖A‖4 even further. It would be interesting to prove results
similar to Theorems 1.2 and 1.4 for continuous matrix functions of a multi-dimensional
domain.
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