APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS

QIHUI LI, DON HADWIN AND WENJING LIU

(Communicated by I. Klep)

Abstract. Suppose \mathcal{A} is a separable unital ASH C*-algebra, \mathcal{M} is a sigma-finite II_{∞} factor von Neumann algebra, and $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that, for every $a \in \mathcal{A}$, the range projections of $\pi(a)$ and $\rho(a)$ are Murray von Neuman equivalent in \mathcal{M} . We prove that π and ρ are approximately unitarily equivalent modulo $\mathcal{K}_{\mathcal{M}}$, where $\mathcal{K}_{\mathcal{M}}$ is the norm closed ideal generated by the finite projections in \mathcal{M} . We also prove a very general result concerning approximate equivalence in arbitrary finite von Neumann algebras.

1. Introduction

In 1977 D. Voiculescu [15] proved a remarkable theorem concerning approximate (unitary) equivalence for representations of a separable unital C*-algebra on a separable Hilbert space. The beauty of the theorem is that the characterization was in purely algebraic terms. This was made explicit in the reformulation of Voiculescu's theorem [7] in terms of rank.

THEOREM 1. [15] Suppose B(H) is the set of operators on a separable Hilbert space H and $\mathcal{K}(H)$ is the ideal of compact operators. Suppose \mathcal{A} is a separable unital C^* -algebra, and $\pi, \rho : \mathcal{A} \to B(H)$ are unital *-homomorphisms. The following are equivalent:

- 1. There is a sequence $\{U_n\}$ of unitary operators in B(H) such that
 - (a) $U_n\pi(a)U_n^* \rho(a) \in \mathcal{K}(H)$ for every $n \in \mathbb{N}$ and every $a \in \mathcal{A}$.
 - (b) $||U_n\pi(a)U_n^*-\rho(a)|| \to 0$ for every $a \in \mathcal{A}$.
- 2. There is a sequence $\{U_n\}$ of unitary operators in B(H) such that, for every $a \in A$,

$$\left\|U_n\pi\left(a\right)U_n^*-\rho\left(a\right)\right\|\to 0.$$

Mathematics subject classification (2020): 47C15 (46L10).

© CENN, Zagreb Paper OaM-17-01

Keywords and phrases: Approximate equivalence, semifinite von Neumann algebra, ASH C*-algebra, center-valued trace, *M*-rank.

The first author was partially supported by NSFC (Grant No. 11871021). The second author was supported by a Collaboration Grant from the Simons Foundation. The third author is supported by a grant from the Eric Nordgren Research Fellowship Fund.

3. For every $a \in A$ *,*

$$rank(\pi(a)) = rank(\rho(a)).$$

4. ker $\pi = \text{ker }\rho$, and $\pi|_{span^{-||||}(\cup \{ran\pi(a):\pi(a)\in\mathcal{K}(H)\})}$ is unitarily equivalent to $\rho|_{span^{-||||}(\cup \{ran\rho(a):\rho(a)\in\mathcal{K}(H)\})}$.

If $\pi : \mathcal{A} \to B(H)$ is a unital *-homomorphism, we will write $\pi \sim_a \rho$ in B(H) to mean that statement (2) in the preceding theorem holds and we will write $\pi \sim_a \rho$ $(\mathcal{K}(H))$ in B(H) to indicate statements (1) and (2) hold. When the C*-algebra \mathcal{A} is not separable, $\pi \sim_a \rho$ means that there is a *net* of unitaries $\{U_{\lambda}\}$ such that, for every $a \in \mathcal{A}$, $||U_{\lambda}\pi(a)U_{\lambda}^* - \rho(a)|| \to 0$. It was shown in [7] that $\pi \sim_a \rho$ if and only if rank $(\pi(a)) = \operatorname{rank}(\rho(a))$ always holds even when \mathcal{A} or H is not separable, where, for $T \in B(H)$, rank (T) is the Hilbert-space dimension of the projection $\mathfrak{R}(T)$ onto the closure of the range of T.

Later Huiru Ding and the second author [4] extended the notion of rank to operators in a von Neumann algebra \mathcal{M} , i.e., if $T \in \mathcal{M}$, then \mathcal{M} -rank(T) is the Murray von Neumann equivalence class of the projection $\mathfrak{R}(T)$ onto the closure of the range of T. If p and q are projections in a C*-algebra \mathcal{W} , we say that p and q are Murray-von Neumann equivalent in \mathcal{W} , written $p \sim q$, if there is a partial isometry $v \in \mathcal{W}$ such that $v^*v = p$ and $vv^* = q$. Thus \mathcal{M} -rank $(T) = \mathcal{M}$ -rank(S) if and only if $\mathfrak{R}(S) \sim \mathfrak{R}(T)$. In [4] they extended Voiculescu's theorem for representations of a separable AH C*algebra into a von Neumann algebra on a separable Hilbert space, i.e., $\pi \sim_a \rho$ in \mathcal{M} if and only if, for every $a \in \mathcal{A}$,

$$\mathcal{M}$$
-rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$.

When the algebra \mathcal{A} is ASH, their characterization works when the von Neumann algebra is a II_1 factor [4]. (See Theorem 4.) In [2] A. Ciuperca, T. Giordano, P. W. Ng, and Z. Niu found a limit for the results in [4]. We say that two representations $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are *weak*-approximately equivalent* if and only if, there are nets $\{U_{\lambda}\}$ and $\{V_{\lambda}\}$ of unitary operators in \mathcal{M} such that, for every $a \in \mathcal{A}$,

weak*-lim
$$U_{\lambda}^{*}\pi(a)U_{\lambda} = \rho(a)$$
 and weak*-lim $V_{\lambda}^{*}\rho(a)V_{\lambda} = \pi(a)$.

They proved that a separable unital C*-algebra \mathcal{A} is nuclear if and only if, for every von Neumann algebra \mathcal{M} , and all representations $\pi, \rho : \mathcal{A} \to \mathcal{M}$, we have that for all $a \in \mathcal{A}$, \mathcal{M} -rank ($\pi(a)$) = \mathcal{M} -rank ($\rho(a)$), implies that π and ρ are weak*-approximately equivalent.

Therefore the central questions in this subject are:

QUESTION 1. Are the results in [4] true whenever A is nuclear?

Another important question involves the analogue of part 1(a) of Theorem 1 holds when \mathcal{M} is a semifinite and $\mathcal{K}(H)$ is replaced with the norm closed ideal $\mathcal{K}_{\mathcal{M}}$ generated by the finite projections in \mathcal{M} .

QUESTION 2. If $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are approximately equivalent representations from a separable unital C*-algebra \mathcal{A} into a semifinite von Neumann algebra \mathcal{M} acting on a separable Hilbert space, does there exist a sequence $\{U_n\}$ of unitary operators in \mathcal{M} such that

- 1. $\lim_{n\to\infty} \|U_n^*\pi(a)U_n-\rho(a)\|=0$ for every $a\in\mathcal{A}$, and
- 2. $U_n \pi(a) U_n^* \rho(a) \in \mathcal{K}_M$ for every $n \in \mathbb{N}$ and every $a \in \mathcal{A}$?

If these two conditions hold, we write $\pi \sim_a \rho$ (\mathcal{K}_M).

When \mathcal{A} is abelian the second author and Rui Shi [9] proved that Question 2 has an affirmative answer when \mathcal{M} is a sigma-finite II_{∞} factor. This was extended to the case of AF C*-algebras by Shilin Wen, Junsheng Fang and Rui Shi [5], and to the case when \mathcal{A} is an AH C*-algebra, and by Junhao Shen and Rui Shi [14].

In this paper we show (Theorem 5) that Question 1 has an affirmative answer when \mathcal{M} is a finite von Neumann algebra and \mathcal{A} is satisfies the property that, for every finite subset F of \mathcal{A} and every $\varepsilon > 0$, there is a type I von Neumann algebra \mathcal{B} contained in the second dual $\mathcal{A}^{\#\#}$ such that, for every $x \in F$,

dist
$$(x, \mathcal{B}) < \varepsilon$$
.

If this happens we say that \mathcal{A} is *approximately type I* in $\mathcal{A}^{\#\#}$. This class of C*-algebras contains the ASH algebras and algebras that are direct limits of GCR C*-algebras. For these theorems there are no assumptions on \mathcal{A} being separable or \mathcal{M} acting on a separable Hilbert space. We say that \mathcal{A} is *approximately finite type I* in $\mathcal{A}^{\#\#}$ if the type *I* algebra \mathcal{B} can always be chosen to be a finite type *I* von Neumann algebra. It is clear that this latter property implies that \mathcal{A} is strongly quasidiagonal. We do not know if this property is equivalent to strong quasidiagonality.

In [7] the second author extended Voiculescu's theorem (Theorem 1) in another way:

THEOREM 2. [7] Suppose \mathcal{A} is a separable unital C*-algebra, H is a separable Hilbert space, and $\pi, \rho : \mathcal{A} \to B(H)$ are unital representations. The following are equivalent:

1. For every $a \in A$,

$$rank\pi(a) \leq rank(\rho(a))$$

2. There is a representation σ such that

$$\rho \sim_a \pi \oplus \sigma$$
.

An analogue of this result was proved in [9] when \mathcal{M} is a H_1 factor and \mathcal{A} is abelian. This result was further extended to the case when \mathcal{A} is AF by Shilin Wen, Junsheng Fang and Rui Shi [5]. We extend this result to the case when there is an LF C*-algebra \mathcal{D} such that $\mathcal{A} \subset \mathcal{D} \subset \mathcal{A}^{\#}$. This class of algebras includes the ASH C*-algebras.

The proof of Voiculescu's theorem (Theorem 1) have two parts.

The "easy part" involves the compact operators. Suppose \mathcal{A} is a separable unital C*-algebra and $\pi : \mathcal{A} \to \mathcal{B}(\ell^2)$ is a unital *-homomorphism. Then $\sup\{\mathfrak{R}(\pi(a)) : \pi(a) \in \mathcal{K}(\ell^2)\}$ reduces π and leads to a decomposition

$$\pi = \pi_{\mathcal{K}(H)} \oplus \pi_1.$$

The "easy part" says that if $\pi \sim_a \rho$, then $\pi_{\mathcal{K}(H)}$ and $\rho_{\mathcal{K}(H)}$ must be unitarily equivalent. Using descriptions of C*-algebras of compact operators and their representations (see [1]), and it is not too hard to show that the equality of rank conditions imply that $\pi_{\mathcal{K}(H)}$ and $\rho_{\mathcal{K}(H)}$ are unitarily equivalent. When B(H) is replaced with a sigma-finite type H_{∞} factor von Neumann algebra \mathcal{M} and $\mathcal{K}(H)$ is replaced with the closed ideal $\mathcal{K}_{\mathcal{M}}$ generated by the finite projections, the hard part is harder (and unsolved) and the easy part is not true. For example, if \mathcal{M} is the set of all bounded operator matrices (A_{ij}) with each A_{ij} in the free group factor $\mathcal{L}_{\mathbb{F}_2} \subset B(\ell^2(\mathbb{F}_2))$, and U,V are the unitary generators of $\mathcal{L}_{\mathbb{F}_2}$, then A = diag(U, 0, 0, ...) and B = diag(V, 0, 0, ...) are in $\mathcal{K}_{\mathcal{M}}$ and are approximately equivalent, but not unitarily equivalent. If $\mathcal{A} = C^*(A)$, $\pi(A) = A$ and $\rho(A) = B$, then $\pi \sim_a \rho$ in \mathcal{M} , but $\pi_{\mathcal{K}_{\mathcal{M}}}$ and $\rho_{\mathcal{K}_{\mathcal{M}}}$ are not unitarily equivalent in \mathcal{M} . However, $\pi_{\mathcal{K}_{\mathcal{M}}}$ and $\rho_{\mathcal{K}_{\mathcal{M}}}$ are approximately equivalent in the easy of the "easy" part must look something like

$$\pi_{\mathcal{K}_{\mathcal{M}}} \sim_a \rho_{\mathcal{K}_{\mathcal{M}}} (\mathcal{K}_{\mathcal{M}})$$

In Theorem 7 we prove that this holds in a very general setting when \mathcal{A} is a separable unital ASH algebra. One of our main results (Theorem 8) gives an affirmative answer to both Questions 1 and 2 when \mathcal{A} is a separable ASH C*-algebra and \mathcal{M} is a semifinite von Neumann algebra acting on a separable Hilbert space.

The "hard" part of the proof of Voiculescu's theorem is showing that if $\mathcal{A} \subset B(\ell^2)$ is a separable unital C*-algebra, $\pi : \mathcal{A} \to B(\ell^2)$ is a unital *-homomorphism such that $\mathcal{K}(\ell^2) \cap \mathcal{A} \subset \ker \pi$, then

$$id_{\mathcal{A}} \oplus \pi \sim_a id_{\mathcal{A}} (\mathcal{K}(\ell^2)),$$

where $id_{\mathcal{A}}$ denotes the identity representation on \mathcal{A} .

In a deep and beautiful paper [12], Qihui Li, Junhao Shen, and Rui Shi proved the best-to-date version of the "hard" part.

THEOREM 3. [12] Suppose \mathcal{A} is a separable nuclear C*-algebra, \mathcal{M} is a sigmafinite type II_{∞} factor von Neumann algebra and $\mathcal{K}_{\mathcal{M}}$ is the closed ideal generated by the finite projections in \mathcal{M} . If $\pi, \sigma : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that

$$\pi^{-1}(\mathcal{K}_{\mathcal{M}}) \subset \ker \rho_{\mathcal{A}}$$

then

$$\pi \sim_a \pi \oplus \sigma \ (\mathcal{K}_{\mathcal{M}})$$
 .

2. Finite von Neumann algebras

A separable C*-algebra is *AF* if it is a direct limit of finite-dimensional C*-algebras. A separable C*-algebra is *homogeneous* if it is a finite direct sum of algebras of the form $\mathbb{M}_n(C(X))$, where X is a compact Hausdorff space. A unital C*-algebra \mathcal{A} is *subhomogeneous* if there is an $n \in \mathbb{N}$, such that every irreducible representation is on a Hilbert space of dimension at most n; equivalently, if $x^n = 0$ for every nilpotent $x \in \mathcal{A}$. Every subhomogeneous algebra is a subalgebra of a homogeneous one. Every subhomogeneous von Neumann algebra is homogeneous; in particular, if \mathcal{A} is subhomogeneous, then $\mathcal{A}^{\#\#}$ is homogeneous, i.e., $\mathcal{A}^{\#\#}$ is a finite direct sum of algebras of the form $\mathbb{M}_n(L^{\infty}(X,\Sigma,\mu))$ with (X,Σ,μ) a measure space. A C*-algebra is approximately subhomogeneous (ASH) if it is a direct limit of subhomogeneous C*algebras. A C*-algebra \mathcal{A} is GCR (Type I) if for every irreducible representation $\pi : \mathcal{A} \to B(H)$ we have $\mathcal{K}(H) \subset \pi(\mathcal{A})$. Thus every subhomogeneous C*-algebra is GCR and every ASH C*-algebra is a direct limit of GCR C*-algebras. It was proved by Glimm [6] that a C*-algebra \mathcal{A} is GCR if and only if, for every representation $\pi : \mathcal{A} \to B(H)$, $\pi(\mathcal{A})''$ is a type I von Neumann algebra. This is equivalent to saying $\mathcal{A}^{\#\#}$ is a type I von Neumann algebra.

There has been a lot of work determining which separable C*-algebras are AFembeddable. A (possibly nonseparable) C*-algebra \mathcal{B} is *LF* if, for every finite subset $F \subset \mathcal{B}$ and every $\varepsilon > 0$ there is a finite-dimensional C*-algebra \mathcal{D} of \mathcal{B} such that, for every $b \in F$, dist $(b, \mathcal{D}) < \varepsilon$. Every separable unital C*-subalgebra of a LF C*-algebra is contained in a separable AF subalgebra [3]. A C*-algebra \mathcal{A} is *AL* if, for every finite subset $F \subset \mathcal{A}$ and every $\varepsilon > 0$, there is a finite-dimensional C*-subalgebra \mathcal{D} of \mathcal{A} such that, for every $x \in F$, dist $(b, \mathcal{D}) < \varepsilon$. We say that a unital C*-subalgebra \mathcal{B} of a unital C*-algebra \mathcal{E} is *relatively LF in* \mathcal{E} if and only if, for every finite subset $F \subset \mathcal{B}$ and every $\varepsilon > 0$ there is a finite-dimensional C*-algebra \mathcal{D} of \mathcal{E} such that, for every $b \in F$, dist $(b, \mathcal{D}) < \varepsilon$.

We are interested in the property that a C*-algebra \mathcal{A} is relatively LF in $\mathcal{A}^{\#\#}$. If \mathcal{A} is subhomogeneous, then $\mathcal{A}^{\#\#}$ is a finite direct sum of algebras of the form $\mathbb{M}_n(L^{\infty}(\Omega,\Sigma,\mu))$ with (Ω,Σ,μ) a measure space. If $\{E_1,\ldots,E_s\}$ is a measurable partition of Ω , then the set of matrices of the form (f_{ij}) with each f_{ij} in the linear span of $\{\chi_{E_1},\ldots,\chi_{E_s}\}$ is an sn^2 -dimensional C*-subalgebra of $\mathbb{M}_n(L^{\infty}(\Omega,\Sigma,\mu))$. Since the set of $n \times n$ matrices of simple functions is dense in $\mathbb{M}_n(L^{\infty}(\Omega,\Sigma,\mu))$, we see that $\mathbb{M}_n(L^{\infty}(\Omega,\Sigma,\mu))$ is LF. If \mathcal{A} is ASH, then there is a sequence $\{\mathcal{A}_n\}$ of subhomogeneous C*-subalgebras of \mathcal{A} such that

$$\mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots$$
 and $\mathcal{A} = (\bigcup_{n \in \mathbb{N}} \mathcal{A}_n)^{-\parallel \parallel}$.

.....

It follows that $\mathcal{A} \subset (\bigcup_{n \in \mathbb{N}} \mathcal{A}_n^{\#\#})^{-\parallel\parallel} \subset \mathcal{A}^{\#\#}$ and $(\bigcup_{n \in \mathbb{N}} \mathcal{A}_n)^{-\parallel\parallel}$ is LF. Thus every subhomogeneous C*-algebra is relatively LF in its second dual.

For LF C*-algebras we can prove an approximate equivalence theorem for representation into an arbitrary unital C*-algebra.

LEMMA 1. Suppose \mathcal{B} is a unital LF C*-algebra and $\mathcal{D} = \mathbb{M}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{M}_{n_k}(\mathbb{C})$ and \mathcal{W} is a unital C*-algebra.

- 1. If $\pi, \rho : \mathcal{D} \to \mathcal{W}$ are unital *-homomorphisms and $\pi(e_{11,s}) \sim \rho(e_{11,s})$ for $1 \leq s \leq k$, where $\{e_{ij,s}\}$ is the system of matrix units for $\mathbb{M}_{n_s}(\mathbb{C})$, then π and ρ are unitarily equivalent in \mathcal{W} .
- 2. If $\pi, \rho : \mathcal{B} \to \mathcal{W}$ are unital *-homomorphisms such that $\pi(p) \sim \rho(p)$ in \mathcal{W} for every projection $p \in \mathcal{B}$, then $\pi \sim_a \rho$ in \mathcal{W} .

Proof. (1) Since $e_{ii,s} \sim e_{11,s}$ in \mathcal{D} for $1 \leq i \leq n_s$ and $1 \leq s \leq k$, we see that $\pi(e_{ii,s}) \sim \rho(e_{ii,s})$ in \mathcal{W} for $1 \leq i \leq n_s$ and $1 \leq s \leq k$. It follows from [4, Theorem 2] that π and ρ are unitarily equivalent in \mathcal{W} .

(2) Suppose Λ is the set of all pairs $\lambda = (F_{\lambda}, \varepsilon_{\lambda})$ with F_{λ} a finite subset of \mathcal{B} and $\varepsilon_{\lambda} > 0$. Clearly Λ is directed by (\subset, \geq) . For $\lambda \in \Lambda$, we can choose a finitedimensional algebra $\mathcal{D}_{\lambda} \subset \mathcal{B}$ such that, for every $x \in F_{\lambda}$, dist $(x, \mathcal{D}_{\lambda}) < \varepsilon_{\lambda}$. It follows from part (1) that there is a unitary operator $U_{\lambda} \in \mathcal{W}$ such that, for every $x \in \mathcal{D}_{\lambda}$, $U\pi(x)U^* = \rho(x)$. For each $a \in F_{\lambda}$, we can choose $x_a \in \mathcal{D}_{\lambda}$ such that $||a - x_a|| < \varepsilon_{\lambda}$. Hence, for every $a \in F_{\lambda}$

$$\left\|U_{\lambda}\pi(a)U_{\lambda}^{*}-\rho(a)\right\|=\left\|U_{\lambda}\pi(a-x_{a})U_{\lambda}^{*}-\rho(a-x_{a})\right\|<2\varepsilon_{\lambda}$$

It follows that, for every $a \in A$,

$$\lim_{\lambda} \left\| U_{\lambda} \pi(a) U_{gl}^* - \rho(a) \right\| = 0. \quad \Box$$

A key property of a finite von Neumann algebra \mathcal{M} is that there is a faithful normal tracial conditional expectation $\Phi_{\mathcal{M}}$ from \mathcal{M} to its center $\mathcal{Z}(\mathcal{M})$, and that for projections p and q in \mathcal{M} , we have p and q are Murray-von Neumann equivalent if and only if $\Phi_{\mathcal{M}}(p) = \Phi_{\mathcal{M}}(q)$. (See [11].) The map $\Phi_{\mathcal{M}}$ is called the *center-valued trace* on \mathcal{M} . Note that in the next lemma and the theorem that follows, there is no separability assumption on the C*-algebra \mathcal{A} or the dimension of the Hilbert space on which \mathcal{M} acts. This lemma appears in [2] and [8].

LEMMA 2. Suppose \mathcal{A} is a (possibly nonunital) C*-algebra, \mathcal{M} is a finite von Neumann algebra. If $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are *-homomorphisms, the following are equivalent:

1. For every $a \in A$, \mathcal{M} -rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$,

2. $\Phi_{\mathcal{M}} \circ \pi = \Phi_{\mathcal{M}} \circ \rho$.

Proof. (1) \Rightarrow (2). We can extend π and ρ to weak*-weak* continuous *-homomorphisms $\hat{\pi}, \hat{\rho} : \mathcal{A}^{\#\#} \to \mathcal{M}$. Suppose $x \in \mathcal{A}$ and $0 \leq x \leq 1$. Suppose $0 < \alpha < 1$ and define $f_{\alpha} : [0,1] \to [0,1]$ by

$$f(t) = \operatorname{dist}(t, [0, \alpha]).$$

Since f(0) = 0, we see that $f(x) \in \mathcal{A}$, and $\chi_{(\alpha,1]}(x) = \text{weak*-lim}_{n \to \infty} f(x)^{1/n} \in \mathcal{A}^{\#\#}$, so

$$\Re(f(x)) = \chi_{(\alpha,1]}(x).$$

It follows that

$$\hat{\pi}\left(\boldsymbol{\chi}_{\left(\alpha,1\right]}\left(x\right)\right) = \Re\left(\pi\left(f_{\alpha}\left(x\right)\right)\right) = \boldsymbol{\chi}_{\left(\alpha,1\right]}\left(\pi\left(x\right)\right)$$

and

$$\hat{\rho}\left(\chi_{(\alpha,1]}(x)\right) = \Re\left(\rho\left(f_{\alpha}(x)\right)\right) = \chi_{(\alpha,1]}\left(\rho\left(x\right)\right).$$

Hence

$$\Phi_{\mathcal{M}}\left(\hat{\pi}\left(\chi_{(\alpha,1]}(x)\right)\right) = \Phi_{\mathcal{M}}\left(\hat{\rho}\left(\chi_{(\alpha,1]}(x)\right)\right)$$

Suppose $0 < \alpha < \beta < 1$. Since $\chi_{(\alpha,\beta]} = \chi_{(\alpha,1]} - \chi_{(\beta,1]}$, we see that

$$\Phi_{\mathcal{M}}\left(\hat{\pi}\left(\chi_{(\alpha,\beta]}\left(x\right)\right)\right) = \Phi_{\mathcal{M}}\left(\hat{\rho}\left(\chi_{(\alpha,\beta]}\left(x\right)\right)\right).$$

Thus, for all $n \in \mathbb{N}$,

$$\Phi_{\mathcal{M}}\left(\hat{\pi}\left(\sum_{k=1}^{n-1}\frac{k}{n}\chi_{\left(\frac{k}{n},\frac{k+1}{n}\right]}(x)\right)\right) = \Phi_{\mathcal{M}}\left(\hat{\rho}\left(\sum_{k=1}^{n-1}\frac{k}{n}\chi_{\left(\frac{k}{n},\frac{k+1}{n}\right]}(x)\right)\right).$$

Since, for every $n \in \mathbb{N}$,

$$\left\|x-\sum_{k=1}^{n-1}\frac{k}{n}\chi_{\left(\frac{k}{n},\frac{k+1}{n}\right]}(x)\right\| \leqslant 1/n,$$

it follows that

$$\Phi_{\mathcal{M}}(\pi(x)) = \Phi_{\mathcal{M}}(\hat{\pi}(x)) = \Phi_{\mathcal{M}}(\hat{\rho}(x)) = \Phi_{\mathcal{M}}(\rho(x)).$$

Since \mathcal{A} is the linear span of its positive contractions, $\Phi_{\mathcal{M}} \circ \pi = \Phi_{\mathcal{M}} \circ \rho$.

 $(2) \Rightarrow (1)$. This is contained in [4]. \Box

THEOREM 4. Suppose \mathcal{A} is relatively LF in $\mathcal{A}^{\#\#}$ and \mathcal{M} is a finite von Neumann algebra. If $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms, then the following are equivalent:

1. $\pi \sim_a \rho$ in \mathcal{M} .

2.
$$\mathcal{M}$$
-rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$ for every $a \in \mathcal{A}$.

3. $\Phi_{\mathcal{M}} \circ \pi = \Phi_{\mathcal{M}} \circ \rho$.

Proof. (3) \Rightarrow (1). We can extend π and ρ to weak*-weak* continuous *-homomorphisms $\hat{\pi}, \hat{\rho} : \mathcal{A}^{\#\#} \to \mathcal{M}$. Since $\Phi_{\mathcal{M}}$ is weak*-weak* continuous, it follows that $\Phi_{\mathcal{M}} \circ \hat{\pi} = \Phi_{\mathcal{M}} \circ \hat{\rho}$.

Let

$$\Lambda = \{ (F, \varepsilon) : F \subset \mathcal{A}, F \text{ is finite, } \varepsilon > 0 \}$$

ordered by the relation (\subset, \geq) . Suppose $\lambda = (F, \varepsilon) \in \Lambda$. Since \mathcal{A} is relatively LF in $\mathcal{A}^{\#\#}$, there is a finite-dimensional algebra $\mathcal{B} \subset \mathcal{A}^{\#\#}$ such that, for every $x \in F$,

$$dist(x,\mathcal{B}) < \varepsilon$$
.

Thus, for each $x \in F$ there is a $b_x \in \mathcal{B}$ such that

$$\|x-b_x\| < \varepsilon/2$$

We know from Lemma 1 that $\hat{\pi}|_{\mathcal{B}}$ and $\hat{\rho}|_{\mathcal{B}}$ are unitarily equivalent in \mathcal{M} . Hence, there is a unitary $U_{\lambda} \in \mathcal{M}$ such that, for every $b \in \mathcal{B}$,

$$U_{\lambda}^{*}\hat{\pi}(B)U_{\lambda}=\hat{\rho}(b).$$

Thus, for every $x \in F$,

$$\left\|U_{\lambda}^{*}\pi(x)U_{\lambda}-\rho(x)\right\| \leq \left\|U_{\lambda}^{*}\hat{\pi}(x-b_{x})U_{\lambda}\right\|+\left\|\hat{\rho}(b_{x}-x)\right\|<\varepsilon.$$

Hence, for every $x \in A$

$$\lim_{\lambda} \left\| U_{\lambda}^{*} \pi(x) U_{\lambda} - \rho(x) \right\| = 0.$$

Thus $\pi \sim_a \rho$ (\mathcal{M}).

(1) \Rightarrow (3). Suppose $\{U_{\lambda}\}$ is a net of unitaries in \mathcal{M} such that, for every $a \in \mathcal{A}$,

$$\left\| U_{\lambda} \pi(a) U_{\lambda}^{*} - \rho(a) \right\| \to 0.$$

Thus, since $\Phi_{\mathcal{M}}$ is tracial and continuous,

$$\Phi_{\mathcal{M}}(\rho(a)) = \lim_{\lambda} \Phi_{\mathcal{M}}\left(U_{\lambda}\pi(a)U_{\lambda}^{*}\right) = \Phi_{\mathcal{M}}\left(\pi(a)\right)$$

 $(3) \Rightarrow (2)$. Assume (3). Then, for any $a \in \mathcal{A}$,

$$\Phi_{\mathcal{M}}(\mathfrak{R}(\pi(a))) = \lim_{n \to \infty} \Phi_{\mathcal{M}}\left(\pi\left((aa^*)^{1/n}\right)\right) = \lim_{n \to \infty} \Phi_{\mathcal{M}}\left(\rho\left((aa^*)^{1/n}\right)\right)$$
$$= \Phi_{\mathcal{M}}\left(\mathfrak{R}(\pi(a))\right).$$

Hence $\Re(\pi(a)) \sim \Re(\rho(a))$. Thus \mathcal{M} -rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$. (2) \Rightarrow (3). This is Lemma 2. \Box

REMARK 1. It is important to note that the proof of $(2) \Rightarrow (3)$ in Theorem 4 holds even when \mathcal{A} is not unital.

Here is our main theorem of this section.

THEOREM 5. Suppose A is a unital C*-algebra that is approximately type I in $A^{\#\#}$, M is a finite von Neumann algebra, and $\pi, \rho : A \to M$ are unital *-homomorphisms such that

$$(\mathcal{M}\text{-}rank) \circ \pi = (\mathcal{M}\text{-}rank) \circ \rho$$
.

Then $\pi \sim_a \rho$ in \mathcal{M} .

Proof. Let $\Phi_{\mathcal{M}} : \mathcal{M} \to \mathcal{Z}(\mathcal{M})$ be the center-valued trace on \mathcal{M} . Let $\hat{\pi}, \hat{\rho} : \mathcal{A}^{\#\#} \to \mathcal{M}$ be the weak*-continuous extensions of π and ρ . Then $\Phi_{\mathcal{M}} \circ \hat{\pi} = \Phi_{\mathcal{M}} \circ \hat{\rho}$, or

$$(\mathcal{M}\text{-rank}) \circ \hat{\pi} = (\mathcal{M}\text{-rank}) \circ \hat{\rho}.$$

In particular, ker $\hat{\pi} = \text{ker } \hat{\rho}$ is a weak*-closed ideal in $\mathcal{A}^{\#\#}$, so there is a projection $Q \in \mathcal{Z}(\mathcal{A}^{\#\#})$ such that

$$\ker \hat{\pi} = \ker \hat{\rho} = (1 - Q) \mathcal{A}^{\#\#}.$$

Thus $\hat{\pi}, \hat{\rho}: Q\mathcal{A}^{\#\#} \to \mathcal{M}$ is an embedding. Since $Q\mathcal{A}^{\#\#}$ is isomorphic to a subalgebra of \mathcal{M} , we know that $Q\mathcal{A}^{\#\#}$ is a finite von Neumann algebra and a summand of $\mathcal{A}^{\#\#}$. Suppose \mathcal{N} is a type I von Neumann subalgebra of $\mathcal{A}^{\#\#}$. Then $Q\mathcal{N}$ is a type I von Neumann subalgebra of $\mathcal{A}^{\#\#}$. Since $Q\mathcal{A}^{\#\#}$ is finite, $Q\mathcal{N}$ is a finite type I von Neumann algebra. Thus there is an orthogonal sequence $\{e_n\}$ of projections in the center of $Q\mathcal{N}$ whose sum is Q such that

$$Q\mathcal{N} = \sum_{k\in\mathbb{N}}^{\oplus} e_k Q\mathcal{N}$$

and each $e_k QN$ is a type I_k von Neumann algebra and is isomorphic to $\mathbb{M}_k(L^{\infty}(\mu_k))$ acting on

$$L^{2}(\boldsymbol{\mu}_{k})^{(n)} = L^{2}(\boldsymbol{\mu}_{k}) \oplus \cdots \oplus L^{2}(\boldsymbol{\mu}_{k})$$

for some measure space (X_k, Σ_k, μ_k) . Clearly, $e_k Q \mathcal{N} = \mathbb{M}_k (L^{\infty}(\mu_k))$ is an AL C*algebra. Since $\hat{\pi}(Q) = \hat{\rho}(Q) = 1$, it follows that

$$1 = \sum_{n \in \mathbb{N}} \hat{\pi}(e_n) = \sum_{n \in \mathbb{N}} \hat{\rho}(e_n).$$

Since, for each $n \in \mathbb{N}$, $(\mathcal{M}\text{-rank}) \circ \hat{\pi}(e_n) = (\mathcal{M}\text{-rank}) \circ \hat{\rho}(e_n)$ we see that the projections $\hat{\pi}(e_n)$ and $\hat{\rho}(e_n)$ are unitarily equivalent in \mathcal{M} . Thus there is a unitary operator $U \in \mathcal{M}$ such that, for every $n \in \mathbb{N}$,

$$U\hat{\pi}(e_n)U^* = \hat{\rho}(e_n).$$

By replacing π with $U\pi(\cdot)U^*$, we can assume, for every $n \in \mathbb{N}$, that

$$\hat{\pi}(e_n) = \hat{\rho}(e_n)$$

We now have $\hat{\pi}|_{e_nQ\mathcal{N}}$, $\hat{\rho}|_{e_nQ\mathcal{N}}$: $e_nQ\mathcal{N} \to \hat{\pi}(e_n)\mathcal{M}\hat{\pi}(e_n)$. Since $e_nQ\mathcal{N}$ is AL and $\hat{\pi}(e_n)\mathcal{M}\hat{\pi}(e_n)$ is a finite von Neumann algebra, it follows from Theorem 4 that $\hat{\pi}_{e_nQ\mathcal{N}}$ and $\hat{\rho}|_{e_nQ\mathcal{N}}$ are approximately equivalent in $\hat{\pi}(e_n)\mathcal{M}\hat{\pi}(e_n)$ for each $n \in \mathbb{N}$. Since $\hat{\pi}|_{Q\mathcal{N}}$, $\hat{\rho}|_{Q\mathcal{N}}$: $Q\mathcal{N} \to \sum_{n \in \mathbb{N}}^{\oplus} \hat{\pi}(e_n)\mathcal{M}\hat{\pi}(e_n)$ and

$$\hat{\pi}|_{\mathcal{QN}} = \sum_{n\in\mathbb{N}}^{\oplus} \hat{\pi}|_{e_n \mathcal{QN}} \text{ and } \hat{\rho}|_{\mathcal{QN}} = \sum_{n\in\mathbb{N}}^{\oplus} \hat{\rho}|_{e_n \mathcal{QN}},$$

we easily see that $\hat{\pi}|_{Q\mathcal{N}}$ and $\hat{\rho}|_{Q\mathcal{N}}$ are approximately equivalent in \mathcal{M} . Since $\hat{\pi}|_{(1-Q)\mathcal{N}} = \hat{\rho}_{(1-Q)\mathcal{N}} = 0$, we see that $\hat{\pi}|\mathcal{N}$ and $\hat{\rho}|_{\mathcal{N}}$ are approximately equivalent in \mathcal{M} .

Let $\Lambda = \{(F, \varepsilon) : F \subset \mathcal{A} \text{ is finite, } \varepsilon > 0\}$ directed by the partial order $(\subset, >)$. Suppose $\lambda = (F, \varepsilon) \in \Lambda$. Since \mathcal{A} approximately type I in $\mathcal{A}^{\#\#}$, we know that there is a type I von Neumann subalgebra \mathcal{N} of $\mathcal{A}^{\#\#}$ such that, for every $T \in F$,

dist
$$(T, \mathcal{N}) < \varepsilon/2$$
.

Thus, for each $T \in F$, there is an $x_T \in \mathcal{N}$ such that $||T - x_T|| < \varepsilon/37$.

Thus $\|\hat{\pi}(x_T) - \pi(T)\| < \varepsilon/37$ and $\|\hat{\rho}(x_T) - \rho(T)\| < \varepsilon/37$ whenever $T \in \mathcal{F}$. Since $\{x_T : T \in F\}$ is finite and $\hat{\pi}|\mathcal{N}$ and $\hat{\rho}|_{\mathcal{N}}$ are approximately equivalent in \mathcal{M} , there is a unitary $U_{\lambda} \in \mathcal{M}$ such that

$$\left\| U_{\lambda} \hat{\pi} \left(x_T \right) U_{\lambda}^* - \hat{\rho} \left(x_T \right) \right\| < \varepsilon/37$$

for every $T \in F$. Thus

$$\left\| U_{\lambda} \pi \left(T \right) U_{\lambda}^{*} - \rho \left(T \right) \right\|$$

$$\leq \left\| U_{\lambda} \hat{\pi} \left(x_{T} \right) U_{\lambda}^{*} - \hat{\rho} \left(x_{T} \right) \right\| + \left\| U_{\lambda} \hat{\pi} \left(T - x_{T} \right) U^{*} \right\| + \left\| \hat{\rho} \left(T - x_{T} \right) \right\| < \varepsilon$$

Thus, for every $T \in \mathcal{A}$,

$$\lim_{\lambda} \left\| U_{\lambda} \pi(T) U_{\lambda}^{*} - \rho(T) \right\| = 0.$$

Hence π and ρ are approximately equivalent in \mathcal{M} . \Box

In [7] it was shown that if \mathcal{A} is a separable unital C*-algebra and π and ρ are representations on a separable Hilbert space such that, for every $x \in \mathcal{A}$

$$\operatorname{rank}\pi(x) \leq \operatorname{rank}\rho(x)$$

then there is a representation σ such that

$$\pi \oplus \sigma \sim_a \rho$$
.

In [9], Rui Shi and the first author proved an analogue for representations of separable abelian C*-algebras into II_1 factor von Neumann algebras. This result was extended by Shilin Wen, Junsheng Fang and Rui Shi [5] to separable AF C*-algebras. We extend this result further, including separable ASH C*-algebras.

THEOREM 6. Suppose \mathcal{A} is a separable C*-algebra and there is an LF C*-algebra \mathcal{D} such that $\mathcal{A} \subset \mathcal{D} \subset \mathcal{A}^{\#\#}$. Suppose also that \mathcal{M} is a II_1 factor von Neumann algebra with a faithful normal tracial state τ . Suppose P is a projection in \mathcal{M} and $\pi : \mathcal{A} \to P\mathcal{M}P$ and $\rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that, for every $a \in \mathcal{A}$,

$$\mathcal{M}$$
-rank $(\pi(a)) \leq \mathcal{M}$ -rank $(\rho(a))$.

Then there is a unital *-homomorphism $\sigma: \mathcal{A} \to P^{\perp}\mathcal{M}P^{\perp}$ such that

$$\pi \oplus \sigma \sim_a \rho (\mathcal{M}).$$

Proof. As in the proof of Theorem 4 choose a separable AF C*-algebra \mathcal{B} such that $\mathcal{A} \subset \mathcal{B} \subset \mathcal{D}$, and extend π and ρ to unital weak*-weak* continuous *-homomorphisms $\hat{\pi}$ and $\hat{\rho}$ with domain $\mathcal{A}^{\#\#}$. It was shown in [4] that the condition on π and ρ is equivalent to: for every $a \in \mathcal{M}$ with $0 \leq a$, $\tau(\pi(a)) \leq \tau(\rho(a))$. It follows from weak* continuity that, for every $a \in \mathcal{A}^{\#\#}$ with $0 \leq a$, $\tau(\hat{\pi}(a)) \leq \tau(\hat{\rho}(a))$. In particular this holds for $0 \leq a \in \mathcal{B}$. However, since \mathcal{B} is AF, it follows from [5] that there is a unital *-homomorphism $\gamma: \mathcal{B} \to P^{\perp} \mathcal{A} P^{\perp}$ such that

$$(\hat{\pi}|_{\mathcal{B}}) \oplus \gamma \sim_a \hat{\rho}|_{\mathcal{B}} (\mathcal{M}).$$

If we let $\sigma = \gamma|_{\mathcal{A}}$, we see $\pi \oplus \sigma \sim_a \rho$ (\mathcal{M}). \Box

3. Representations of ASH algebras relative to ideals

In this section we prove (Theorem 8) a version of Voiculescu's theorem for representations of a separable ASH C*-algebra into a semifinite von Neumann algebra acting on a separable Hilbert space.

We first prove a more general result. If \mathcal{J} is a norm closed two-sided ideal in a von Neumann algebra \mathcal{M} , we let \mathcal{J}_0 denote the ideal in \mathcal{M} generated by the projections in \mathcal{J} . We begin with a probably well-known lemma.

LEMMA 3. Suppose \mathcal{J} is a norm closed two-sided ideal in a von Neumann algebra \mathcal{M} and \mathcal{A} is a C*-algebra and $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms. Then

1. \mathcal{J} is the norm closed linear span of the set of projections in \mathcal{J} , i.e.,

$$\mathcal{J}_0^{-\parallel\parallel} = \mathcal{J},$$

- 2. $\mathcal{J}_0 = \{T \in \mathcal{M} : T = PTP \text{ for some projection } P \in \mathcal{J}\},\$
- 3. $T \in \mathcal{J}_0$ if and only if $\chi_{(0,\infty)}(|T|) = \mathfrak{R}(T) \in \mathcal{J}_0$,
- 4. If P and Q are projections in \mathcal{J}_0 then $P \lor Q = \mathfrak{R}(P+Q) \in \mathcal{J}_0$,

5.
$$\pi^{-1}(\mathcal{J}_0)^{-\parallel\parallel} = \pi^{-1}(\mathcal{J}),$$

If {A_i: i ∈ I} is an increasingly directed family of unital C*-subalgebras of A and A = [∪_{i∈I}A_i]^{-||||}, then

$$\left[\bigcup_{i\in I}\mathcal{A}_{i}\cap\pi^{-1}(\mathcal{J}_{0})\right]^{-\parallel\parallel}=\pi^{-1}(\mathcal{J}).$$

Proof. (1), (2), (3) can be found in [11]. (4). Suppose $a \in \pi^{-1}(\mathcal{J})$. Suppose $\varepsilon > 0$ and define $g_{\varepsilon} : [0, \infty) \to [0, \infty)$ by

$$g_{\varepsilon}(t) = \begin{cases} t/\varepsilon \text{ if } 0 \leq t \leq \varepsilon \\ 1 \text{ if } 1 < t \end{cases}.$$

Then $\pi(a) \in \mathcal{J}$, so

$$\pi\left(g_{\varepsilon}\left(|a|\right)\right) = g_{\varepsilon}\left(|\pi\left(a\right)|\right)\chi_{(\varepsilon,\infty)}\left(|\pi\left(a\right)|\right) \in \mathcal{J}_{0},$$

and

 $\|a-ag_{\varepsilon}(|a|)\| \leq \varepsilon.$

(5). Let $\eta : \mathcal{M} \to \mathcal{M}/\mathcal{J}$ be the quotient map. Suppose $a \in \pi^{-1}(\mathcal{J})$ and $\varepsilon > 0$. Then there is an $i \in I$ and a $b \in \mathcal{A}_i$ such that $||a - b|| < \varepsilon$. Thus

$$\|(\eta \circ (\pi|_{\mathcal{A}_i}))(b)\| = \|(\eta \circ \pi)(b)\| = \|(\eta \circ \pi)(b-a)\| \leq \varepsilon$$

so there is a $w \in A_i$ so that

$$\|w\| = \|(\eta \circ (\pi|_{\mathcal{A}_i}))(w)\| = \|(\eta \circ (\pi|_{\mathcal{A}_i}))(b)\| \leq \varepsilon.$$

 $z = b - w \in \ker(\eta \circ (\pi|_{\mathcal{A}_i})) = \pi^{-1}(\mathcal{J}) \cap \mathcal{A}_i$, and $||b - z|| = ||w|| < \varepsilon$. It follows from part (2) that there is a $v \in \pi^{-1}(\mathcal{J}_0) \cap \mathcal{A}_i$ such that $||z - v|| \leq \varepsilon$. Hence $||a - v|| \leq ||a - b|| + ||b - z|| + ||z - v|| \leq 3\varepsilon$.

(6). Let $\eta : \mathcal{M} \to \mathcal{M}/\mathcal{J}$ be the quotient map. Suppose $a \in \pi^{-1}(\mathcal{J})$ and $\varepsilon > 0$. Then there is an $i \in I$ and a $b \in \mathcal{A}_i$ such that $||a - b|| < \varepsilon$. Thus

$$\|(\eta \circ (\pi|_{\mathcal{A}_i}))(b)\| = \|(\eta \circ \pi)(b)\| = \|(\eta \circ \pi)(b-a)\| \leq \varepsilon,$$

so there is a $w \in A_i$ so that

$$\|w\| = \|(\eta \circ (\pi|_{\mathcal{A}_i}))(w)\| = \|(\eta \circ (\pi|_{\mathcal{A}_i}))(b)\| \leq \varepsilon.$$

 $z = b - w \in \ker(\eta \circ (\pi|_{\mathcal{A}_i})) = \pi^{-1}(\mathcal{J}) \cap \mathcal{A}_i$, and $||b - z|| = ||w|| < \varepsilon$. It follows from part (5) that there is a $v \in \pi^{-1}(\mathcal{J}_0) \cap \mathcal{A}_i$ such that $||z - v|| \leq \varepsilon$. Hence $||a - v|| \leq ||a - b|| + ||b - z|| + ||z - v|| \leq 3\varepsilon$. \Box

Suppose \mathcal{A} is a unital C*-algebra, $\mathcal{M} \subset B(H)$ is a von Neumann algebra with a norm-closed ideal \mathcal{J} and $\pi : \mathcal{A} \to \mathcal{M}$ is a unital *-homomorphism. We define

$$H_{\pi,\mathcal{J}} = \operatorname{sp}^{-\parallel\parallel} \left(\cup \{\operatorname{ran}\pi(a) : a \in \mathcal{A} \text{ and } \pi(a) \in \mathcal{J} \} \right).$$

It is clear that $H_{\pi,\mathcal{J}}$ is a reducing subspace for π and we call the summand $\pi(\cdot)|_{H_{\pi,\mathcal{J}}} = \pi_{\mathcal{J}}$.

The following is a fairly general version of the analogue of the "easy part" of the proof of Voiculescu's theorem when the C*-algebra is ASH. In particular, there is no assumption that the von Neumann algebra \mathcal{M} is sigma-finite (e.g., acts on a separable Hilbert space).

THEOREM 7. Suppose \mathcal{A} is a separable unital ASH C*-algebra, $\mathcal{M} \subset B(H)$ is a von Neumann algebra with a norm closed two-sided ideal \mathcal{J} . Suppose $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that

1. Every projection in \mathcal{J} *is finite,*

2. \mathcal{M} -rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$ for every $a \in \mathcal{A}$.

Then there is a sequence $\{W_n\}$ of partial isometries in \mathcal{M} such that

- (3) $W_n^*W_n$ is the projection onto $H_{\pi,\mathcal{J}}$ and $W_nW_n^*$ is the projection onto $H_{\rho,\mathcal{J},\gamma}$
- (4) $W_n \pi_{\mathcal{J}}(a) W_n^* \rho_{\mathcal{J}}(a) \in \mathcal{J}$ for every $n \in \mathbb{N}$ and every $a \in \mathcal{A}$,
- (5) $\lim_{n\to\infty} \|W_n\pi_{\mathcal{J}}(a)W_n^* \rho_{\mathcal{J}}(a)\| = 0$ for every $a \in \mathcal{A}$.

Proof. First, suppose $x \in A$ and $x = x^*$. It follows from [4] that there is a sequence $\{U_n\}$ of unitary operators in \mathcal{M} such that

$$\left\|U_n\pi\left(x\right)U_n^*-\rho\left(x\right)\right\|\to 0.$$

It follows that $\pi(x) \in \mathcal{J}$ if and only if $\rho(x) \in \mathcal{J}$ when $x = x^*$. However, for any $a \in \mathcal{A}$, we get $\pi(a) \in \mathcal{J}$ if and only if $\pi(|a|) \in \mathcal{J}$. Hence $\pi^{-1}(\mathcal{J}) = \rho^{-1}(\mathcal{J})$. Also, $\pi(a) \in \mathcal{J}_0$ if and only if $\Re(\pi(a)) \in \mathcal{J}_0$. Since $\Re(\pi(a))$ and $\Re(\rho(a))$ are Murray von Neumann equivalent (from (2)), we see that $\pi(a) \in \mathcal{J}_0$ if and only if $\rho(a) \in \mathcal{J}_0$. It follows that $\pi^{-1}(\mathcal{J}_0) \cap \mathcal{A}_n = \rho^{-1}(\mathcal{J}_0) \cap \mathcal{A}_n$ for each $n \in \mathbb{N}$, and, from Lemma 3,

$$\left[\bigcup_{n=1}^{\infty} \pi^{-1}(\mathcal{J}_0) \cap \mathcal{A}_n\right]^{-\parallel\parallel} = \left[\bigcup_{n=1}^{\infty} \rho^{-1}(\mathcal{J}_0) \cap \mathcal{A}_n\right]^{-\parallel\parallel} = \pi^{-1}(\mathcal{J}) = \rho^{-1}(\mathcal{J}).$$

Since \mathcal{A} is an ASH algebra, we can assume that there is a sequence

$$\mathcal{A}_1 \subset \mathcal{A}_2 \subset \cdots$$

of subalgebras of \mathcal{A} such that $\bigcup_{n=1}^{\infty} \mathcal{A}_n$ is norm dense in \mathcal{A} such that, for each $n \in \mathbb{N}$,

$$\mathcal{A}_{n}^{\#\#}=\mathcal{M}_{k(n,1)}\left(C\left(X_{n,1}\right)\right)\oplus\cdots\oplus\mathcal{M}_{k(n,s_{n})}\left(C\left(X_{n,s_{n}}\right)\right)$$

with $X_{n,1}, \ldots, X_{n,s_n}$ compact Hausdorff spaces.

Suppose $T = (f_{ij}) \in \mathbb{M}_k(C(X))$ is a $k \times k$ matrix of functions. We define $T^{\mathbf{F}} = \text{diag}(f, f, \dots, f)$ where $f = \sum_{i,j=1}^k |f_{ij}|^2$. If $\{e_{ij} : 1 \leq i, j \leq n\}$ is the system of matrix units for $\mathbb{M}_n(\mathbb{C})$, then $T = \sum_{i,j=1}^n f_{ij}e_{ij}$. It is clear that if $T \ge 0$, then $\mathfrak{R}(T) \le \mathfrak{R}(T^{\mathbf{F}})$. Since $f_{ij}e_{ss} = e_{si}Te_{js}$, we have

$$|f_{ij}|^2 e_{ss} = (e_{si}Te_{js})^* (e_{si}Te_{js}) = e_{sj}T^* e_{is}e_{si}Te_{js} = e_{js}^*T^* e_{ii}Te_{js}.$$

Thus

$$T^{\mathbf{x}} = \sum_{s=1}^{g} \sum_{i,j=1}^{k} |f_{ij}|^2 e_{ss} = \sum_{s=1}^{g} \sum_{i,j=1}^{k} e_{js}^* T^* e_{ii} T e_{js}$$

Suppose $A = A_1 \oplus \cdots \oplus A_{s_n} \in \mathcal{A}_n^{\#\#}$, with each $A_j \in \mathcal{M}_{k(n,j)}(C(X_{n,j}))$. We define $\Delta_n : \mathcal{A}_n^{\#\#} \to \mathcal{Z}(\mathcal{A}_n^{\#\#})$ by

$$\Delta_n(A) = A_1^{\mathbf{H}} \oplus \cdots \oplus A_{s_n}^{\mathbf{H}}.$$

Thus if $A \in \mathcal{A}_n^{\#\#}$, then $\Delta_n(A)$ has the form

$$\Delta_n(A) = \sum_{k=1}^m B_k A C_k,$$

with $B_1, C_1, ..., B_m, C_m \in \mathcal{A}_n^{\#\#}$. It is clear that

- a. $\Delta_n(\mathcal{A}_n^{\#\#})$ is contained in the center $\mathcal{Z}(\mathcal{A}_n^{\#\#})$ of $\mathcal{A}_n^{\#\#}$, and
- b. If $A \ge 0$, then $\mathfrak{R}(A) \le \mathfrak{R}(\Delta_n(A)) \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$.

We call a projection $Q \in \mathcal{A}_n^{\#\#}$ good if

- c. $\hat{\pi}(Q), \hat{\rho}(Q) \in \mathcal{J}_0$
- d. $Q \in \left[\mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0)\right]^{-\text{weak}^*}$
- e. For all $T \in QA^{\#}Q$, \mathcal{M} -rank $(\hat{\pi}(T)) = \mathcal{M}$ -rank $(\hat{\rho}(T))$.

Our proof is based on four claims.

CLAIM 0. Suppose $Q_1, Q_2 \in \mathcal{A}_n^{\#\#}$ are good projections and $Q_1 \perp Q_2$. Then Q = $Q_1 + Q_2$ is a good projection.

Proof of Claim 0. It is clear that Q satisfies (c) and (d). Let $P = \hat{\pi}(Q) \lor \hat{\rho}(Q) \in \mathcal{O}$ \mathcal{J}_0 . Thus P is a finite projection in \mathcal{M} , so $P\mathcal{M}P$ is a finite von Neumann algebra. Let $\Phi_P: P\mathcal{M}P \to \mathcal{Z}(P\mathcal{M}P)$ be the center-valued trace. Since Q_1 and Q_2 are good, we know from Lemma 2 that

$$\Phi_P \circ \hat{\pi}|_{Q_k \mathcal{A}^{\#\#}Q_k} = \Phi_P \circ \hat{
ho}|_{Q_k \mathcal{A}^{\#\#}Q_k}$$

for k = 1, 2. Since $Q_1 \perp Q_2$, we know $\hat{\pi}(Q_1) \perp \hat{\pi}(Q_2)$ and $\hat{\rho}(Q_1) \perp \hat{\rho}(Q_2)$. Since Φ_P is tracial, we know that if $1 \leq i \neq j \leq 2$ and $A \in A^{\#}$, then

$$\Phi_P\left(\hat{\pi}\left(Q_i A Q_j\right)\right) = \Phi_P\left(\hat{\pi}\left(Q_i\right) \hat{\pi}\left(A\right) \hat{\pi}\left(Q_j\right)^2\right)$$
$$= \Phi_P\left(\hat{\pi}\left(Q_j\right) \hat{\pi}\left(Q_i\right) \hat{\pi}\left(A\right) \hat{\pi}\left(Q_j\right)\right) = 0.$$

Similarly,

$$\Phi_P\left(\hat{\rho}\left(Q_iAQ_j\right)\right)=0.$$

Thus

$$\Phi_P(\hat{\pi}(QAQ)) = \Phi_P(\hat{\pi}(Q_1AQ_1)) + \Phi_P(\hat{\pi}(Q_2AQ_2))$$

= $\Phi_P(\hat{\rho}(Q_1AQ_1)) + \Phi_P(\hat{\rho}(Q_2AQ_2)).$

Thus, by Lemma 2, Q satisfies (e). Hence Q is a good projection. This proves the claim. A simple induction proof implies that the sum of a finite family of pairwise orthogonal good projections is good.

14

CLAIM 1. If $Q \in \mathcal{A}_n^{\#\#}$ is a good projection, then there is a good projection $P \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ such that $Q \leq P$.

Proof of Claim 1. Suppose $Q \in \mathcal{A}_n^{\#\#}$ is a good projection. Choose $B_1, C_1, \ldots, B_k, C_k$ in $\mathcal{A}_n^{\#\#}$ such that

$$E = \sum_{\text{def}}^{m} B_k Q C_k = \Delta_n \left(Q \right) \in \mathcal{Z} \left(\mathcal{A}_n^{\# \#} \right).$$

Since $\Re(E) \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ and $E \ge 0$, we see that

$$E = \Re(E) E \Re(E) = \sum_{k=1}^{m} \left[\Re(E) B_k \Re(E) \right] Q \left[\Re(E) C_k \Re(E) \right].$$

Hence we can assume, for $1 \leq k \leq m$, that $B_k, C_k \in \mathfrak{R}(E) \mathcal{A}^{\#}\mathfrak{R}(E)$.

Since $\hat{\pi}(Q)$, $\hat{\rho}(Q) \in \mathcal{J}_0$, we see that $\hat{\pi}(E)$ and $\hat{\rho}(E) \in \mathcal{J}_0$, which, in turn, implies $\hat{\pi}(\mathfrak{R}(E))$ and $\hat{\rho}(\mathfrak{R}(E)) \in \mathcal{J}_0$. Then $F = \hat{\pi}(\mathfrak{R}(E)) \lor \hat{\rho}(\mathfrak{R}(E)) \in \mathcal{J}_0$ is a finite projection. Thus $F\mathcal{M}F$ is a finite von Neumann algebra. Also, since, for $1 \leq k \leq m$, $B_k, C_k \in \mathfrak{R}(E) \mathcal{A}_n^{\#}\mathfrak{R}(E)$, we see that $\hat{\pi}(B_kQC_k), \hat{\rho}(B_kQC_k) \in F\mathcal{M}F$. Let Φ_F be the center-valued trace on $F\mathcal{M}F$. Since Q is a good projection and in $E\mathcal{A}^{\#}E$, we know from Lemma 2, that for every $A \in \mathcal{A}^{\#}$,

$$\Phi_F\left(\hat{\pi}\left(QAQ\right)\right) = \Phi_F\left(\hat{\rho}\left(QAQ\right)\right).$$

Now $\hat{\pi}, \hat{\rho}: E\mathcal{A}^{\#\#}E \to F\mathcal{M}F$ are *-homomorphisms, and, since Φ_F is tracial, we see for $A \in \mathcal{A}^{\#\#}$,

$$\Phi_{F}(\hat{\pi}(EAE)) =$$

$$= \sum_{j,k=1}^{m} \Phi_{F}([\hat{\pi}(B_{k})\hat{\pi}(Q)] [\hat{\pi}(Q)\hat{\pi}(C_{k})\hat{\pi}(A)\hat{\pi}(B_{j})\hat{\pi}(Q)\hat{\pi}(C_{j})])$$

$$= \sum_{j,k=1}^{m} \Phi_{F}([\hat{\pi}(Q)\hat{\pi}(C_{k})\hat{\pi}(A)\hat{\pi}(B_{j})\hat{\pi}(Q)\hat{\pi}(C_{j})] [\hat{\pi}(B_{k})\hat{\pi}(Q)])$$

$$= \sum_{j,k=1}^{m} \Phi_{F}(\hat{\pi}(QC_{k}AB_{j}QC_{j}B_{k}Q)) = \sum_{j,k=1}^{m} \Phi_{F}(\hat{\rho}(QC_{k}AB_{j}QC_{j}B_{k}Q))$$

$$= \sum_{j,k=1}^{m} \Phi_{F}([\hat{\rho}(Q)\hat{\rho}(C_{k})\hat{\rho}(A)\hat{\rho}(B_{j})\hat{\rho}(Q)\hat{\rho}(C_{j})] [\hat{\rho}(B_{k})\hat{\rho}(Q)])$$

$$= \Phi_{F}(\hat{\rho}(EAE)).$$

Thus $\Phi_F \circ \hat{\pi} = \Phi_F \circ \hat{\rho}$ on $E\mathcal{A}^{\#\#}E$, and since $\hat{\pi}, \hat{\rho}$, and Φ_F are weak* continuous, we have $\Phi_F \circ \hat{\pi} = \Phi_F \circ \hat{\rho}$ on $(E\mathcal{A}^{\#\#}E)^{-\text{weak}^*} = \Re(E)\mathcal{A}^{\#\#}\Re(E)$.

Finally, since $[\mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0)]^{-\text{weak}^*}$ is a weak* closed *-algebra, and an ideal for $\mathcal{A}_n^{\#\#}$, we see that

$$E = \Delta_n \left(Q \right) = \sum_{k=1}^m B_k Q C_k \in \left[\mathcal{A}_n \cap \pi^{-1} \left(\mathcal{J}_0 \right) \right]^{-\text{weak}^*},$$

so $P = \Re(E) \in [\mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0)]^{-\text{weak}^*}$. Thus $P = \Re(E) \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ is a good projection and $Q \leq P$. This proves Claim 1. \Box

CLAIM 2. If $Q_1, Q_2 \in \mathcal{A}_n^{\#\#}$ are good projections, then there is a good projection $Q \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ such that $Q_1, Q_2 \leq Q$.

Proof of Claim 2. By Claim 1 we can choose good projections $P_1, P_2 \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ such that $Q_1 \leq P_1$ and $Q_2 \leq P_2$. Since P_1 and P_2 commute and $P_1(1-P_2) \leq P_1$, $P_1P_2 \leq P_1$ and $(1-P_1)P_2 \leq P_2$, we see that $\{P_1(1-P_2), P_1P_2, (1-P_1)P_2\}$ is an orthogonal family of good projections. Thus, by Case 0,

$$Q = P_1 \lor P_2 = P_1 (1 - P_2) + P_1 P_2 + (1 - P_1) P_2$$

is a good projection in $\mathcal{Z}(\mathcal{A}^{\#\#})$. Thus Claim 2 is proved. \Box

CLAIM 3. If
$$0 \leq x \in \mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0)$$
, then $\Re(\Delta_n(x)) \in \mathcal{Z}(\mathcal{A}_n^{\#})$ is good.

Proof of Claim 3. We know that $\hat{\pi}(\mathfrak{R}(x))$ and $\hat{\rho}(\mathfrak{R}(x))$ are Murray von Neumann equivalent and \mathcal{M} -rank $(\pi(x))$ and \mathcal{M} -rank $(\rho(x))$ are equal. Since $\pi(x) \in \mathcal{J}_0$, we know $\hat{\pi}(\mathfrak{R}(x)), \hat{\rho}(\mathfrak{R}(x)) \in \mathcal{J}_0$. Arguing as in the proof of Claim 1, we see that $F = \hat{\pi}(\mathfrak{R}(x)) \lor \hat{\rho}(\mathfrak{R}(x)) \in \mathcal{J}_0$ and that

$$\hat{\pi}, \hat{\rho}: [x\mathcal{A}x]^{-\parallel\parallel} \to F\mathcal{M}F$$

satisfy $\Phi_{F\mathcal{M}F} \circ \hat{\pi} = \Phi_{F\mathcal{M}F} \circ \hat{\rho}$. Thus $\Phi_{F\mathcal{M}F} \circ \hat{\pi} = \Phi_{F\mathcal{M}F} \circ \hat{\rho}$ on $[x\mathcal{A}x]^{-\text{weak}^*} = \Re(x)\mathcal{A}^{\#\#}\Re(x)$. Thus $\Re(x)$ is a good projection. This proves Claim 3. \Box

We can choose a countable dense set $\{b_1, b_2, ...\}$ of $\bigcup_{n=1}^{\infty} (\mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0))$ whose closure is $\pi^{-1}(\mathcal{J})$.

We now want to define a sequence $0 = P_0 \leq P_1 \leq P_2 \leq \cdots$ of good projections such that

- 1. $P_n \in \mathcal{Z}(\mathcal{A}_n^{\#\#})$ for all $n \in \mathbb{N}$,
- 2. If $1 \leq k \leq n$ and $b_k \in \mathcal{A}_n$, then $\Re(b_k) \leq P_n$, i.e.,

$$b_k = P_n b_k$$

Define $P_0 = 0$. Suppose $n \in \mathbb{N}$ and P_k has been defined for $0 \leq k \leq n$. We let $x_n = \sum_{k \leq n+1, b_k \in \mathcal{A}_{n+1}} b_k b_k^* \in \mathcal{A}_{n+1} \cap \pi^{-1}(\mathcal{J}_0)$. Thus, by Claim 3, P_n and $\Re(\Delta_{n+1}(x_n))$ are good projections in $\mathcal{A}_n^{\#\#}$, and they commute since $\Re(\Delta_{n+1}(x_n)) \in \mathcal{Z}(\mathcal{A}_{n+1}^{\#\#})$. By Claim 2, there is a good projection $P_{n+1} \in \mathcal{Z}(\mathcal{A}_{n+1}^{\#\#})$ such that $P_n \leq P_{n+1}$ and $\Re(\Delta_{n+1}(x_n)) \leq P_{n+1}$. Clearly, if $1 \leq k \leq n$ and $b_k \in \mathcal{A}_n$, we have $\Re(b_k) = \Re(b_k b_k^*) \leq \Re(x_n) \leq P_{n+1}$.

Since P_n is a good projection, $P_n \in [\mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0)]^{-\text{weak}^*}$. Thus

$$P_n \leqslant \sup \left\{ \Re(x) : x \in \mathcal{A}_n \cap \pi^{-1}(\mathcal{J}_0) \right\} \in \mathcal{A}_n^{\#\#}.$$

Thus $\hat{\pi}(P_n) \leq P_{\pi,\mathcal{J}}$ (the projection onto $H_{\pi,\mathcal{J}}$) and $\hat{\rho}(P_n) \leq P_{\rho,\mathcal{J}}$ (the projection onto $H_{\rho,\mathcal{J}}$). Let $P_e = \lim_{n \to \infty} P_n$ (weak*). Thus $\hat{\pi}(P_e) \leq P_{\pi,\mathcal{J}}$ and $\hat{\rho}(P_e) \leq P_{\rho,\mathcal{J}}$. On the other hand, for every $k \in \mathbb{N}$,

$$\lim_{n\to\infty}\|b_k-P_nb_k\|=0.$$

This implies

$$P_e b = b$$
 for every $b \in \left[\pi^{-1}(\mathcal{J})\right]^{-\parallel\parallel}$

Thus $\hat{\pi}(P_e) = P_{\pi,\mathcal{J}}$ and $\hat{\rho}(P_e) = P_{\rho,\mathcal{J}}$. Thus $P_{\pi,\mathcal{J}}$ and $P_{\rho,\mathcal{J}}$ are Murray von Neumann equivalent.

Since $P_n \in \mathcal{A}'_n$ for each $n \in \mathbb{N}$, we have of every $A \in \bigcup_{k=1}^{\infty} \mathcal{A}_k$,

$$\lim_{n\to\infty}\|AP_n-P_nA\|=0.$$

Hence,

$$\lim_{n\to\infty} \|AP_n - P_nA\| = 0$$

holds for every $A \in \mathcal{A}$.

Choose a dense subset $\{A_1, A_2, ...\}$ of \mathcal{A} . Suppose and $m \in \mathbb{N}$. It follows that we can choose a subsequence $\{P_{n_k}\}$ of $\{P_n\}$ such that, for all $1 \leq n < \infty$,

$$\sum_{k=1}^{\infty} \left\| A_n P_{n_k} - P_{n_k} A_n \right\| < \infty,$$

and, for $1 \leq n \leq m$,

$$\sum_{k=1}^{\infty} \left\| A_n P_{n_k} - P_{n_k} A_n \right\| < \frac{1}{8m}.$$

Define $e_k = P_{n_k} - P_{n_{k-1}}$ (with $P_{n_0} = 0$) and define $\varphi : \mathcal{A} \to \sum_{1 \le k < \infty}^{\oplus} e_k \mathcal{A} e_k$ by

$$\varphi(T) = \sum_{k=1}^{\infty} e_k T e_k.$$

It follows from [10, page 903] that the above conditions on $||A_nP_{n_k} - P_{n_k}A_n||$ that, for all $k \in \mathbb{N}$,

$$A_k - \varphi(A_k) \in \hat{\pi}^{-1}(\mathcal{J}) \cap \hat{\rho}^{-1}(\mathcal{J})$$

and

$$\left\|P_{e}A_{n}-\varphi\left(A_{n}\right)\right\|<\frac{1}{4m}.$$

for $1 \leq n \leq m$.

Suppose $k \in \mathbb{N}$. For each $n \ge n_k$, $e_k \mathcal{A}_n e_k \subset \mathcal{A}_n^{\#\#}$, which is homogeneous. Hence $C^*(e_k \mathcal{A}_n e_k)$ is subhomogeneous. Thus $C^*(e_k \mathcal{A} e_k)$ is ASH. If we let $E_k = \hat{\pi}(e_k) \lor \hat{\rho}(e_k)$ for each $k \in \mathbb{N}$, we have E_k is a finite projection, $E_k \mathcal{M} E_k$ is a finite von Neumann algebra,

$$\hat{\pi}, \hat{\rho}: C^*(e_k \mathcal{A} e_k) \to E_k \mathcal{M} E_k$$

and, if Φ_{E_k} is the center-valued trace on $E_k \mathcal{M} E_k$, then

$$\Phi_{E_k} \circ \left(\hat{\pi}|_{C^*(e_k \mathcal{A} e_k)} \right) = \Phi_{E_k} \circ \left(\hat{\rho}|_{C^*(e_k \mathcal{A} e_k)} \right),$$

and $C^*(e_k A e_k)$ is ASH, it follows from Theorem 4 that

$$\hat{\pi}|_{C^*(e_k \mathcal{A} e_k)} \sim_a \hat{
ho}|_{C^*(e_k \mathcal{A} e_k)} \ (E_k \mathcal{M} E_k)$$

Since $\hat{\pi}(e_k)$ and $\hat{\rho}(e_k)$ are projections, then by [16, Proposition 5.2.6], any unitary that conjugates $\hat{\pi}(e_k)$ to a projection that is really close to $\hat{\rho}(e_k)$ is close to a unitary that conjugates $\hat{\pi}(e_k)$ exactly to $\hat{\rho}(e_k)$. We can therefore, for each $k \in \mathbb{N}$, choose a unitary $U_k \in E_k \mathcal{M} E_k$ such that

$$\left\|U_{k}\hat{\pi}\left(e_{k}a_{n}e_{k}\right)U_{k}^{*}-\hat{\rho}\left(e_{k}a_{n}e_{k}\right)\right\|<\frac{1}{4km}$$

when $1 \leq n \leq k + m < \infty$, and such that

$$U_k \hat{\pi}(e_k) U_k^* = \rho(e_k)$$

For each $k \in \mathbb{N}$, let $V_k = U_k \hat{\pi}(e_k)$. Then V_k is a partial isometry whose initial projection is $\hat{\pi}(e_k) = V_k^* V_k$ and final projection is $\hat{\rho}(e_k) = V_k V_k^*$. Also

$$\|V_{k}\hat{\pi}(e_{k})\pi(a_{n})\hat{\pi}(e_{k})V_{k}^{*}-\hat{\rho}(e_{k})\rho(a_{n})\hat{\rho}(e_{k})\|<\frac{1}{4km}$$

for $1 \leq n \leq k + m < \infty$. Then $W_m = \sum_{k=1}^{\infty} V_k$ is a partial isometry in \mathcal{M} with initial projection $\hat{\pi}(P_e) = P_{\pi,\mathcal{J}}$ and final projection $\hat{\rho}(P_e) = P_{\rho,\mathcal{J}}$. Moreover,

$$W_m\hat{\pi}(\varphi(a_n))W_m^* = \sum_{1 \leq k < \infty}^{\oplus} V_k\hat{\pi}(e_ka_ne_k)V_k^*,$$

and

$$\hat{\rho}\left(\varphi\left(a_{n}\right)\right) = \sum_{1\leqslant k<\infty}^{\oplus}\hat{\rho}\left(e_{k}a_{n}e_{k}\right).$$

Since $V_k \hat{\pi}(e_k a_n e_k) V_k^*$, $\hat{\rho}(e_k a_n e_k) \in \mathcal{J}$ for each $n, k \in \mathbb{N}$ and since

$$\lim_{k\to\infty} \|V_k\hat{\pi}\left(e_ka_ne_k\right)V_k^* - \hat{\rho}\left(e_ka_ne_k\right)\| = 0,$$

we see that

$$W_{m}\hat{\pi}\left(\varphi\left(a_{n}\right)\right)W_{m}^{*}-\hat{\rho}\left(\varphi\left(a_{n}\right)\right)\in\mathcal{J}$$

for every $n \in \mathbb{N}$. Also,

$$\left\|W_{m}\hat{\pi}\left(\varphi\left(a_{n}\right)\right)W_{m}^{*}-\hat{\rho}\left(\varphi\left(a_{n}\right)\right)\right\|<\frac{1}{4m}$$

for $1 \leq n \leq m$.

Also

$$\hat{\pi}(\varphi(a_n)) - \pi(a_n) = \hat{\pi}(\varphi(a_n) - a_n) \in \mathcal{J}$$

and

$$\hat{\pi}(\varphi(a_n)) - \rho(a_n) = \hat{\rho}(\varphi(a_n) - a_n) \in \mathcal{J}$$

for every $n \in \mathbb{N}$ and

$$\|\hat{\pi}(\varphi(a_n)) - \pi(a_n)\| < \frac{1}{4m} \text{ and } \|\hat{\rho}(\varphi(a_n)) - \rho(a_n)\| < \frac{1}{4m}$$

for $1 \leq n \leq m$.

For each $n \in \mathbb{N}$,

$$W_m \pi(a_n) W_m^* - \rho(a_n)$$

$$= [W_m(\pi(a_n) - \hat{\pi}(\varphi(a_n))) W_m^*] + [W_m \hat{\pi}(\varphi(a_n)) W_m^* - \hat{\rho}(\varphi(a_n))]$$

$$+ \hat{\rho}(\varphi(a_n)) - \rho(a_n).$$

Thus, for every $n \in \mathbb{N}$,

$$W_m\pi(a_n)W_m^*-\rho(a_n)\in\mathcal{J}$$

Also, for $1 \leq n \leq m$,

$$\|W_m\pi(a_n)W_m^*-\rho(a_n)\|<\frac{1}{m}.$$

It follows, for every $a \in A$, that

$$W_{m}\hat{\pi}\left(\varphi\left(a
ight)
ight)W_{m}^{*}-\hat{
ho}\left(\varphi\left(a
ight)
ight)\in\mathcal{J}$$

and

$$\lim_{m\to\infty} \|W_m\pi(a)W_m^*-\rho(a)\|=0. \quad \Box$$

REMARK 2. In two cases, namely, when $H_{\pi,\mathcal{J}} = H_{\rho,\mathcal{J}} = H$, or when $\pi(\cdot)|_{H_{\pi,\mathcal{J}}^{\perp}}$ and $\rho(\cdot)|_{H_{\rho,\mathcal{J}}^{\perp}}$ are unitarily equivalent, the conclusion in Theorem 7 becomes

$$\pi \sim_a \rho (\mathcal{J}).$$

When \mathcal{A} is a separable ASH C*-algebra and \mathcal{M} is a sigma-finite II_{∞} factor von Neumann algebra, we can use Theorems 7 and 3 to have both parts of Voiculescu's theorem, including an extension of results in [4]. If σ is a representation of a C*-algebra, we let $\sigma^{(\infty)}$ denote $\sigma \oplus \sigma \oplus \cdots$.

COROLLARY 1. Suppose \mathcal{A} is a separable ASH C*-algebra, \mathcal{M} is a sigma-finite type II_{∞} factor von Neumann algebra on a Hilbert space H. Suppose $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that, for every $a \in \mathcal{A}$

$$\mathcal{M}$$
-rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$.

Then $\pi \sim_a \rho$ ($\mathcal{K}_{\mathcal{M}}$).

Proof. We can write $\pi = \pi_{\mathcal{K}_{\mathcal{M}}} \oplus \pi_1$ and $\rho = \rho_{\mathcal{K}_{\mathcal{M}}} \oplus \rho_1$. It follows from Theorem 3 that

$$\pi \sim_a \pi_{\mathcal{K}_{\mathcal{M}}} \oplus \pi_1^{(\infty)} \oplus \rho_1^{(\infty)} (\mathcal{K}_{\mathcal{M}}) \text{ and } \rho \sim_a \rho_{\mathcal{K}_{\mathcal{M}}} \oplus \pi_1^{(\infty)} \oplus \rho_1^{(\infty)} (\mathcal{K}_{\mathcal{M}}).$$

It follows from Theorem 7 that

$$\pi_{\mathcal{K}_{\mathcal{M}}} \oplus \pi_{1}^{(\infty)} \oplus \rho_{1}^{(\infty)} \sim_{a} \rho_{\mathcal{K}_{\mathcal{M}}} \oplus \pi_{1}^{(\infty)} \oplus \rho_{1}^{(\infty)} (\mathcal{K}_{\mathcal{M}}).$$

Thus $\pi \sim_a \rho (\mathcal{K}_{\mathcal{M}})$. \Box

We have now arrived at our main result concerning semifinite von Neumann algebras.

THEOREM 8. Suppose $\mathcal{M} \subset B(H)$ is a semifinite von Neumann algebra, H is separable, and \mathcal{A} is a separable unital ASH C*-algebra. Also suppose $\pi, \rho : \mathcal{A} \to \mathcal{M}$ are unital *-homomorphisms such that, for every $a \in \mathcal{A}$

$$\mathcal{M}$$
-rank $(\pi(a)) = \mathcal{M}$ -rank $(\rho(a))$.

Then $\pi \sim_a \rho$ ($\mathcal{K}_{\mathcal{M}}$).

Proof. We can write $\mathcal{M} = \mathcal{F} \oplus \mathcal{N}$ where \mathcal{F} is a finite von Neumann algebra and \mathcal{N} has no finite direct summands, and \mathcal{N} is a type H_{∞} von Neumann algebra. Correspondingly, we can write $\pi = \pi_{\mathcal{F}} \oplus \pi_{\mathcal{N}}$ and $\rho = \rho_{\mathcal{F}} \oplus \rho_{\mathcal{N}}$. It is clear that $(\mathcal{F}\text{-rank}) \circ \pi_{\mathcal{F}} = (\mathcal{F}\text{-rank}) \circ \rho_{\mathcal{F}}$ and $(\mathcal{N}\text{-rank}) \circ \pi_{\mathcal{N}} = (\mathcal{N}\text{-rank}) \circ \rho_{\mathcal{N}}$. Since $\mathcal{F} \oplus 0 \subset \mathcal{K}_{\mathcal{M}}$ and $\pi_{\mathcal{F}} \sim_a \rho_{\mathcal{F}}$, by Theorem 5, there is a sequence $\{W_n\}$ of unitary operators in \mathcal{F} such that, for every $a \in \mathcal{A}$,

$$\left\|W_n\pi\left(a\right)W_n-\rho\left(a\right)\right\|\to 0.$$

Clearly, for every $a \in A$ and every $n \in \mathbb{N}$,

$$W_n\pi(a)W_n-\rho(a)\in\mathcal{F}\oplus 0\subset\mathcal{K}_{\mathcal{M}}.$$

Hence we can assume that $\mathcal{M} = \mathcal{N}$ and $\pi = \pi_{\mathcal{N}}$. From the central decomposition for \mathcal{M} there is a complete probability measure space (Ω, Σ, μ) so that we can write

$$H=\int_{\Omega}^{\oplus}\ell^{2}d\mu\left(\omega\right)$$

and

$$\mathcal{M}=\int_{\Omega}^{\oplus}\mathcal{M}_{\omega}d\mu\left(\omega\right)$$

where each \mathcal{M}_{ω} is either a type I_{∞} factor or a type I_{∞} factor. Also there are families $\{\varphi_1, \varphi_2, \ldots\}$ and $\{\psi_1, \psi_2, \ldots\}$ of *SOT-measurable functions from Ω into the closed unit ball \mathcal{B} of $B(\ell^2)$ such that, for every $\omega \in \Omega$,

$$\{\varphi_1(\omega),\varphi_2(\omega),\ldots\}^{-SOT} = \operatorname{ball}(\mathcal{M}_{\omega}), \text{ and }$$

$$\{\psi_{1}(\omega),\psi_{2}(\omega),\ldots\}^{-SOT}=\operatorname{ball}\left(\mathcal{M}_{\omega}'\right).$$

Let C be the set of trace class operator $K \in B(\ell^2)$ such that $K \ge 0$ and Trace(K) = 1. With the trace norm $\|\|_1$, C is a complete separable metric space. Let $C^{\&} = \prod_{(n,j,k)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}} C$ with the product topology. Let $\mathcal{B}^{\&} = \prod_{n\in\mathbb{N}} \mathcal{B}$ with the product *-SOT topology, let \mathcal{P} be the set of projections in $B(\ell^2)$ equipped with the *-SOT and let $\mathcal{P}^{\&} = \prod_{(n,j,k)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}} \mathcal{P}$ with the product topology. Let \mathcal{U} be the set of unitary operators in $B(\ell^2)$ with the *-SOT and let $\mathcal{U}^{\&} = \prod_{n\in\mathbb{N}} \mathcal{U}$ with the product topology.

We now let X be the set of all (U, A, B, P, K, C, D) in $\mathcal{U} \times \mathcal{B}^{\&} \times \mathcal{P}^{\&} \times \mathcal{C}^{\&} \times \mathcal{B}^{\&} \times \mathcal{B}^{\&}$, with $U = \{U_n\}$, $A = \{A_n\}$, $P = \{P_{n,j,k}\}$, $K = \{K_{n,j,k}\}$, $C = \{C_n\}$, $D = \{D_n\}$, such that

1. $||U_n^*A_kU_n - B_k|| \leq 1/n$ for $1 \leq k \leq n < \infty$

2.
$$\left\| \left(U_n^* A_k U_n - B_k \right) \left(1 - P_{n,j,k} \right) \right\| \leq 1/j \text{ for } (n,j,k) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N},$$

- 3. $K_{n,j,k} = P_{n,j,k} K_{n,j,k} P_{n,j,k}$ for $(n, j, k) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$,
- 4. $U_n D_j = D_j U_n$ for $j, n \in \mathbb{N}$
- 5. $Tr(K_{n,j,k}C_sP_{n,j,k}C_tP_j) = Tr(K_{n,j,k}C_tP_{n,j,k}C_sP_{n,j,k})$ for $n, j, k, s, t \in \mathbb{N}$.

It is not hard to show that X is closed in $\mathcal{U} \times \mathcal{B}^{\&} \times \mathcal{P}^{\&} \times \mathcal{C}^{\&} \times \mathcal{B}^{\&} \times \mathcal{B}^{\&}$. Thus X is a complete separable metric space. Define

$$\Phi: X \to B^{\&} \times B^{\&} \times B^{\&} \times B^{\&}$$

by

$$\Phi((U,A,B,P,K,C,D)) = (A,B,C,D).$$

Then Φ is continuous and it follows from [1, Theorem 3.4.3] that $\Phi(X)$ is an absolutely measurable set and there is an absolutely measurable function $\gamma : \Phi(X) \to X$ such that $\Phi \circ \gamma = id_{\Phi(X)}$.

We can write $\pi = \int_{\Omega}^{\oplus} \pi_{\omega} d\mu(\omega)$ and $\rho = \int_{\Omega}^{\oplus} \rho_{\omega} d\mu(\omega)$ so that, for almost every $\omega \in \Omega$, $\pi_{\omega}, \rho_{\omega} : \mathcal{A} \to \mathcal{M}_{\omega}$ and, for every $a \in \mathcal{A}$,

$$\pi\left(a\right)=\int_{\Omega}^{\oplus}\pi_{\omega}\left(a\right)d\mu\left(\omega\right) \text{ and } \rho\left(a\right)=\int_{\Omega}^{\oplus}\rho_{\omega}\left(a\right)d\mu\left(\omega\right).$$

We know from [4, Theorem 4 (3)], that, for almost every $\omega \in \Omega$,

$$\mathcal{M}_{\omega}$$
-rank $(\pi_{\omega}(a)) = \mathcal{M}_{\omega}$ -rank $(\rho_{\omega}(a))$.

By throwing away a subset of Ω of measure 0, we can assume that all of the preceding statements that were true for almost every ω are now true for *every* $\omega \in \Omega$.

Let $\{a_1, a_2, \ldots\}$ be norm dense in the closed unit ball if \mathcal{A} . We now define a measurable map $\Gamma: \Omega \to B^{\&} \times B^{\&} \times B^{\&} \times B^{\&}$ by

$$\Gamma(\omega) = \left(\{\pi_{\omega}(a_n)\}_{n \in \mathbb{N}}, \{\rho_{\omega}(a_n)\}_{n \in \mathbb{N}}, \{\varphi_n(\omega)\}_{n \in \mathbb{N}}, \{\psi_{\omega}(\omega)\}_{n \in \mathbb{N}} \right).$$

Suppose $\omega \in \Omega$. Since \mathcal{M}_{ω} is a semifinite factor, it follows from Corollary 1 that $\pi_{\omega} \sim \rho_{\omega}$ ($\mathcal{K}_{\mathcal{M}_{\omega}}$). Thus there is a sequence $\{W_n\}$ of unitary operators in \mathcal{M}_{ω} such that

- (6) $||W_n^*\pi_{\omega}(a_k)W_n \rho_{\omega}(a_k)|| \leq 1/n$ for $1 \leq k \leq n < \infty$, and
- (7) $W_n^* \pi_\omega(a_k) W_n \rho_\omega(a_k) \in \mathcal{K}_{\mathcal{M}_\omega}$ for all $n, k \in \mathbb{N}$.

Since each $W_n^* \pi_\omega(a_k) W_n - \rho_\omega(a_k) \in \mathcal{K}_{\mathcal{M}_\omega}$, there are projections $P_{n,j,k} \in \mathcal{K}_{\mathcal{M}_\omega}$ such that, for $n, j, k \in \mathbb{N}$

$$\left\|\left(W_{n}^{*}\pi_{\omega}\left(a_{k}\right)W_{n}-\rho_{\omega}\left(a_{k}\right)\right)\left(1-P_{n,j,k}\right)\right\|<1/n.$$

Since $P_{n,j,k} \in \mathcal{K}_{\mathcal{M}}$, $P_{n,j,k}$ must be a finite projection, and since \mathcal{M}_{ω} is a semifinite factor in $B(\ell^2)$, $P_{n,j,k}\mathcal{M}_{\omega}P_{n,j,k}$ is a finite factor. Thus $P_{n,j,k}\mathcal{M}_{\omega}P_{n,j,k}$ has a faithful normal tracial state $\tau_{n,j,k}$. Thus there is a $K_{n,j,k} \in \mathcal{C}$ such that $P_{n,j,k}K_{n,j,k}P_{n,j,k} = K_{n,j,k}$ and, for every $S \in P_{n,j,k}\mathcal{M}_{\omega}P_{n,j,k}$,

$$\tau_{n,j,k}(S) = Tr\left(K_{n,j,k}\right)$$

Hence,

$$\left(\left\{W_{n}\right\},\left\{\pi_{\omega}\left(a_{n}\right)\right\},\left\{\rho_{\omega}\left(a_{n}\right)\right\},\left\{P_{n,j,k}\right\},\left\{\varphi_{n}\left(\omega\right)\right\},\left\{\psi_{n}\left(\omega\right)\right\}\right)\in X,$$

and thus

$$\Gamma(\omega) \in \Phi(X)$$
.

Then

$$(\gamma \circ \Gamma)(\omega) = \left(\{U_n(\omega)\}, \{\pi_{\omega}(a_n)\}, \{\rho_{\omega}(a_n)\}, \{P_{n,j,k}(\omega)\}, \{\varphi_n(\omega)\}, \{\psi_n(\omega)\} \right)$$

is a measurable function from Ω to X. For $n, j, k \in \mathbb{N}$. Let

$$U_{n} = \int_{\Omega}^{\oplus} U_{n}(\omega) d\mu(\omega) \text{ and } P_{n,j,k} = \int_{\Omega}^{\oplus} P_{n,j,k}(\omega) d\mu(\omega).$$

Then each U_n is unitary in \mathcal{M} , and each $P_{n,j,k}$ is a finite projection in \mathcal{M} and

- (8) $||U_n^*\pi(a_k)U_n \rho(a_k)|| \le 1/n$ for $1 \le k \le n < \infty$, and
- (9) $\left\| \left(U_n^* \pi(a_k) U_n \rho(a_k) \right) \left(1 P_{n,j,k} \right) \right\| \leq 1/j \text{ for } n, j,k \in \mathbb{N}.$

Since $\{a_1, a_2, \ldots\}$ is dense in the closed unit ball of \mathcal{A} , we see that (8) and (9) hold when a_k is replaced with any $a \in \mathcal{A}$ with $||a|| \leq 1$. It follows from (9) that, for every $a \in \mathcal{A}$ with $||a|| \leq 1$ that $U_n^* \pi(a) U_n - \rho(a) \in \mathcal{K}_M$. Therefore,

$$\pi \sim_a \rho (\mathcal{K}_{\mathcal{M}}).$$

Acknowledgement. The referee would like to thank the referee for extremely careful readings and many helpful suggestions for improving the paper.

REFERENCES

- W. ARVESON, An invitation to C*-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976.
- [2] A. CIUPERCA, T. GIORDANO, P. W. NG, AND Z. NIU, Amenability and uniqueness, Adv. Math. 240 (2013) 325–345.
- [3] K. R. DAVIDSON, C*-algebras by example, Fields Institute Monographs, 6, Amer. Math. Soc., Providence, RI, 1996.
- [4] H. DING AND D. HADWIN, Approximate equivalence in von Neumann algebras, Sci. China Ser. A 48 (2005), no. 2, 239–247.
- [5] S. WEN, J. FANG AND R. SHI, Approximate equivalence of representations of AF algebras into semifinite von Neumann algebras, Oper. Matrices 13 (2019), no. 3, 777–795.
- [6] J. GLIMM, Type I C*-algebras, Ann. Math. 73 (1961) 572-612.
- [7] D. HADWIN, Nonseparable approximate equivalence, Trans. Amer. Math. Soc. 266 (1981), no. 1, 203–231.
- [8] D. HADWIN, W. LI, W. LIU, AND J. SHEN, A characterisation of tracially nuclear C*-algebras, Bull. Aust. Math. Soc. 100 (2019), no. 1, 119–128.
- [9] D. HADWIN AND RUI SHI, A note on representations of commutative C*-algebras in semifinite von Neumann algebras, Oper. Matrices 12 (2018), no. 4, 1129–1144.
- [10] P. R. HALMOS, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970) 887–933.
- [11] R. V. KADISON AND J. RINGROSE, Fundamentals of the Theory of Operator Algebras, Vol. 2: Advanced Theory (Graduate Studies in Mathematics, Vol. 16), Academic Press, 1983.
- [12] Q. LI, J. SHEN, R. SHI, A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras, Adv. Math. 375 (2020) 107347.
- [13] D. SHERMAN, Unitary orbits of normal operators in von Neumann algebras, J. Reine Angew. Math. 605 (2007), 95–132.
- [14] R. SHI AND JUNHAO SHEN, Approximate equivalence of representations of AH algebras into semifinite von Neumann algebras, arXiv:1805.07236, 2018.
- [15] D. V. VOICULESCU, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113.
- [16] N. E. WEGGE-OLSEN, K-theory and C*-algebras, A friendly approach, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.

(Received June 22, 2020)

Qihui Li East China University of Science and Technology Shanghai, China e-mail: lqh991978@gmail.com

> Don Hadwin Mathematics Department University of New Hampshire e-mail: operatorguy@gmail.com

Wenjing Liu Mathematics Department University of New Hampshire e-mail: wenjingtwins87@gmail.com

Operators and Matrices www.ele-math.com oam@ele-math.com