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APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS

QIHUI LI, DON HADWIN AND WENJING LIU

(Communicated by I. Klep)

Abstract. Suppose A is a separable unital ASH C*-algebra, M is a sigma-finite II∞ factor
von Neumann algebra, and π,ρ : A → M are unital ∗ -homomorphisms such that, for every
a ∈A , the range projections of π (a) and ρ (a) are Murray von Neuman equivalent in M . We
prove that π and ρ are approximately unitarily equivalent modulo KM , where KM is the
norm closed ideal generated by the finite projections in M . We also prove a very general result
concerning approximate equivalence in arbitrary finite von Neumann algebras.

1. Introduction

In 1977 D. Voiculescu [15] proved a remarkable theorem concerning approximate
(unitary) equivalence for representations of a separable unital C*-algebra on a separable
Hilbert space. The beauty of the theorem is that the characterization was in purely
algebraic terms. This was made explicit in the reformulation of Voiculescu’s theorem
[7] in terms of rank.

THEOREM 1. [15] Suppose B(H) is the set of operators on a separable Hilbert
space H and K (H) is the ideal of compact operators. Suppose A is a separable
unital C*-algebra, and π ,ρ : A→ B(H) are unital ∗ -homomorphisms. The following
are equivalent:

1. There is a sequence {Un} of unitary operators in B(H) such that

(a) Unπ (a)U∗
n −ρ (a) ∈K (H) for every n ∈ N and every a ∈ A .

(b) ‖Unπ (a)U∗
n −ρ (a)‖→ 0 for every a ∈ A .

2. There is a sequence {Un} of unitary operators in B(H) such that, for every
a ∈ A ,

‖Unπ (a)U∗
n −ρ (a)‖→ 0.
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3. For every a ∈ A ,
rank(π (a)) = rank(ρ (a)) .

4. kerπ = kerρ , and π |span−‖‖(∪{ranπ(a):π(a)∈K(H)}) is unitarily equivalent to
ρ |span−‖‖(∪{ranρ(a):ρ(a)∈K(H)}) .

If π : A → B(H) is a unital ∗ -homomorphism, we will write π ∼a ρ in B(H)
to mean that statement (2) in the preceding theorem holds and we will write π ∼a ρ
(K (H)) in B(H) to indicate statements (1) and (2) hold. When the C*-algebra A
is not separable, π ∼a ρ means that there is a net of unitaries {Uλ} such that, for
every a ∈ A ,

∥∥Uλ π (a)U∗
λ −ρ (a)

∥∥→ 0. It was shown in [7] that π ∼a ρ if and only
if rank(π (a)) = rank(ρ (a)) always holds even when A or H is not separable, where,
for T ∈ B(H) , rank(T ) is the Hilbert-space dimension of the projection R(T ) onto
the closure of the range of T .

Later Huiru Ding and the second author [4] extended the notion of rank to opera-
tors in a von Neumann algebra M , i.e., if T ∈M , then M-rank(T ) is the Murray von
Neumann equivalence class of the projection R(T ) onto the closure of the range of T .
If p and q are projections in a C*-algebra W , we say that p and q are Murray-von
Neumann equivalent in W , written p∼ q , if there is a partial isometry v∈W such that
v∗v = p and vv∗ = q . Thus M-rank(T ) = M-rank(S) if and only if R(S) ∼ R(T ) .
In [4] they extended Voiculescu’s theorem for representations of a separable AH C*-
algebra into a von Neumann algebra on a separable Hilbert space, i.e., π ∼a ρ in M if
and only if, for every a ∈A ,

M-rank(π (a)) = M-rank(ρ (a)) .

When the algebra A is ASH, their characterization works when the von Neumann
algebra is a II1 factor [4]. (See Theorem 4.) In [2] A. Ciuperca, T. Giordano, P. W.
Ng, and Z. Niu found a limit for the results in [4]. We say that two representations
π ,ρ : A→M are weak*-approximately equivalent if and only if, there are nets {Uλ}
and {Vλ} of unitary operators in M such that, for every a ∈ A ,

weak*-limU∗
λ π (a)Uλ = ρ (a) and weak*-limV ∗

λ ρ (a)Vλ = π (a) .

They proved that a separable unital C*-algebra A is nuclear if and only if, for every von
Neumann algebra M , and all representations π ,ρ : A→M , we have that for all a ∈
A , M - rank(π (a)) =M- rank(ρ (a)) , implies that π and ρ are weak*-approximately
equivalent.

Therefore the central questions in this subject are:

QUESTION 1. Are the results in [4] true whenever A is nuclear?
Another important question involves the analogue of part 1(a) of Theorem 1 holds

when M is a semifinite and K (H) is replaced with the norm closed ideal KM gener-
ated by the finite projections in M .

QUESTION 2. If π ,ρ : A → M are approximately equivalent representations
from a separable unital C*-algebra A into a semifinite von Neumann algebra M acting
on a separable Hilbert space, does there exist a sequence {Un} of unitary operators in
M such that
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1. limn→∞ ‖U∗
n π (a)Un−ρ (a)‖ = 0 for every a ∈ A , and

2. Unπ (a)U∗
n −ρ (a) ∈ KM for every n ∈ N and every a ∈ A?

If these two conditions hold, we write π ∼a ρ (KM ).
When A is abelian the second author and Rui Shi [9] proved that Question 2 has

an affirmative answer when M is a sigma-finite II∞ factor. This was extended to the
case of AF C*-algebras by Shilin Wen, Junsheng Fang and Rui Shi [5], and to the case
when A is an AH C*-algebra, and by Junhao Shen and Rui Shi [14].

In this paper we show (Theorem 5) that Question 1 has an affirmative answer when
M is a finite von Neumann algebra and A is satisfies the property that, for every finite
subset F of A and every ε > 0, there is a type I von Neumann algebra B contained
in the second dual A## such that, for every x ∈ F ,

dist(x,B) < ε.

If this happens we say that A is approximately type I in A## . This class of C*-algebras
contains the ASH algebras and algebras that are direct limits of GCR C*-algebras.
For these theorems there are no assumptions on A being separable or M acting on a
separable Hilbert space. We say that A is approximately finite type I in A## if the type
I algebra B can always be chosen to be a finite type I von Neumann algebra. It is clear
that this latter property implies that A is strongly quasidiagonal. We do not know if
this property is equivalent to strong quasidiagonality.

In [7] the second author extended Voiculescu’s theorem (Theorem 1) in another
way:

THEOREM 2. [7] Suppose A is a separable unital C*-algebra, H is a separable
Hilbert space, and π ,ρ : A → B(H) are unital representations. The following are
equivalent:

1. For every a ∈ A ,
rankπ (a) � rank (ρ (a))

2. There is a representation σ such that

ρ ∼a π ⊕σ .

An analogue of this result was proved in [9] when M is a II1 factor and A is
abelian. This result was further extended to the case when A is AF by Shilin Wen,
Junsheng Fang and Rui Shi [5]. We extend this result to the case when there is an
LF C*-algebra D such that A ⊂ D ⊂ A## . This class of algebras includes the ASH
C*-algebras.

The proof of Voiculescu’s theorem (Theorem 1) have two parts.
The “easy part” involves the compact operators. Suppose A is a separable unital

C*-algebra and π : A→B (�2
)

is a unital ∗ -homomorphism. Then sup{R(π(a)) :
π(a) ∈ K(�2)} reduces π and leads to a decomposition

π = πK(H) ⊕π1.
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The “easy part” says that if π ∼a ρ , then πK(H) and ρK(H) must be unitarily equivalent.
Using descriptions of C*-algebras of compact operators and their representations (see
[1]), and it is not too hard to show that the equality of rank conditions imply that πK(H)
and ρK(H) are unitarily equivalent. When B(H) is replaced with a sigma-finite type
II∞ factor von Neumann algebra M and K (H) is replaced with the closed ideal KM
generated by the finite projections, the hard part is harder (and unsolved) and the easy
part is not true. For example, if M is the set of all bounded operator matrices (Ai j)
with each Ai j in the free group factor LF2 ⊂ B

(
�2 (F2)

)
, and U,V are the unitary

generators of LF2 , then A = diag(U,0,0, . . .) and B = diag(V,0,0, . . .) are in KM and
are approximately equivalent, but not unitarily equivalent. If A = C∗ (A) , π (A) = A
and ρ (A) = B , then π ∼a ρ in M , but πKM and ρKM are not unitarily equivalent in
M . However, πKM and ρKM are approximately equivalent. So the analogue of the
“easy” part must look something like

πKM ∼a ρKM (KM) .

In Theorem 7 we prove that this holds in a very general setting when A is a separable
unital ASH algebra. One of our main results (Theorem 8) gives an affirmative answer to
both Questions 1 and 2 when A is a separable ASH C*-algebra and M is a semifinite
von Neumann algebra acting on a separable Hilbert space.

The “hard” part of the proof of Voiculescu’s theorem is showing that if A⊂ B
(
�2
)

is a separable unital C*-algebra, π :A→ B
(
�2
)

is a unital ∗ -homomorphism such that
K(�2

)∩A⊂ kerπ , then
idA⊕π ∼a idA (K(�2) ),

where idA denotes the identity representation on A .
In a deep and beautiful paper [12], Qihui Li, Junhao Shen, and Rui Shi proved the

best-to-date version of the “hard” part.

THEOREM 3. [12] Suppose A is a separable nuclear C*-algebra, M is a sigma-
finite type II∞ factor von Neumann algebra and KM is the closed ideal generated by
the finite projections in M . If π ,σ : A→M are unital ∗ -homomorphisms such that

π−1 (KM) ⊂ kerρ ,

then
π ∼a π ⊕σ (KM) .

2. Finite von Neumann algebras

A separable C*-algebra is AF if it is a direct limit of finite-dimensional C*-algebras.
A separable C*-algebra is homogeneous if it is a finite direct sum of algebras of the
form Mn (C (X)) , where X is a compact Hausdorff space. A unital C*-algebra A is
subhomogeneous if there is an n ∈ N , such that every irreducible representation is on
a Hilbert space of dimension at most n ; equivalently, if xn = 0 for every nilpotent
x ∈ A . Every subhomogeneous algebra is a subalgebra of a homogeneous one. Every
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subhomogeneous von Neumann algebra is homogeneous; in particular, if A is subho-
mogeneous, then A## is homogeneous, i.e., A## is a finite direct sum of algebras of
the form Mn (L∞ (X ,Σ,μ)) with (X ,Σ,μ) a measure space. A C*-algebra is approxi-
mately subhomogeneous (ASH) if it is a direct limit of subhomogeneous C*algebras.
A C*-algebra A is GCR (Type I) if for every irreducible representation π : A→ B(H)
we have K (H) ⊂ π (A) . Thus every subhomogeneous C*-algebra is GCR and every
ASH C*-algebra is a direct limit of GCR C*-algebras. It was proved by Glimm [6]
that a C*-algebra A is GCR if and only if, for every representation π : A → B(H) ,
π (A)′′ is a type I von Neumann algebra. This is equivalent to saying A## is a type I
von Neumann algebra.

There has been a lot of work determining which separable C*-algebras are AF-
embeddable. A (possibly nonseparable) C*-algebra B is LF if, for every finite subset
F ⊂ B and every ε > 0 there is a finite-dimensional C*-algebra D of B such that, for
every b ∈ F , dist(b,D) < ε . Every separable unital C*-subalgebra of a LF C*-algebra
is contained in a separable AF subalgebra [3]. A C*-algebra A is AL if, for every finite
subset F ⊂ A and every ε > 0, there is a finite-dimensional C*-subalgebra D of A
such that, for every x ∈ F , dist(b,D) < ε . We say that a unital C*-subalgebra B of a
unital C*-algebra E is relatively LF in E if and only if, for every finite subset F ⊂ B
and every ε > 0 there is a finite-dimensional C*-algebra D of E such that, for every
b ∈ F , dist(b,D) < ε .

We are interested in the property that a C*-algebra A is relatively LF in A## .
If A is subhomogeneous, then A## is a finite direct sum of algebras of the form
Mn (L∞ (Ω,Σ,μ)) with (Ω,Σ,μ) a measure space. If {E1, . . . ,Es} is a measurable
partition of Ω , then the set of matrices of the form ( fi j) with each fi j in the linear span
of {χE1 , . . . ,χEs} is an sn2 -dimensional C*-subalgebra of Mn (L∞ (Ω,Σ,μ)) . Since
the set of n×n matrices of simple functions is dense in Mn (L∞ (Ω,Σ,μ)) , we see that
Mn (L∞ (Ω,Σ,μ)) is LF. If A is ASH, then there is a sequence {An} of subhomoge-
neous C*-subalgebras of A such that

A1 ⊂A2 ⊂ ·· · and A = (∪n∈NAn)
−‖‖ .

It follows that A⊂ (∪n∈NA##
n

)−‖‖ ⊂ A## and (∪n∈NAn)
−‖‖ is LF. Thus every subho-

mogeneous C*-algebra is relatively LF in its second dual.
For LF C*-algebras we can prove an approximate equivalence theorem for repre-

sentation into an arbitrary unital C*-algebra.

LEMMA 1. Suppose B is a unital LF C*-algebra and D = Mn1 (C)⊕ ·· · ⊕
Mnk (C) and W is a unital C*-algebra.

1. If π ,ρ : D →W are unital ∗ -homomorphisms and π (e11,s) ∼ ρ (e11,s) for 1 �
s � k, where

{
ei j,s
}

is the system of matrix units for Mns (C) , then π and ρ are
unitarily equivalent in W .

2. If π ,ρ : B→W are unital ∗ -homomorphisms such that π (p) ∼ ρ (p) in W for
every projection p ∈ B , then π ∼a ρ in W .
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Proof. (1) Since eii,s ∼ e11,s in D for 1 � i � ns and 1 � s � k , we see that
π (eii,s) ∼ ρ (eii,s) in W for 1 � i � ns and 1 � s � k. It follows from [4, Theorem 2]
that π and ρ are unitarily equivalent in W .

(2) Suppose Λ is the set of all pairs λ = (Fλ ,ελ ) with Fλ a finite subset of B
and ελ > 0. Clearly Λ is directed by (⊂,�) . For λ ∈ Λ , we can choose a finite-
dimensional algebra Dλ ⊂ B such that, for every x ∈ Fλ , dist(x,Dλ ) < ελ . It follows
from part (1) that there is a unitary operator Uλ ∈ W such that, for every x ∈ Dλ ,
Uπ (x)U∗ = ρ (x) . For each a ∈ Fλ , we can choose xa ∈ Dλ such that ‖a− xa‖ < ελ .
Hence, for every a ∈ Fλ∥∥Uλ π (a)U∗

λ −ρ (a)
∥∥=

∥∥Uλ π (a− xa)U∗
λ −ρ (a− xa)

∥∥< 2ελ .

It follows that, for every a ∈A ,

lim
λ

∥∥Uλ π (a)U∗
gl −ρ (a)

∥∥= 0. �

A key property of a finite von Neumann algebra M is that there is a faithful
normal tracial conditional expectation ΦM from M to its center Z (M) , and that for
projections p and q in M , we have p and q are Murray-von Neumann equivalent if
and only if ΦM (p) = ΦM (q) . (See [11].) The map ΦM is called the center-valued
trace on M . Note that in the next lemma and the theorem that follows, there is no
separability assumption on the C*-algebra A or the dimension of the Hilbert space on
which M acts. This lemma appears in [2] and [8].

LEMMA 2. Suppose A is a (possibly nonunital) C*-algebra, M is a finite von
Neumann algebra. If π ,ρ : A→M are ∗ -homomorphisms, the following are equiva-
lent:

1. For every a ∈ A ,
M-rank(π (a)) = M-rank(ρ (a)) ,

2. ΦM ◦π = ΦM ◦ρ .

Proof. (1) ⇒ (2) . We can extend π and ρ to weak*-weak* continuous *-homo-
morphisms π̂ , ρ̂ : A## →M . Suppose x ∈ A and 0 � x � 1. Suppose 0 < α < 1 and
define fα : [0,1] → [0,1] by

f (t) = dist(t, [0,α]) .

Since f (0) = 0, we see that f (x)∈A , and χ(α ,1] (x) = weak*-limn→∞ f (x)1/n ∈A## ,
so

R( f (x)) = χ(α ,1] (x) .

It follows that
π̂
(
χ(α ,1] (x)

)
= R(π ( fα (x))) = χ(α ,1] (π (x))
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and
ρ̂
(
χ(α ,1] (x)

)
= R(ρ ( fα (x))) = χ(α ,1] (ρ (x)) .

Hence
ΦM

(
π̂
(
χ(α ,1] (x)

))
= ΦM

(
ρ̂
(
χ(α ,1] (x)

))
.

Suppose 0 < α < β < 1. Since χ(α ,β ] = χ(α ,1]− χ(β ,1], we see that

ΦM
(
π̂
(
χ(α ,β ] (x)

))
= ΦM

(
ρ̂
(
χ(α ,β ] (x)

))
.

Thus, for all n ∈ N ,

ΦM

(
π̂

(
n−1

∑
k−1

k
n

χ( k
n , k+1

n ] (x)

))
= ΦM

(
ρ̂

(
n−1

∑
k−1

k
n

χ( k
n , k+1

n ] (x)

))
.

Since, for every n ∈ N , ∥∥∥∥∥x−
n−1

∑
k−1

k
n

χ( k
n , k+1

n ] (x)

∥∥∥∥∥� 1/n,

it follows that

ΦM (π (x)) = ΦM (π̂ (x)) = ΦM (ρ̂ (x)) = ΦM (ρ (x)) .

Since A is the linear span of its positive contractions, ΦM ◦π = ΦM ◦ρ .
(2) ⇒ (1). This is contained in [4]. �

THEOREM 4. Suppose A is relatively LF in A## and M is a finite von Neumann
algebra. If π ,ρ : A→M are unital ∗ -homomorphisms, then the following are equiv-
alent:

1. π ∼a ρ in M.

2. M-rank(π (a)) = M-rank(ρ (a)) for every a ∈ A .

3. ΦM ◦π = ΦM ◦ρ .

Proof. (3)⇒ (1) . We can extend π and ρ to weak*-weak* continuous ∗ -homo-
morphisms π̂, ρ̂ : A## → M . Since ΦM is weak*-weak* continuous, it follows that
ΦM ◦ π̂ = ΦM ◦ ρ̂ .

Let
Λ = {(F,ε) : F ⊂A,F is finite, ε > 0} ,

ordered by the relation (⊂,�) . Suppose λ = (F,ε) ∈ Λ . Since A is relatively LF in
A## , there is a finite-dimensional algebra B ⊂A## such that, for every x ∈ F ,

dist(x,B) < ε.
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Thus, for each x ∈ F there is a bx ∈ B such that

‖x−bx‖ < ε/2.

We know from Lemma 1 that π̂|B and ρ̂ |B are unitarily equivalent in M . Hence, there
is a unitary Uλ ∈M such that, for every b ∈ B ,

U∗
λ π̂ (B)Uλ = ρ̂ (b) .

Thus, for every x ∈ F,∥∥U∗
λ π (x)Uλ −ρ (x)

∥∥�
∥∥U∗

λ π̂ (x−bx)Uλ
∥∥+‖ρ̂ (bx − x)‖ < ε.

Hence, for every x ∈A

lim
λ

∥∥U∗
λ π (x)Uλ −ρ (x)

∥∥= 0.

Thus π ∼a ρ (M) .
(1) ⇒ (3). Suppose {Uλ} is a net of unitaries in M such that, for every a ∈ A ,∥∥Uλ π (a)U∗

λ −ρ (a)
∥∥→ 0.

Thus, since ΦM is tracial and continuous,

ΦM (ρ (a)) = lim
λ

ΦM
(
Uλ π (a)U∗

λ
)

= ΦM (π (a)) .

(3) ⇒ (2). Assume (3). Then, for any a ∈ A ,

ΦM (R(π (a))) = lim
n→∞

ΦM
(

π
(
(aa∗)1/n

))
= lim

n→∞
ΦM

(
ρ
(
(aa∗)1/n

))
= ΦM (R(π (a))) .

Hence R(π (a)) ∼ R(ρ (a)) . Thus M-rank(π (a)) = M-rank(ρ (a)) .
(2) ⇒ (3). This is Lemma 2. �

REMARK 1. It is important to note that the proof of (2)⇒ (3) in Theorem 4 holds
even when A is not unital.

Here is our main theorem of this section.

THEOREM 5. Suppose A is a unital C*-algebra that is approximately type I in
A## , M is a finite von Neumann algebra, and π ,ρ : A→M are unital ∗ -homomor-
phisms such that

(M-rank)◦π = (M-rank)◦ρ .

Then π ∼a ρ in M .
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Proof. Let ΦM : M → Z (M) be the center-valued trace on M . Let π̂ , ρ̂ :
A## →M be the weak∗ -continuous extensions of π and ρ . Then ΦM ◦ π̂ = ΦM ◦ ρ̂ ,
or

(M-rank)◦ π̂ = (M-rank)◦ ρ̂.

In particular, ker π̂ = ker ρ̂ is a weak*-closed ideal in A## , so there is a projection
Q ∈ Z (A##

)
such that

ker π̂ = ker ρ̂ = (1−Q)A##.

Thus π̂, ρ̂ : QA## → M is an embedding. Since QA## is isomorphic to a subalgebra
of M , we know that QA## is a finite von Neumann algebra and a summand of A## .
Suppose N is a type I von Neumann subalgebra of A## . Then QN is a type I von
Neumann subalgebra of QA## . Since QA## is finite, QN is a finite type I von Neu-
mann algebra. Thus there is an orthogonal sequence {en} of projections in the center
of QN whose sum is Q such that

QN = ∑⊕
k∈N

ekQN

and each ekQN is a type Ik von Neumann algebra and is isomorphic to Mk (L∞ (μk))
acting on

L2 (μk)
(n) = L2 (μk)⊕·· ·⊕L2 (μk)

for some measure space (Xk,Σk,μk) . Clearly, ekQN = Mk (L∞ (μk)) is an AL C*-
algebra. Since π̂ (Q) = ρ̂ (Q) = 1, it follows that

1 = ∑
n∈N

π̂ (en) = ∑
n∈N

ρ̂ (en) .

Since, for each n ∈ N , (M-rank) ◦ π̂ (en) = (M-rank) ◦ ρ̂ (en) we see that the projec-
tions π̂ (en) and ρ̂ (en) are unitarily equivalent in M . Thus there is a unitary operator
U ∈M such that, for every n ∈ N ,

U π̂ (en)U∗ = ρ̂ (en) .

By replacing π with Uπ (·)U∗ , we can assume, for every n ∈ N , that

π̂ (en) = ρ̂ (en) .

We now have π̂|enQN , ρ̂ |enQN : enQN → π̂ (en)Mπ̂ (en) . Since enQN is AL and
π̂ (en)Mπ̂ (en) is a finite von Neumann algebra, it follows from Theorem 4 that π̂enQN
and ρ̂ |enQN are approximately equivalent in π̂ (en)Mπ̂ (en) for each n ∈ N . Since
π̂|QN , ρ̂|QN : QN →∑⊕

n∈N
π̂ (en)Mπ̂ (en) and

π̂|QN = ∑⊕
n∈N

π̂ |enQN and ρ̂ |QN = ∑⊕
n∈N

ρ̂ |enQN ,

we easily see that π̂ |QN and ρ̂ |QN are approximately equivalent in M . Since π̂ |(1−Q)N
= ρ̂(1−Q)N = 0, we see that π̂|N and ρ̂|N are approximately equivalent in M .
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Let Λ = {(F,ε) : F ⊂A is finite, ε > 0} directed by the partial order (⊂,>) . Sup-
pose λ = (F,ε) ∈ Λ . Since A approximately type I in A## , we know that there is a
type I von Neumann subalgebra N of A## such that, for every T ∈ F ,

dist(T,N ) < ε/2.

Thus, for each T ∈ F , there is an xT ∈ N such that ‖T − xT‖ < ε/37.
Thus ‖π̂ (xT )−π (T )‖ < ε/37 and ‖ρ̂ (xT )−ρ (T )‖ < ε/37 whenever T ∈ F .

Since {xT : T ∈ F} is finite and π̂|N and ρ̂ |N are approximately equivalent in M ,
there is a unitary Uλ ∈M such that∥∥Uλ π̂ (xT )U∗

λ − ρ̂ (xT )
∥∥< ε/37

for every T ∈ F . Thus ∥∥Uλ π (T )U∗
λ −ρ (T )

∥∥
�
∥∥Uλ π̂ (xT )U∗

λ − ρ̂ (xT )
∥∥+‖Uλ π̂ (T − xT )U∗‖+‖ρ̂ (T − xT )‖ < ε

Thus, for every T ∈ A ,

lim
λ

∥∥Uλ π (T )U∗
λ −ρ (T )

∥∥= 0.

Hence π and ρ are approximately equivalent in M . �
In [7] it was shown that if A is a separable unital C*-algebra and π and ρ are

representations on a separable Hilbert space such that, for every x ∈ A

rankπ (x) � rankρ (x) ,

then there is a representation σ such that

π ⊕σ ∼a ρ .

In [9], Rui Shi and the first author proved an analogue for representations of separable
abelian C*-algebras into II1 factor von Neumann algebras. This result was extended
by Shilin Wen, Junsheng Fang and Rui Shi [5] to separable AF C*-algebras. We extend
this result further, including separable ASH C*-algebras.

THEOREM 6. Suppose A is a separable C*-algebra and there is an LF C*-algebra
D such that A ⊂ D ⊂ A## . Suppose also that M is a II1 factor von Neumann al-
gebra with a faithful normal tracial state τ . Suppose P is a projection in M and
π : A → PMP and ρ : A → M are unital ∗ -homomorphisms such that, for every
a ∈A ,

M-rank(π (a)) � M-rank(ρ (a)) .

Then there is a unital ∗ -homomorphism σ : A→ P⊥MP⊥ such that

π ⊕σ ∼a ρ (M) .
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Proof. As in the proof of Theorem 4 choose a separable AF C*-algebra B such
that A⊂B ⊂D , and extend π and ρ to unital weak*-weak* continuous ∗ -homomor-
phisms π̂ and ρ̂ with domain A## . It was shown in [4] that the condition on π and
ρ is equivalent to: for every a ∈M with 0 � a , τ (π (a)) � τ (ρ (a)) . It follows from
weak* continuity that, for every a∈A## with 0 � a , τ (π̂ (a)) � τ (ρ̂ (a)) . In particular
this holds for 0 � a ∈ B . However, since B is AF, it follows from [5] that there is a
unital ∗ -homomorphism γ : B → P⊥AP⊥ such that

(π̂|B)⊕ γ ∼a ρ̂ |B (M) .

If we let σ = γ|A , we see π ⊕σ ∼a ρ (M) . �

3. Representations of ASH algebras relative to ideals

In this section we prove (Theorem 8) a version of Voiculescu’s theorem for repre-
sentations of a separable ASH C*-algebra into a semifinite von Neumann algebra acting
on a separable Hilbert space.

We first prove a more general result. If J is a norm closed two-sided ideal in a von
Neumann algebra M , we let J0 denote the ideal in M generated by the projections
in J . We begin with a probably well-known lemma.

LEMMA 3. Suppose J is a norm closed two-sided ideal in a von Neumann al-
gebra M and A is a C*-algebra and π ,ρ : A → M are unital ∗ -homomorphisms.
Then

1. J is the norm closed linear span of the set of projections in J , i.e.,

J −‖‖
0 = J ,

2. J0 = {T ∈M : T = PTP for some projection P ∈ J } ,

3. T ∈ J0 if and only if χ(0,∞) (|T |) = R(T ) ∈ J0 ,

4. If P and Q are projections in J0 then P∨Q = R(P+Q) ∈ J0 ,

5. π−1 (J0)
−‖‖ = π−1 (J ) ,

6. If {Ai : i ∈ I} is an increasingly directed family of unital C*-subalgebras of A
and A = [∪i∈IAi]

−‖‖ , then

[∪i∈IAi ∩π−1 (J0)
]−‖‖

= π−1 (J ) .

Proof. (1), (2), (3) can be found in [11].
(4). Suppose a ∈ π−1 (J ) . Suppose ε > 0 and define gε : [0,∞) → [0,∞) by

gε (t) =
{

t/ε if 0 � t � ε
1 if 1 < t

.
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Then π (a) ∈ J , so

π (gε (|a|)) = gε (|π (a)|)χ(ε,∞) (|π (a)|) ∈ J0,

and
‖a−agε (|a|)‖ � ε.

(5). Let η : M→M/J be the quotient map. Suppose a ∈ π−1 (J ) and ε > 0.
Then there is an i ∈ I and a b ∈ Ai such that ‖a−b‖< ε . Thus

‖(η ◦ (π |Ai)) (b)‖ = ‖(η ◦π)(b)‖ = ‖(η ◦π)(b−a)‖ � ε,

so there is a w ∈ Ai so that

‖w‖ = ‖(η ◦ (π |Ai)) (w)‖ = ‖(η ◦ (π |Ai)) (b)‖ � ε.

z = b−w ∈ ker(η ◦ (π |Ai)) = π−1 (J )∩Ai , and ‖b− z‖ = ‖w‖ < ε . It follows from
part (2) that there is a v ∈ π−1 (J0)∩Ai such that ‖z− v‖ � ε. Hence ‖a− v‖ �
‖a−b‖+‖b− z‖+‖z− v‖ � 3ε.

(6). Let η : M→M/J be the quotient map. Suppose a ∈ π−1 (J ) and ε > 0.
Then there is an i ∈ I and a b ∈ Ai such that ‖a−b‖< ε . Thus

‖(η ◦ (π |Ai)) (b)‖ = ‖(η ◦π)(b)‖ = ‖(η ◦π)(b−a)‖ � ε,

so there is a w ∈ Ai so that

‖w‖ = ‖(η ◦ (π |Ai)) (w)‖ = ‖(η ◦ (π |Ai)) (b)‖ � ε.

z = b−w ∈ ker(η ◦ (π |Ai)) = π−1 (J )∩Ai , and ‖b− z‖ = ‖w‖ < ε . It follows from
part (5) that there is a v ∈ π−1 (J0)∩Ai such that ‖z− v‖ � ε. Hence ‖a− v‖ �
‖a−b‖+‖b− z‖+‖z− v‖ � 3ε . �

Suppose A is a unital C*-algebra, M⊂ B(H) is a von Neumann algebra with a
norm-closed ideal J and π : A→M is a unital ∗ -homomorphism. We define

Hπ ,J = sp−‖‖ (∪{ranπ (a) : a ∈ A and π (a) ∈ J }) .

It is clear that Hπ ,J is a reducing subspace for π and we call the summand π (·) |Hπ,J =
πJ .

The following is a fairly general version of the analogue of the “easy part” of the
proof of Voiculescu’s theorem when the C*-algebra is ASH. In particular, there is no
assumption that the von Neumann algebra M is sigma-finite (e.g., acts on a separable
Hilbert space).

THEOREM 7. Suppose A is a separable unital ASH C*-algebra, M⊂ B(H) is a
von Neumann algebra with a norm closed two-sided ideal J . Suppose π ,ρ : A→M
are unital ∗ -homomorphisms such that

1. Every projection in J is finite,
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2. M-rank(π (a)) = M-rank(ρ (a)) for every a ∈ A .

Then there is a sequence {Wn} of partial isometries in M such that

(3) W ∗
n Wn is the projection onto Hπ ,J and WnW ∗

n is the projection onto Hρ ,J ,,

(4) WnπJ (a)W ∗
n −ρJ (a) ∈ J for every n ∈ N and every a ∈ A ,

(5) limn→∞ ‖WnπJ (a)W ∗
n −ρJ (a)‖ = 0 for every a ∈ A .

Proof. First, suppose x∈A and x = x∗ . It follows from [4] that there is a sequence
{Un} of unitary operators in M such that

‖Unπ (x)U∗
n −ρ (x)‖→ 0.

It follows that π (x) ∈ J if and only if ρ (x) ∈ J when x = x∗ . However, for any
a ∈ A , we get π (a) ∈ J if and only if π (|a|) ∈ J . Hence π−1 (J ) = ρ−1 (J ) . Also,
π (a) ∈ J0 if and only if R(π (a)) ∈ J0 . Since R(π (a)) and R(ρ (a)) are Murray
von Neumann equivalent (from (2)), we see that π (a) ∈ J0 if and only if ρ (a) ∈ J0 .
It follows that π−1 (J0)∩An = ρ−1 (J0)∩An for each n ∈ N , and, from Lemma 3,

[
∞⋃

n=1

π−1 (J0)∩An

]−‖‖
=

[
∞⋃

n=1

ρ−1 (J0)∩An

]−‖‖
= π−1 (J ) = ρ−1 (J ) .

Since A is an ASH algebra, we can assume that there is a sequence

A1 ⊂A2 ⊂ ·· ·
of subalgebras of A such that ∪∞

n=1An is norm dense in A such that, for each n ∈ N ,

A##
n = Mk(n,1) (C (Xn,1))⊕·· ·⊕Mk(n,sn) (C (Xn,sn))

with Xn,1, . . . ,Xn,sn compact Hausdorff spaces.
Suppose T = ( fi j) ∈ Mk (C (X)) is a k× k matrix of functions. We define T� =

diag( f , f , . . . , f ) where f = ∑k
i, j=1

∣∣ fi j∣∣2 . If
{
ei j : 1 � i, j � n

}
is the system of matrix

units for Mn (C) , then T = ∑n
i, j=1 fi jei j . It is clear that if T � 0, then R(T )� R

(
T�) .

Since fi jess = esiTe js, we have

∣∣ fi j∣∣2 ess = (esiTe js)∗ (esiTe js) = es jT
∗eisesiTe js = e∗jsT

∗eiiTe js.

Thus

T� =
g

∑
s=1

k

∑
i, j=1

∣∣ fi j∣∣2 ess =
g

∑
s=1

k

∑
i, j=1

e∗jsT
∗eiiTe js.

Suppose A = A1 ⊕·· · ⊕Asn ∈ A##
n , with each Aj ∈Mk(n, j) (C (Xn, j)) . We define Δn :

A##
n →Z (A##

n

)
by

Δn (A) = A�
1 ⊕·· · ⊕A�

sn .
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Thus if A ∈A##
n , then Δn (A) has the form

Δn (A) =
m

∑
k=1

BkACk,

with B1,C1, . . . ,Bm,Cm ∈ A##
n .

It is clear that

a. Δn
(A##

n

)
is contained in the center Z (A##

n

)
of A##

n , and

b. If A � 0, then R(A) � R(Δn (A)) ∈ Z (A##
n

)
.

We call a projection Q ∈A##
n good if

c. π̂ (Q) , ρ̂ (Q) ∈ J0

d. Q ∈ [An ∩π−1 (J0)
]−weak*

e. For all T ∈ QA##Q , M-rank(π̂ (T )) = M-rank(ρ̂ (T )) .

Our proof is based on four claims.

CLAIM 0. Suppose Q1,Q2 ∈ A##
n are good projections and Q1 ⊥ Q2 . Then Q =

Q1 +Q2 is a good projection.

Proof of Claim 0. It is clear that Q satisfies (c) and (d) . Let P = π̂ (Q)∨ ρ̂ (Q) ∈
J0 . Thus P is a finite projection in M , so PMP is a finite von Neumann algebra. Let
ΦP : PMP → Z (PMP) be the center-valued trace. Since Q1 and Q2 are good, we
know from Lemma 2 that

ΦP ◦ π̂|QkA##Qk
= ΦP ◦ ρ̂|QkA##Qk

for k = 1,2. Since Q1 ⊥ Q2 , we know π̂ (Q1) ⊥ π̂ (Q2) and ρ̂ (Q1) ⊥ ρ̂ (Q2) . Since
ΦP is tracial, we know that if 1 � i �= j � 2 and A ∈ A## , then

ΦP (π̂ (QiAQj)) = ΦP

(
π̂ (Qi) π̂ (A) π̂ (Qj)2

)
= ΦP (π̂ (Qj) π̂ (Qi) π̂ (A) π̂ (Qj)) = 0.

Similarly,
ΦP (ρ̂ (QiAQj)) = 0.

Thus
ΦP (π̂ (QAQ)) = ΦP (π̂ (Q1AQ1))+ ΦP (π̂ (Q2AQ2))

= ΦP (ρ̂ (Q1AQ1))+ ΦP (ρ̂ (Q2AQ2)) .

Thus, by Lemma 2, Q satisfies (e) . Hence Q is a good projection. This proves the
claim. A simple induction proof implies that the sum of a finite family of pairwise
orthogonal good projections is good. �
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CLAIM 1. If Q ∈ A##
n is a good projection, then there is a good projection P ∈

Z (A##
n

)
such that Q � P.

Proof of Claim 1. Suppose Q∈A##
n is a good projection. Choose B1,C1, . . . ,Bk,Ck

in A##
n such that

E =
def

m

∑
k=1

BkQCk = Δn (Q) ∈ Z (A##
n

)
.

Since R(E) ∈ Z (A##
n

)
and E � 0, we see that

E = R(E)ER(E) =
m

∑
k=1

[R(E)BkR(E)]Q [R(E)CkR(E)] .

Hence we can assume, for 1 � k � m , that Bk,Ck ∈ R(E)A##R(E) .
Since π̂ (Q) , ρ̂ (Q) ∈ J0 , we see that π̂ (E) and ρ̂ (E) ∈ J0 , which, in turn,

implies π̂ (R(E)) and ρ̂ (R(E))∈J0 . Then F = π̂ (R(E))∨ρ̂ (R(E))∈J0 is a finite
projection. Thus FMF is a finite von Neumann algebra. Also, since, for 1 � k � m ,
Bk,Ck ∈ R(E)A##

n R(E) , we see that π̂ (BkQCk) , ρ̂ (BkQCk) ∈ FMF . Let ΦF be the
center-valued trace on FMF . Since Q is a good projection and in EA##E , we know
from Lemma 2, that for every A ∈ A## ,

ΦF (π̂ (QAQ)) = ΦF (ρ̂ (QAQ)) .

Now π̂ , ρ̂ : EA##E → FMF are ∗ -homomorphisms, and, since ΦF is tracial, we see
for A ∈ A## ,

ΦF (π̂ (EAE)) =

=
m

∑
j,k=1

ΦF ([π̂ (Bk) π̂ (Q)] [π̂ (Q) π̂ (Ck) π̂ (A) π̂ (Bj) π̂ (Q) π̂ (Cj)])

=
m

∑
j,k=1

ΦF ([π̂ (Q) π̂ (Ck) π̂ (A) π̂ (Bj) π̂ (Q) π̂ (Cj)] [π̂ (Bk) π̂ (Q)])

=
m

∑
j,k=1

ΦF (π̂ (QCkABjQCjBkQ)) =
m

∑
j,k=1

ΦF (ρ̂ (QCkABjQCjBkQ))

=
m

∑
j,k=1

ΦF ([ρ̂ (Q) ρ̂ (Ck) ρ̂ (A) ρ̂ (Bj) ρ̂ (Q) ρ̂ (Cj)] [ρ̂ (Bk) ρ̂ (Q)])

= ΦF (ρ̂ (EAE)) .

Thus ΦF ◦ π̂ = ΦF ◦ ρ̂ on EA##E , and since π̂, ρ̂ , and ΦF are weak* continuous, we

have ΦF ◦ π̂ = ΦF ◦ ρ̂ on
(
EA##E

)−weak* = R(E)A##R(E) .

Finally, since
[An ∩π−1 (J0)

]−weak*
is a weak* closed ∗ -algebra, and an ideal

for A##
n , we see that

E = Δn (Q) =
m

∑
k=1

BkQCk ∈
[An ∩π−1 (J0)

]−weak*
,
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so P = R(E) ∈ [An ∩π−1 (J0)
]−weak*

. Thus P = R(E) ∈ Z (A##
n

)
is a good projec-

tion and Q � P . This proves Claim 1. �

CLAIM 2. If Q1,Q2 ∈ A##
n are good projections, then there is a good projection

Q ∈ Z (A##
n

)
such that Q1,Q2 � Q .

Proof of Claim 2. By Claim 1 we can choose good projections P1,P2 ∈ Z (A##
n

)
such that Q1 � P1 and Q2 � P2 . Since P1 and P2 commute and P1 (1−P2) � P1 ,
P1P2 � P1 and (1−P1)P2 � P2 , we see that {P1 (1−P2) ,P1P2,(1−P1)P2} is an or-
thogonal family of good projections. Thus, by Case 0,

Q = P1∨P2 = P1 (1−P2)+P1P2 +(1−P1)P2

is a good projection in Z (A##
)
. Thus Claim 2 is proved. �

CLAIM 3. If 0 � x ∈ An ∩π−1 (J0) , then R(Δn (x)) ∈ Z (A##
n

)
is good.

Proof of Claim 3. We know that π̂ (R(x)) and ρ̂ (R(x)) are Murray von Neu-
mann equivalent and M-rank(π (x)) and M-rank(ρ (x)) are equal. Since π (x) ∈J0 ,
we know π̂ (R(x)) , ρ̂ (R(x)) ∈ J0 . Arguing as in the proof of Claim 1, we see that
F = π̂ (R(x))∨ ρ̂ (R(x)) ∈ J0 and that

π̂, ρ̂ : [xAx]−‖‖ → FMF

satisfy ΦFMF ◦ π̂ = ΦFMF ◦ ρ̂ . Thus ΦFMF ◦ π̂ = ΦFMF ◦ ρ̂ on [xAx]−weak* =
R(x)A##R(x) . Thus R(x) is a good projection. This proves Claim 3. �

We can choose a countable dense set {b1,b2, . . .} of ∪∞
n=1

(An ∩π−1 (J0)
)

whose
closure is π−1 (J ) .

We now want to define a sequence 0 = P0 � P1 � P2 � · · · of good projections
such that

1. Pn ∈ Z (A##
n

)
for all n ∈ N ,

2. If 1 � k � n and bk ∈ An , then R(bk) � Pn , i.e.,

bk = Pnbk

Define P0 = 0. Suppose n ∈ N and Pk has been defined for 0 � k � n . We let
xn = ∑k�n+1,bk∈An+1

bkb∗k ∈ An+1∩π−1 (J0) . Thus, by Claim 3, Pn and R(Δn+1 (xn))
are good projections in A##

n , and they commute since R(Δn+1 (xn)) ∈ Z (A##
n+1

)
.

By Claim 2, there is a good projection Pn+1 ∈ Z (A##
n+1

)
such that Pn � Pn+1 and

R(Δn+1 (xn)) � Pn+1 . Clearly, if 1 � k � n and bk ∈An , we have R(bk) = R
(
bkb∗k

)
�

R(xn) � Pn+1 .

Since Pn is a good projection, Pn ∈
[An∩π−1 (J0)

]−weak*
. Thus

Pn � sup
{
R(x) : x ∈ An∩π−1 (J0)

} ∈ A##
n .
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Thus π̂ (Pn) � Pπ ,J (the projection onto Hπ ,J ) and ρ̂ (Pn) � Pρ ,J (the projection onto
Hρ ,J ). Let Pe = limn→∞ Pn (weak*). Thus π̂ (Pe) � Pπ ,J and ρ̂ (Pe) � Pρ ,J . On the
other hand, for every k ∈ N ,

lim
n→∞

‖bk −Pnbk‖ = 0.

This implies

Peb = b for every b ∈ [π−1 (J )
]−‖‖

.

Thus π̂ (Pe) = Pπ ,J and ρ̂ (Pe) = Pρ ,J . Thus Pπ ,J and Pρ ,J are Murray von
Neumann equivalent.

Since Pn ∈ A′
n for each n ∈ N , we have of every A ∈ ∪∞

k=1Ak ,

lim
n→∞

‖APn−PnA‖ = 0.

Hence,
lim
n→∞

‖APn−PnA‖ = 0

holds for every A ∈ A .
Choose a dense subset {A1,A2, . . .} of A . Suppose and m ∈ N . It follows that we

can choose a subsequence
{
Pnk

}
of {Pn} such that, for all 1 � n < ∞,

∞

∑
k=1

∥∥AnPnk −PnkAn
∥∥< ∞,

and, for 1 � n � m ,
∞

∑
k=1

∥∥AnPnk −PnkAn
∥∥<

1
8m

.

Define ek = Pnk −Pnk−1 (with Pn0 = 0) and define ϕ : A→ ∑⊕
1�k<∞ ekAek by

ϕ (T ) =
∞

∑
k=1

ekTek.

It follows from [10, page 903] that the above conditions on
∥∥AnPnk −PnkAn

∥∥ that, for
all k ∈ N ,

Ak −ϕ (Ak) ∈ π̂−1 (J )∩ ρ̂−1 (J )

and

‖PeAn−ϕ (An)‖ <
1

4m
.

for 1 � n � m .
Suppose k ∈ N . For each n � nk , ekAnek ⊂A##

n , which is homogeneous. Hence
C∗ (ekAnek) is subhomogeneous. Thus C∗ (ekAek) is ASH. If we let Ek = π̂ (ek)∨
ρ̂ (ek) for each k ∈ N , we have Ek is a finite projection, EkMEk is a finite von Neu-
mann algebra,

π̂, ρ̂ : C∗ (ekAek) → EkMEk,
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and, if ΦEk is the center-valued trace on EkMEk , then

ΦEk ◦
(
π̂ |C∗(ekAek)

)
= ΦEk ◦

(
ρ̂ |C∗(ekAek)

)
,

and C∗ (ekAek) is ASH, it follows from Theorem 4 that

π̂|C∗(ekAek) ∼a ρ̂|C∗(ekAek) (EkMEk) .

Since π̂ (ek) and ρ̂ (ek) are projections, then by [16, Proposition 5.2.6], any unitary
that conjugates π̂ (ek) to a projection that is really close to ρ̂ (ek) is close to a unitary
that conjugates π̂ (ek) exactly to ρ̂ (ek) . We can therefore, for each k ∈ N , choose a
unitary Uk ∈ EkMEk such that

‖Ukπ̂ (ekanek)U∗
k − ρ̂ (ekanek)‖ <

1
4km

when 1 � n � k+m < ∞ , and such that

Ukπ̂ (ek)U∗
k = ρ (ek) .

For each k ∈ N , let Vk = Ukπ̂ (ek) . Then Vk is a partial isometry whose initial
projection is π̂ (ek) = V ∗

k Vk and final projection is ρ̂ (ek) = VkV ∗
k . Also

‖Vkπ̂ (ek)π (an) π̂ (ek)V ∗
k − ρ̂ (ek)ρ (an) ρ̂ (ek)‖ <

1
4km

for 1 � n � k + m < ∞ . Then Wm = ∑∞
k=1Vk is a partial isometry in M with initial

projection π̂ (Pe) = Pπ ,J and final projection ρ̂ (Pe) = Pρ ,J . Moreover,

Wmπ̂ (ϕ (an))W ∗
m =

⊕
∑

1�k<∞
Vkπ̂ (ekanek)V ∗

k ,

and

ρ̂ (ϕ (an)) =
⊕
∑

1�k<∞
ρ̂ (ekanek) .

Since Vkπ̂ (ekanek)V ∗
k , ρ̂ (ekanek) ∈ J for each n,k ∈ N and since

lim
k→∞

‖Vkπ̂ (ekanek)V ∗
k − ρ̂ (ekanek)‖ = 0,

we see that
Wmπ̂ (ϕ (an))W ∗

m − ρ̂ (ϕ (an)) ∈ J
for every n ∈ N . Also,

‖Wmπ̂ (ϕ (an))W ∗
m − ρ̂ (ϕ (an))‖ <

1
4m

for 1 � n � m .
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Also
π̂ (ϕ (an))−π (an) = π̂ (ϕ (an)−an) ∈ J

and
π̂ (ϕ (an))−ρ (an) = ρ̂ (ϕ (an)−an) ∈ J

for every n ∈ N and

‖π̂ (ϕ (an))−π (an)‖ <
1

4m
and ‖ρ̂ (ϕ (an))−ρ (an)‖ <

1
4m

for 1 � n � m .
For each n ∈ N ,

Wmπ (an)W ∗
m −ρ (an)

= [Wm (π (an)− π̂ (ϕ (an)))W ∗
m]+ [Wmπ̂ (ϕ (an))W ∗

m − ρ̂ (ϕ (an))]

+ρ̂ (ϕ (an))−ρ (an) .

Thus, for every n ∈ N ,
Wmπ (an)W ∗

m −ρ (an) ∈ J .

Also, for 1 � n � m ,

‖Wmπ (an)W ∗
m −ρ (an)‖ <

1
m

.

It follows, for every a ∈ A , that

Wmπ̂ (ϕ (a))W ∗
m − ρ̂ (ϕ (a)) ∈ J

and
lim
m→∞

‖Wmπ (a)W ∗
m −ρ (a)‖ = 0. �

REMARK 2. In two cases, namely, when Hπ ,J = Hρ ,J = H, or when π (·) |H⊥
π,J

and ρ (·) |H⊥
ρ,J

are unitarily equivalent, the conclusion in Theorem 7 becomes

π ∼a ρ (J ) .

When A is a separable ASH C*-algebra and M is a sigma-finite II∞ factor von
Neumann algebra, we can use Theorems 7 and 3 to have both parts of Voiculescu’s
theorem, including an extension of results in [4]. If σ is a representation of a C*-
algebra, we let σ (∞) denote σ ⊕σ ⊕·· · .

COROLLARY 1. Suppose A is a separable ASH C*-algebra, M is a sigma-finite
type II∞ factor von Neumann algebra on a Hilbert space H . Suppose π ,ρ : A→M
are unital ∗ -homomorphisms such that, for every a ∈A

M-rank(π (a)) = M-rank(ρ (a)) .

Then π ∼a ρ (KM) .
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Proof. We can write π = πKM⊕π1 and ρ = ρKM ⊕ρ1 . It follows from Theorem
3 that

π ∼a πKM ⊕π (∞)
1 ⊕ρ (∞)

1 (KM) and ρ ∼a ρKM ⊕π (∞)
1 ⊕ρ (∞)

1 (KM) .

It follows from Theorem 7 that

πKM ⊕π (∞)
1 ⊕ρ (∞)

1 ∼a ρKM ⊕π (∞)
1 ⊕ρ (∞)

1 (KM) .

Thus π ∼a ρ (KM) . �
We have now arrived at our main result concerning semifinite von Neumann alge-

bras.

THEOREM 8. Suppose M ⊂ B(H) is a semifinite von Neumann algebra, H is
separable, and A is a separable unital ASH C*-algebra. Also suppose π ,ρ : A→M
are unital ∗ -homomorphisms such that, for every a ∈A

M-rank(π (a)) = M-rank(ρ (a)) .

Then π ∼a ρ (KM) .

Proof. We can write M = F ⊕N where F is a finite von Neumann algebra
and N has no finite direct summands, and N is a type II∞ von Neumann alge-
bra. Correspondingly, we can write π = πF ⊕ πN and ρ = ρF ⊕ ρN . It is clear
that (F -rank) ◦ πF = (F -rank) ◦ ρF and (N -rank) ◦ πN = (N -rank) ◦ ρN . Since
F ⊕ 0 ⊂ KM and πF ∼a ρF , by Theorem 5, there is a sequence {Wn} of unitary
operators in F such that, for every a ∈A ,

‖Wnπ (a)Wn −ρ (a)‖→ 0.

Clearly, for every a ∈ A and every n ∈ N ,

Wnπ (a)Wn−ρ (a) ∈ F ⊕0 ⊂KM.

Hence we can assume that M = N and π = πN . From the central decomposition for
M there is a complete probability measure space (Ω,Σ,μ) so that we can write

H =
∫ ⊕

Ω
�2dμ (ω)

and

M =
∫ ⊕

Ω
Mωdμ (ω)

where each Mω is either a type I∞ factor or a type II∞ factor. Also there are families
{ϕ1,ϕ2, . . .} and {ψ1,ψ2, . . .} of *SOT-measurable functions from Ω into the closed
unit ball B of B

(
�2
)

such that, for every ω ∈ Ω,

{ϕ1 (ω) ,ϕ2 (ω) , . . .}−SOT = ball(Mω ) , and
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{ψ1 (ω) ,ψ2 (ω) , . . .}−SOT = ball
(M′

ω
)
.

Let C be the set of trace class operator K ∈B
(
�2
)

such that K � 0 and Trace(K)=
1. With the trace norm ‖‖1 , C is a complete separable metric space. Let C& =

∏
(n, j,k)∈N×N×N

C with the product topology. Let B& = ∏
n∈N

B with the product ∗ -SOT

topology, let P be the set of projections in B
(
�2
)

equipped with the ∗ -SOT and let
P& = ∏

(n, j,k)∈N×N×N

P with the product topology. Let U be the set of unitary operators

in B
(
�2
)

with the ∗ -SOT and let U& = ∏
n∈N

U with the product topology.

We now let X be the set of all (U,A,B,P,K,C,D) in U ×B&×P&×C&×B&×
B&, with U = {Un} , A = {An} , P =

{
Pn, j,k

}
, K =

{
Kn, j,k

}
, C = {Cn} , D = {Dn} ,

such that

1. ‖U∗
n AkUn−Bk‖ � 1/n for 1 � k � n < ∞

2.
∥∥(U∗

n AkUn−Bk)
(
1−Pn, j,k

)∥∥� 1/ j for (n, j,k) ∈ N×N×N ,

3. Kn, j,k = Pn, j,kKn, j,kPn, j,k for (n, j,k) ∈ N×N×N ,

4. UnDj = DjUn for j,n ∈ N

5. Tr
(
Kn, j,kCsPn, j,kCtPj

)
= Tr

(
Kn, j,kCtPn, j,kCsPn, j,k

)
for n, j,k,s, t ∈ N .

It is not hard to show that X is closed in U ×B&×P&×C&×B&×B& . Thus X
is a complete separable metric space. Define

Φ : X → B&×B&×B&×B&

by
Φ((U,A,B,P,K,C,D)) = (A,B,C,D) .

Then Φ is continuous and it follows from [1, Theorem3.4.3] that Φ(X) is an absolutely
measurable set and there is an absolutely measurable function γ : Φ(X) → X such that
Φ◦ γ = idΦ(X) .

We can write π =
∫ ⊕

Ω πωdμ (ω) and ρ =
∫⊕

Ω ρωdμ (ω) so that, for almost every
ω ∈ Ω, πω ,ρω : A→Mω and, for every a ∈ A ,

π (a) =
∫ ⊕

Ω
πω (a)dμ (ω) and ρ (a) =

∫ ⊕

Ω
ρω (a)dμ (ω) .

We know from [4, Theorem 4 (3)], that, for almost every ω ∈ Ω ,

Mω -rank(πω (a)) = Mω -rank(ρω (a)) .

By throwing away a subset of Ω of measure 0, we can assume that all of the preceding
statements that were true for almost every ω are now true for every ω ∈ Ω.
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Let {a1,a2, . . .} be norm dense in the closed unit ball if A . We now define a
measurable map Γ : Ω → B& ×B&×B&×B& by

Γ(ω) =
({πω (an)}n∈N

,{ρω (an)}n∈N
,{ϕn (ω)}n∈N

,{ψω (ω)}n∈N

)
.

Suppose ω ∈ Ω . Since Mω is a semifinite factor, it follows from Corollary 1 that
πω ∼ ρω (KMω ) . Thus there is a sequence {Wn} of unitary operators in Mω such
that

(6) ‖W ∗
n πω (ak)Wn−ρω (ak)‖ � 1/n for 1 � k � n < ∞ , and

(7) W ∗
n πω (ak)Wn−ρω (ak) ∈ KMω for all n,k ∈ N .

Since each W ∗
n πω (ak)Wn − ρω (ak) ∈ KMω , there are projections Pn, j,k ∈ KMω

such that, for n, j,k ∈ N∥∥(W ∗
n πω (ak)Wn−ρω (ak))

(
1−Pn, j,k

)∥∥< 1/n.

Since Pn, j,k ∈ KM , Pn, j,k must be a finite projection, and since Mω is a semifinite
factor in B

(
�2
)
, Pn, j,kMωPn, j,k is a finite factor. Thus Pn, j,kMωPn, j,k has a faithful

normal tracial state τn, j,k . Thus there is a Kn, j,k ∈ C such that Pn, j,kKn, j,kPn, j,k = Kn, j,k

and, for every S ∈ Pn, j,kMωPn, j,k,

τn, j,k(S) = Tr
(
Kn, j,k

)
Hence, ({Wn} ,{πω (an)} ,{ρω (an)} ,

{
Pn, j,k

}
,{ϕn (ω)} ,{ψn (ω)}) ∈ X ,

and thus
Γ(ω) ∈ Φ(X) .

Then

(γ ◦Γ)(ω) =
({Un (ω)} ,{πω (an)} ,{ρω (an)} ,

{
Pn, j,k (ω)

}
,{ϕn (ω)} ,{ψn (ω)})

is a measurable function from Ω to X . For n, j,k ∈ N . Let

Un =
∫ ⊕

Ω
Un (ω)dμ (ω) and Pn, j,k =

∫ ⊕

Ω
Pn, j,k (ω)dμ (ω) .

Then each Un is unitary in M , and each Pn, j,k is a finite projection in M and

(8) ‖U∗
n π (ak)Un−ρ (ak)‖ � 1/n for 1 � k � n < ∞ , and

(9)
∥∥(U∗

n π (ak)Un −ρ (ak))
(
1−Pn, j,k

)∥∥� 1/ j for n, j,k ∈ N .

Since {a1,a2, . . .} is dense in the closed unit ball of A , we see that (8) and (9)
hold when ak is replaced with any a ∈ A with ‖a‖ � 1. It follows from (9) that, for
every a ∈ A with ‖a‖ � 1 that U∗

n π (a)Un−ρ (a) ∈ KM . Therefore,

π ∼a ρ (KM) . �
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