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CHARACTERIZATIONS OF HOPFIANS SPACES

HAMID BOUA ∗ AND ABDELAZIZ TAJMOUATI

(Communicated by R. Curto)

Abstract. A Banach space X is called Hopfian, if any bounded linear operator surjective is
bijective. The existence of the Banach Hopfians spaces in infinite dimension was established
by Gowers and Maury in 1993. In this note we obtain some characterizations of Banach spaces
Hopfians by properties of the algebra of bounded linear operators B(X) .

1. Introduction

Throughout this article, let X be a complex infinite dimensional Banach space
and denote by B(X) the Banach algebra of all bounded linear operators on X . Let
T ∈ B(X) , we denote by T ∗ , R(T ) , N(T ) , ρ(T ) , σ(T ) , σp(T ) , σap(T ) and σsu(T )
respectively the adjoint, the range, the kernel, the resolvent set, the spectrum, the point
spectrum, the approximate point spectrum and the surjectivity spectrum of T . An
operator T ∈ B(X) is said to have the single-valued extension property at λ0 ∈ C ,
abbreviated T has the SVEP at λ0 , if for every neighbourhood U of λ0 the only
analytic function f : U → X which satisfies the equation (λ I − T ) f (λ ) = 0 is the
constant function f ≡ 0. For an arbitrary operator T ∈ B(X) let S(T ) = {λ ∈ C :
T does not have the SVEP at λ} . Note that S(T ) is open and is contained in the inte-
rior of the point spectrum σp(T ) . An operator T is said to have the SVEP if S(T ) is
empty (for detail see ([1, 8, 10]).

An operator T ∈ B(X) is upper semi-Fredholm (respectively lower semi-Fred-
holm) if R(T ) is closed and dimN(T ) (respectively codimR(T )) is finite. If T is
upper or lower semi-Fredholm, then T is called semi-Fredholm. The index of such an
operator is given by ind(T ) = dimN(T )−codimR(T ) , and when it is finite we say that
T is Fredholm.

An operator T ∈B(X) is upper semi-Weyl (respectively lower semi-Weyl) if T is
upper semi-Fredholm (respectively lower semi-Fredholm) and ind(T )� 0 (respectively
ind(T ) � 0). If T is upper or lower semi-Weyl, then T is called Weyl operator.

Recall that the descent and the ascent of T are d(T ) = min{q : R(Tq) = R(Tq+1)}
and a(T ) = min{q : N(Tq) = N(Tq+1)} respectively, where if either of the above two
sets is empty, its infimum is then defined as ∞ , see for example ([1], [9] and [10]). If
the ascent and the descent of T are both finite, then a(T ) = d(T ) = p , X = N(T )p ⊕
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R(T )p and R(T )p is closed. Similarly we define the essential descent and the essential
ascent of T by, de(T ) := inf{n∈ N : dim(R(Tn)/R(Tn+1)) < ∞} and ae(T ) := inf{n∈
N : dim(N(T n+1)/N(Tn)) < ∞} respectively, where the infimum over the empty set is
taken to be infinite, see [2, 3].

We say that an operator T ∈ B(X) is upper semi-Browder if it is upper semi-
Fredholm and has finite ascent. Similarly, T is lower semi-Browder if it is lower semi-
Fredholm and has finite descent. An operator T is Browder if it is both lower and upper
semi-Browder. Equivalently, this means that T is Fredholm and has finite both ascent
and descent, see [10].

An operator T is said to be Drazin invertible, if there exists S ∈ B(X) and some
m ∈ N such that

Tm = TmST, STS = S and ST = TS .

T will be called left Drazin invertible (respectively right Drazin invertible), if a(T ) is
finite and R(Ta(T )+1) is closed, (respectively, if d(T ) is finite and R(Td(T)) is closed),
(see [2]).

For every bounded operator T ∈ B(X) , let us define the upper semi-Weyl spec-
trum, the lower semi-Weyl spectrum, the Weyl spectrum, the ascent spectrum, the
descent spectrum, the essential ascent spectrum, the essential descent spectrum, up-
per semi-Browder spectrum, lower semi-Browder spectrum, the Browder spectrum, the
Drazin spectrum, the right Drazin spectrum, and the left Drazin spectrum of T as fol-
lows respectively:

σlw(T ) = {λ ∈ C : T −λ is not lower semi-Weyl }

σw(T ) = {λ ∈ C : T −λ is not Weyl }

σasc(T ) = {λ ∈ C : a(T −λ ) = ∞}

σdesc(T ) = {λ ∈ C : d(T −λ ) = ∞}

σ e
asc(T ) = {λ ∈ C : ae(T −λ ) = ∞}

σ e
desc(T ) = {λ ∈ C : de(T −λ ) = ∞}

σub(T ) = {λ ∈ C : T −λ is not upper semi-Browder }

σlb(T ) = {λ ∈ C : T −λ is not lower semi-Browder }

σb(T ) = {λ ∈ C : T −λ is not Browder }

σD(T ) = {λ ∈ C : T −λ is not Drazin invertible }

σrd(T ) = {λ ∈ C : T −λ is not right Drazin }

σld(T ) = {λ ∈ C : T −λ is not left Drazin }
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A Banach space X is said to be Hopfian if every surjective bounded linear operator
T : X → X is bijective. In particular, any Banach space of finite dimension is Hopfian.
The first example of Banach space of infinite size Hopfian was built by Gowers and
Maury in 1993, (see [5]).

In [6], Haı̈ly et al. have shown that X is a Hopfian space if and only if, for all T ∈
B(X) , we have int(σ(T )) ⊆ σdesc(T ) . In this work we will characterize the Hopfian
spaces by the properties of the algebra of bounded linear operators B(X) .

THEOREM 1. Let X be a Banach space. Then the following assertions are equiv-
alent:

1. X is Hopfian;

2. For every T ∈B(X) , if D is a closed subset of C such that σ(T ) = σsu(T )∪D,
we have that int(D) ⊆ σdesc(T );

3. For every T ∈ B(X) and for every connected component G of ρsu(T ) , we have
that G∩σ(T ) = /0 ;

4. For every T ∈B(X) and for every connected component G of ρdesc(T ) , we have
that G∩ρ(T) 
= /0 .

Proof. 1) ⇒ 2) . Let T ∈ B(X) and λ /∈ σdes(T ) , T − λ has finite descent.
Therefore, we may apply [4, Proposition 1.1 ] to find δ > 0 such that, for every μ ∈ C

with 0 < |μ −λ | < δ , T − μ becomes surjective. Since X is Hopfian, then T − μ is
bijective. Then λ /∈ int(D) .

2) ⇒ 3) . Let T ∈ B(X) and connected component G of ρsu(T ) . Since σ(T ) =
σsu(T )∪S(T ) , then S(T ) ⊆ σdesc(T ) . Therefore G∩S(T ) = /0 , this ensures that G∩
σ(T ) = /0 .

3) ⇒ 4) . Let G connected component of ρdesc(T ) and λ ∈ G . According to [4,
Proposition 1.1 ], there is δ > 0 such that, for every μ ∈ C with 0 < |λ − μ |< δ , the
operator T − μ is surjective. D∗(λ ;δ ) = {μ ∈ C : 0 < |λ − μ | < δ} is a connected
subset of ρsu(T ) , then there exists a connected component G0 of ρsu(T ) contains
D∗(λ ;δ ) . By hypothesis, G0 ∩σ(T ) = /0 . Therefore G∩ρ(T) 
= /0 .

4) ⇒ 1) . Let T ∈ B(X) be a surjective operator. Then there is a connected com-
ponent G0 of ρdesc(T ) containing 0. By hypothesis, we have G0∩ρ(T ) 
= /0 . Accord-
ing to [4, Theorem 1.7 ], G0\ pol(T ) ⊆ ρ(T ) where pol(T ) = {λ ∈ C : λ is a pole of
the resolvent of T} . Consider first the case if 0 /∈ pol(T ) , then 0 ∈ ρ(T ) , hence T is
bijective. On the other hand, if 0 ∈ pol(T ) , then T has finite ascent a(T ) . Since T is
surjective, then a(T ) = d(T ) = 0. Therefore T is bijective. �

This theorem has interesting consequences:

COROLLARY 1. Let X be a Banach space. Then the following assertions are
equivalent:
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1. X is Hopfian;

2. For every T ∈ B(X) , S(T ) ⊆ σdesc(T );

3. For every T ∈ B(X) , T has SVEP at every λ /∈ σdesc(T ) .

Proof. 1) ⇒ 2) . Since σ(T ) = σsu(T )∪ S(T ) , Theorem 1 implies that S(T ) ⊆
σdesc(T ) .

2) ⇒ 3) . Obvious.

3) ⇒ 1) . If T ∈ B(X) is surjective, by assumption 3) T has SVEP at 0. Then T
is bijective. �

Since σ(T ) = σsu(T )∪σ∗(T ) with σ∗ ∈ {σap,σp,σub,σuw} , by Theorem 1, we
deduce the followig result:

COROLLARY 2. Let X be a Banach space. Then the following assertions are
equivalent:

1. X is Hopfian;

2. For every T ∈ B(X) , int(σap(T )) ⊆ σdesc(T );

3. For every T ∈ B(X) , int(σp(T )) ⊆ σdesc(T );

4. For every T ∈ B(X) , int(σub(T )) ⊆ σdesc(T );

5. For every T ∈ B(X) , int(σuw(T )) ⊆ σdesc(T ) .

PROPOSITION 1. Let X be a Banach space. Then the following assertions are
equivalent:

1. X is Hopfian;

2. For every T ∈ B(X) , σld(T ) ⊆ σdesc(T );

3. For every T ∈ B(X) , σasc(T ) ⊆ σdesc(T );

4. For every T ∈ B(X) , σ e
asc(T ) ⊆ σdesc(T ) .

Proof. 1)⇒ 2) . Let λ /∈ σdesc(T ) , then by [4, Proposition 1.1 ] there exists δ > 0
such that for every 0 < |μ −λ |< δ , T −μ surjective. Since X is Hopfian, then T −μ
is bijective. Then λ is a pole of the resolvent of T . From [10, Theorem 22.10], the
operator T −λ is left Drazin invertible.

2) ⇒ 3) . Since σasc(T ) ⊆ σld(T ) .

3) ⇒ 4) . Since σ e
asc(T ) ⊆ σasc(T ) .

4) ⇒ 1) . Let T ∈ B(X) be a surjective operator. By hypothesis T has finite
essential ascent. According to [10, Lemme 22.11], we have ae(T ) = 0. Then T has
finite ascent. From [1, Theorem 3.3], we have a(T ) = d(T ) = 0. Therefore T is
bijective, and this completes the proof. �
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THEOREM 2. Let X be a Banach space. Then the following assertions are equiv-
alent:

1. X∗ is Hopfian;

2. For every T ∈B(X) , if D is a closed subset of C such that σ(T ) = σap(T )∪D,
we have that int(D) ⊆ σld(T );

3. For every T ∈ B(X) and for every connected component G of ρap(T ) , we have
that G∩σ(T ) = /0 ;

4. For every T ∈ B(X) and for every connected component G of ρld(T ) , we have
that G∩ρ(T) 
= /0 .

Proof. 1) ⇒ 2) . Let λ /∈ σld(T ) , according to [3, Corollary 2.4], there exists
δ > 0 such that for every 0 < |μ − λ | < δ , T − μ is bounded below. Since X∗ is
Hopfian, then T − μ is bijective. Then λ /∈ int(D) .

2) ⇒ 3) . Let T ∈ B(X) and connected component G of ρap(T ) . Since σ(T ) =
σap(T )∪S(T ∗) , then S(T ∗) ⊆ σld(T ) . Therefore G∩S(T ∗) = /0 . Thus G∩σ(T ) = /0 .

3) ⇒ 4) . Let G connected component of ρld(T ) and λ ∈ G . According to [3,
Corollary 2.4], there is δ > 0 such that, for every μ ∈ C with 0 < |λ − μ | < δ , the
operator T − μ is bounded below. There exists a connected component G0 of ρap(T )
contains D∗(λ ;δ ) . By the assumption, G0∩σ(T ) = /0 . Hence G∩ρ(T ) 
= /0 .

4) ⇒ 1) . Let T ∈ B(X) be a bounded below operator. Then there is a con-
nected component G0 of ρld(T ) containing 0. By hypothesis, we have G0∩ρ(T ) 
= /0 .
Let Ω be a connected component of ρe

ld(T ) = {λ ∈ C : ae(T −λ ) is finite and R(T −
λ )ae(T−λ )+1is closed } containing G0 . By [3, Theorem 2.9], Ω\ pol(T ) ⊆ ρ(T ) . We
distinguish two cases:

a) Let 0 /∈ pol(T ) , then 0 ∈ ρ(T ) . Thus T is bijective
b) It remains the case 0 ∈ pol(T ) , then T has finite descent d(T ) . Since T is

bounded below, then a(T ) = d(T ) = 0. Therefore T is bijective. �

Using the previous Theorem, we can get easily the following result.

COROLLARY 3. Let X be a Banach space. Then the following assertions are
equivalent:

1. X∗ is Hopfian;

2. For every T ∈ B(X) , S(T ∗) ⊆ σld(T );

3. For every T ∈ B(X) , T ∗ has SVEP at every λ /∈ σld(T ) .

Using the equality σ(T ) = σap(T )∪σ∗(T ) with σ∗ ∈ {σsu,σlb,σlw} and by The-
orem 2, we can state the following result:
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COROLLARY 4. Let X be a Banach space. Then the following assertions are
equivalent:

1. X∗ is Hopfian;

2. For every T ∈ B(X) , int(σsu(T )) ⊆ σld(T );

3. For every T ∈ B(X) , int(σlb(T )) ⊆ σld(T );

4. For every T ∈ B(X) , int(σlw(T )) ⊆ σld(T ) .

PROPOSITION 2. Let X be a Banach space. Then the following assertions are
equivalent:

1. X∗ is Hopfian;

2. For every T ∈ B(X) , σrd(T ) ⊆ σld(T );

3. For every T ∈ B(X) , σdesc(T ) ⊆ σld(T );

4. For every T ∈ B(X) , σ e
desc(T ) ⊆ σld(T ) .

Proof. 1) ⇒ 2) . Let λ /∈ σld(T ) . By [3, Corollary 2.4], there exists δ > 0 such
that for every 0 < |μ − λ | < δ , T − μ bounded below. Since X∗ is Hopfian, then
T − μ bijective. Then λ is a pole of the resolvent of T . From [10, Theorem 22.10],
the operator T −λ is left Drazin invertible.

2) ⇒ 3) Since σdesc(T ) ⊆ σrd(T ) .

3) ⇒ 4) Since σ e
desc(T ) ⊆ σdesc(T ) .

4) ⇒ 1) Let T ∗ ∈ B(X∗) be a surjective operator, then T is bounded below. By
hypothesis T has finite essential ascent. According to [10, Lemma 22.11], we have
ae(T ) = 0. Then T has finite ascent. From [1, Theorem 3.3], a(T ) = d(T ) = 0.
Therefore T is bijective, and this completes the proof. �

REMARK 1. A Banach space X is indecomposable if there do not exist infinite-
dimensional closed subspaces Y and Z of X with X = Y ⊕Z , and is hereditarily in-
decomposable (HI) if every closed subspace is indecomposable. The first hereditary
indecomposable Banach spaces were built by Gowers and Maurey in [5], and their
complex versions have the property that all their operators are a sum of scalar operators
and strictly singular operators. Recall that a bounded operator T on X is strictly singu-
lar if the restriction of T to a subspace Y of infinite dimension is never an isomorphism
of Y on T (Y ) . From [5, Theorem 18] the spectrum of any bounded linear operator T
from X into X is at most countable. So T and T ∗ have the SVEP. Then X and X∗ are
two Hopfian spaces.
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