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SOME REMARKS ON THE GENERALIZED ORDER AND GENERALIZED

TYPE OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX MATRICES

TANMAY BISWAS ∗ , CHINMAY BISWAS AND BISWAJIT SAHA

(Communicated by R. Curto)

Abstract. The main aim of this paper is to introduce the definitions of generalized order and
generalized type of the entire function of several complex matrix variables in hyperspherical
region and then study some of their properties. By considering the concepts of generalized order
and generalized type, we will extend some results of Abul-Ez et al. [1].

1. Introduction

The study of the asymptotic mode of increase behavior of entire functions in one
and several complex variables is one of the traditional central topics in complex analy-
sis. It deals with various aspects of the behavior of entire functions in one and several
complex variables, one of which is the study of their comparative growth. Basic tools
to study the comparative growth properties of holomorphic functions are growth indi-
cators such as growth order, the growth type, the maximum term, and the central index.
During the past decades, several developments are made in this direction. For exam-
ples, we refer to ([8, 13, 15, 25, 23, 24]). Their results turned out to be very helpful in
the study of partial differential equations and somewhere else. Generalization to higher
dimensions has been given by many other authors (see, e.g., [16, 20, 26]) where they
have contributed to the study of the order and type of entire functions of several com-
plex variables. As Clifford analysis offers another possibility of generalizing complex
function theory to higher dimensions, many authors introduced a study on the mode
of increase of entire monogenic functions (see [3] to [6]). In recent years there has
been a significant impulse to the study of the theory of matrix functions. For the most
comprehensive applications of the theory of matrix functions, we refer the reader to
see [[4] to [6], [9]]. During the last several years, different problems concerning func-
tions in several complex matrix variables have been brought from different aspects and
many important results have been gained (see [10, 11, 14]). In this connection, Kishka
et al. [10] obtained the order and type of entire functions of two complex matrices in
complete Reinhardt domains. Recently, Abul-Ez et al. [1] introduced the notion of
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order and type of entire functions of several complex matrices and established an ex-
plicit relation between the growth of the maximum modulus and the Taylor coefficients
of entire functions in several complex matrix variables in hyperspherical regions. For
details, one may see [1]. The main purpose of this present paper is to introduce the
definitions of generalized order and generalized type of the entire function of several
complex matrices and then study some of their properties which considerably extend
some earlier results of Abul-Ez et al. [1]. To prove our main results we have followed
some of the techniques as used by Abul-Ez et al. [1].

Following [14], we give some notations and associated properties in the framework
of several complex variables. Assume m = (m1,m2, . . . ,mk) and n = (n1,n2, . . . ,nk)
belonging to Nk

0 are k -dimensional multi-indices, and

[m] = m1 +m2 + . . .+mk,

[n] = n1 +n2 + . . .+nk,

zm =
(
zm1
1 · zm2

2 · . . . · zmk
k

)
,

tm =
(
tm1
1 · tm2

2 · . . . · tmk
k

)
,

0 = (0,0, . . . ,0).

where z1,z2, . . . ,zk ∈C and t1,t2, . . . ,tk are nonnegativenumbers. For the k -dimensional

space, we write z =
(
z1,z2, . . . ,zk

)
and t =

(
t1,t2, . . . ,tk

)
, and for r > 0, we set

Sr = {z ∈C
k : |z| < r} and

Sr = = {z ∈C
k : |z| � r}, (1.1)

where Sr is an open spherical region of radius r and Sr is its closure. Consider the
function f (z) , which is regular in Sr ; then, (see [11, 14]

f (z) =
+∞

∑
[m]=0

amzm. (1.2)

The maximum modulus of f (z) is represented by

M[ f ;Sr] = sup
z∈Sr

| f (z)| .

Note that (1.1) leads to

{|zs| � rts : |t| = 1;s = 1,2, . . . ,k} ⊂ Sr.

Nassif (see [14]) introduced the Cauchy’s inequality for functions of several com-
plex variables in the following way

|am| = σm
M[ f ;Sr]

r[m] , (1.3)
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where

σm = inf
|t|=1

1
tm

=
{[m]} [m]

2

k

∏
s=1

m
ms
2

s

(1.4)

and 1 � σm � (k)
[m]
2 on the assumption that m

ms
2

s = 1, whenever ms = 0.
The number σm in (1.4) is considered to be a generalization to the number σh,k in

the two-complex variable case (cf. [17]), where

σh,k =

⎧⎪⎪⎨
⎪⎪⎩

(h+k)
(h+k)

2

h
h
2 k

k
2

, h,k � 1

0, h or k = 0.

Now, the radius of convergence of the power series (1.2) is defined in the open
sphere Sr by

Rf =
1

limsup
[m]→+∞

{ |am|
σm

} 1
[m]

.

Therefore, the function f (z) is an entire function if Rf = +∞ . The order of the
function f (z) is given in [14] in the form

ρ = limsup
r→+∞

ln[2] M[ f ;Sr]
lnr

= limsup
[m]→+∞

[m] ln[m]

ln
(

σm
|am|
) ,

where
ln[0] r = r, ln[2] r = ln(lnr).

If 0 < ρ < +∞ , then using the same way as in the single complex variable case
(see [7, 12, 18]), one can easily prove that the type θ of f (z) can be given in the form

θ = limsup
r→+∞

lnM[ f ;Sr]
rρ =

1
eρ

limsup
[m]→+∞

[m]
{ |am|

σm

} ρ
[m]

.

2. Functions of several complex matrix variables

Here, in this section we discuss some preliminaries and notations which will be
needed in the sequel (see [21]).

2.1. Preliminaries and notations

Let MN(C) be the space of N×N matrices whose entries are complex numbers.
Let A ∈ MN(C) , A = (auv) , u,v = 1,2, . . . ,N . The multiplication law of matrices
takes the form {

A2}
uv =

N

∑
s=1

{A}us{A}sv,
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and in general,

{Aμ}uv = ∑
j1, j2,..., jμ−1

{A}u j1{A} j1 j2 . . .{A} jμ−2 jμ−1{A} jμ−1v , μ ∈ N,

where the summation includes all symbols jv independently, from 1 to N . Following
[21], suppose that A,B ∈MN(C) , A = (auv) , B = (buv) , u,v = 1,2, . . . ,N . We shall
use the following notation:

{|A|}uv = |{A}uv |,

which means that a matrix A whose each of its elements have been taken to be moduli
of the elements.

If a matrix B has positive elements which are greater than the elements of the
matrix |A| , we have |A|< B . Alternatively, this inequality is equivalent to the following
system of N×N inequalities:

|{A}uv | = {B}uv , u,v = 1,2, . . . ,N.

Moreover referring to [21], the notation ‖d‖ shall mean that a matrix in which all
its elements are equal to the number d and determine its positive integral powers as
follows: {

‖d‖2
}

uv
= dd +dd + . . .+dd = Nd2, u,v = 1,2, . . . ,N.

Therefore, ‖d‖2 = ‖Nd‖2 , and generally for positive integral powers we get that

‖d‖μ =
∥∥Nμ−1dμ∥∥ , μ ∈ N.

2.2. Convergence property of functions of several complex matrix variables

In the light of previous subsection, we discuss convergence property of a power se-
ries of several complex matrix variables in hyperspherical regions by the convergence of
a power series of several complex variables without any restrictions on the coefficients.

Let X = ([xs;i j]) ; s = 1,2, . . . ,k be commutative matrices in s; i j , and then the
function F(X) of several complex matrices can be written as a power series in the
form

F(X) =
+∞

∑
[n]=0

an1,n2,...,nk,X
n1
1 ,Xn2

2 , . . . ,Xnk
k ,

=
+∞

∑
[n]=0

anXn =
+∞

∑
[n]=0

anZ. (2.1)

As Z = [{Z}i j]1�i, j�N and Z ∈MN(C) , therefore Z may enjoy the same notation
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given in previous subsection. Hence, we write that

Z = Xn1
1 ,Xn2

2 , . . . ,Xnk
k ,

{Z}i j = ∑
s1,s2,...,sk−1

{Xn1
1 }is1 ,{Xn2

2 }s1s2 , . . . ,{Xnk
k }sk−1 j

= ∑
s1,s2,...,sk−1

∑
j(1)
1 , j(1)

2 ,..., j(1)
n1−1

x
1;i j(1)

1
,x

1; j(1)
1 j(1)

2
, . . . ,x

1; j(1)
n1−1s1

,

∑
j
(2)
1 , j

(2)
2 ,..., j

(2)
n2−1

x
2;s1 j

(2)
1

,x
2; j(2)

1 j
(2)
2

, . . . ,x
2; j(2)

n2−1s2
,

. . . ∑
j
(k)
1 , j

(k)
2 ,..., j

(k)
nk−1

x
k;sk−1 j

(k)
1

,x
k; j(k)1 j

(k)
2

, . . . ,x
k; j(k)nk−1 j

.

Therefore, F(X) = [ fi j]1�i, j�N , where

fi j = ∑an{Z}i j, i, j = 1,2, . . . ,N. (2.2)

For this purpose examining the convergence of series (2.2) in a domain which is a
subset of the space MN(C) determined by the following inequalities:

|X1| < ‖rt1‖ , |X2| < ‖rt2‖ , . . . , |Xk| < ‖rtk‖ , (2.3)

let us suppose that

| fi j| = |∑an{Z}i j|, i, j = 1,2, . . . ,N. (2.4)

The convergence of this series guarantees the convergence of series (2.2), and in
this case, series (2.2) will be absolutely convergent.

In order to show the sufficient condition for the absolute convergence of series
(2.2), assume that the scalar function F(z) = ∑

[n]=0
anzn of several complex variables

associated with the matrix function in (2.1) is an analytic function in the region SNR ,
where NR is the radius of convergence of this series, N is the common order of our
matrices, and R is a positive number. As

F(z) = ∑
[n]

anzn,

M[F;SNR] = sup
z∈SNR

|F(z)| , (2.5)

using similar procedure in deriving (1.3), one can easily deduce the following inequality
for the coefficients of series (2.5), taking into account the common order of matrices
N . Thus,

|an| � σnM[F;SNR]
(NR)[n] , (2.6)
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where

σn = inf
|t|=1

1
tn

=
{[n]} [n]

2

k

∏
s=1

n
ns
2

s

.

Therefore we obtain that

|X1|n1 <
∥∥Nn1−1(rt1)n1

∥∥ , |X2|n2 <
∥∥Nn2−1(rt2)n2

∥∥ , . . . , |Xk|nk <
∥∥Nnk−1(rtk)nk

∥∥ .
(2.7)

Consequently, using (2.6) and (2.7) in (2.4), it follows that

| fi j| = | ∑
[n]=0

an{Z}i j| � ∑
n
|an| ∑

s1,s2,...,sk−1

∣∣{Xn1
1 }is1

∣∣ , ∣∣{Xn2
2 }s1s2

∣∣ , . . . , ∣∣{Xnk
k }sk−1 j

∣∣
� ∑

[n]=0

|an|Nn1−1+n2−1+...+nk−1+(k−1)r[n]tn =
M
N ∑

[n]=0

( r
R

)[n]

=
M
N

+∞

∑
μ=0

( r
R

)μ
=

M
N

(
1− r

R

)
, R > r,

that is, the power series in (2.1) will be absolutely convergent. Thus, one may have the
following theorem.

THEOREM 1. (see [1]) If the radius of convergence of the series in (2.5) is equal
to NR, then series (2.1) will be absolutely convergent for all matrices situated in the
neighborhood of domain (2.3).

3. Order and type of functions of several complex matrix variables

Let F(X) be an entire function of several complex matrix variables of common
order N with Taylor expansion:

F(X) =
+∞

∑
[n]=0

anXn, (3.1)

and the maximum modulus

M[F ;Sr] = max
i j

max
|X1|<‖rt1‖...|Xk|<‖rtk‖

|F(X)|.

So, Cauchy’s inequality for the matrix function F(X) can be given in the form

|an| � NM[F ;Sr]
(rN)[n] σn. (3.2)

In this connection, we recall the following two definitions.
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DEFINITION 1. [1] Let F(X) be an entire function of several complex matrices,
then the order of growth of the maximum modulus of an entire function of several
complex matrices is described by

ρ(F) = limsup
r→+∞

ln[2] M[F ;Sr]
lnr

.

DEFINITION 2. [1] For any entire function of several complex matrices F(X) of
order ρ(F) (0 < ρ(F) < +∞), the growth type τ(F) is given by

τ(F) = limsup
r→+∞

lnM[F ;Sr]
rρ(F) .

Now we state the following two results due to Abul-Ez et al. [1] concerning the
entire function of several complex matrices:

THEOREM 2. [1] A necessary and sufficient condition that an entire function in
several complex matrix variables with a Taylor series representation of the form (3.1)
should be of order ρ(F) is that

ρ(F) = limsup
[n]→+∞

[n] ln([n])
− ln |an/Kn| where Kn =

σn

N[n] .

THEOREM 3. [1] If F(X) is an entire function of several complex matrices of
finite growth order ρ(F) (0 < ρ(F) < +∞) and growth type τ(F) , then

τ(F) =
Nρ(F)

eρ(F)
limsup
[n]→+∞

([n])
{ |an|

σn

} ρ(F)
[n]

.

The above two theorems are very useful to evaluate the exact value of the growth
order and the growth type for some elementary matrix generalizations of the classical
exponential, trigonometric and other special functions. For details about the illustra-
tions and examples for basic applications, one may see [1].

4. Main results

First of all, let L be a class of continuous non-negative functions α defined on
(−∞,+∞) such that α(x) = α(x0) � 0 for x � x0 and α(x) ↑ +∞ as x0 � x → +∞ .
We say that α ∈L1 , if α ∈ L and α((1+o(1))x) = (1+o(1))α(x) as x→+∞ . Finally,
α ∈ Lsi , if α ∈ L and α(cx) = (1+o(1))α(x) as x → +∞ for each fixed c ∈ (0,+∞) ,
i.e., α is slowly increasing function. Clearly Lsi ⊂ L1 .

Considering this, Sheremeta [19] in 1967, introduced the concept of generalized
order of entire functions in complex context taking two functions belonging to L . For
details about the generalized order of entire functions, one may see [19]. However,
during the past decades, several authors made close investigations on the properties
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of entire functions related to generalized order in some different directions. For the
purpose of further applications, here in this paper we introduce the definitions of the
generalized order and the generalized type the entire function of several complex ma-
trices in the following way:

DEFINITION 3. Let F(X) be an entire function of several complex matrices.
Then, the generalized order of growth of the maximum modulus of an entire function
of several complex matrices is defined by

ρ(F) = limsup
r→+∞

α(ln[2] M[F ;Sr])
β (lnr)

(α ∈ L, β ∈ L).

DEFINITION 4. The generalized type λ (F) of the entire function of several com-
plex matrices F(X) with generalized order ρ(F) ∈ (0,+∞) is given by

λ (F) = limsup
r→+∞

exp(α(ln[2] M[F ;Sr]))
(exp(β (lnr)))ρ(F) (α ∈ L, β ∈ L).

REMARK 1. If α(r) = β (r) = r , then Definition 1 and Definition 2 are special
cases of Definition 3 and Definition 4 respectively.

Now we add two conditions on α and β : (i) α and β always denote the functions
belonging to L1 and (ii) α(lnx) = o(β (x)) as x→ +∞. Henceforth, we assume that α
and β always satisfy the above two conditions.

Now we present the main results of this paper. In the sequel, we use the following
notations due to Sato [22]:

exp[0] x = x, exp[2] x = exp(expx).

THEOREM 4. For an entire function in several complex matrix variables with a
Taylor series representation of form (3.1), let

Ω = limsup
[n]→+∞

α(ln([n]))

β
(− ln |an/Kn|

[n]

) where Kn =
σn

N[n] . (4.1)

Then
ρ(F) = Ω.

Proof. Case I. Let ρ(F) � Ω . For Ω = 0, this inequality is trivial. So, let us
assume that 0 < Ω � +∞ . In view of (4.1), there exist infinitely many n ∈ N

k
0 with

α(ln([n]))

β
(− ln |an/Kn|

[n]

) � b, (4.2)
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where b is a real constant to be chosen such that b = Ω−ε > 0 with ε > 0 if Ω < +∞ .
In the case where Ω = +∞ , one can take for b any arbitrary positive real number. Now
from (4.2), we obtain that

ln
(∣∣∣ an

Kn

∣∣∣)� −[n]β−1
(α(ln([n]))

b

)
. (4.3)

The coefficients of a matrix Taylor series (3.1) satisfy Cauchy’s inequality in the form

|an| � min
r0<r

NKnr−[n]M[F ;Sr]. (4.4)

So from (4.4) we get that

lnM[F ;Sr] � ln
(∣∣∣ an

Kn

∣∣∣ r[n]

N

)
= ln

(∣∣∣ an

Kn

∣∣∣)+[n] ln
( r

N
1
[n]

)
. (4.5)

Now from (4.3) and (4.5) we find that

lnM[F ;Sr] � [n] ln

(
r

N
1
[n]

)
− [n]β−1

(α(ln([n]))
b

)
. (4.6)

Now, let r = exp
(

1
b +
(

β−1
(

α(ln([n]))
b

)))
in (4.6). Therefore, for this arbitrarily large

r , we obtain the following inequality:

lnM[F ;Sr] � [n] ln

(
exp
(

1
b +
(

β−1
(

α(ln([n]))
b

)))
N

1
[n]

)
− [n]β−1

(α(ln([n]))
b

)

= [n]
(1

b
− lnN

1
[n]
)

=
[n]
b

(
1− lnN

b
[n]
)
, (4.7)

where

[n] = exp
(

α−1
(
bβ
(

logr− 1
b

)))
. (4.8)

Since α,β ∈ L1, then in view of (4.7) and (4.8), one can easily derive that

ρ(F) = limsup
r→+∞

α(ln[2] M[F ;Sr])
β (lnr)

� b = Ω− ε . (4.9)

As ε(> 0) is arbitrary we obtain from (4.9) that

ρ(F) � Ω. (4.10)

Case II. Let Ω � ρ(F) . If Ω = +∞ , then there is nothing to prove. So, let us
assume without loss of generality that 0 < Ω � +∞ . Since F(X) is an entire matrix
function, we have that lim

[n]→+∞
|an| = 0. Because of this property and in view of (4.1),

one can find that, for all ε > 0, κ ∈ N such that for all multi-indices [n] with [n] � κ ,

0 � α(ln([n]))

β
(− ln |an/Kn|

[n]

) � Ω + ε (4.11)
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For all these multi-indices with [n] � κ , we get from (4.11) that

|an/Kn| � exp
(
− [n]β−1

(α(ln([n]))
(Ω + ε)

))
. (4.12)

Therefore,

M[F ;Sr] � max
i j

max
Sr

∑
[n]=0

|an||Xn| � 1
N

+∞

∑
[n]=0

(Nr)[n] |an|
σn

. (4.13)

Hence from (4.12) and (4.13) we get that

M[F ;Sr] � 1
N

{
κ

∑
[n]=0

+
+∞

∑
[n]=κ+1

}
(Nr)[n] |an|

σn

� 1
N

{
L1 +

+∞

∑
[n]=κ+1

(r)[n] exp
(
− [n]β−1

((α(ln([n]))
(Ω + ε)

))}
, (4.14)

where L1 is a positive real constant. Choose the number r0 > 1 such that

exp(α−1((Ω + ε)β (ln(2r0)))) > μ for r > r0, μ ∈ N,

and then fix the positive integer ε such that

κ < ε � exp(α−1((Ω + ε)β (ln(2r0)))) < ε +1; r > r0,

we get from (4.14) that

M[F ;Sr] � 1
N

{
L1 +

ε

∑
[n]=κ+1

(r)[n] exp
(
− [n]β−1

(α(ln([n]))
(Ω + ε)

))

+
+∞

∑
[n]=ε+1

(r)[n] exp
(
− [n]β−1

(α(ln([n]))
(Ω + ε)

))}
. (4.15)

Now

ε

∑
[n]=κ+1

(r)[n] exp
(
− [n]β−1

(α(ln([n]))
(Ω + ε)

))

< (r)ε
ε

∑
[n]=κ

exp
(
− [n]β−1

(α(ln(κ +1))
(Ω + ε)

))

< (r)ε
ε

∑
[n]=0

exp
(
− [n]β−1

(α(ln(κ +1))
(Ω + ε)

))

< L2r
exp(α−1((Ω+ε)β (ln(2r0)))). (4.16)
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and

+∞

∑
[n]=ε+1

(r)[n] exp
(
− [n]β−1

(α(ln([n]))
(Ω + ε)

))

�
+∞

∑
[n]=ε+1

(r)[n] exp
(
− [n]β−1

(α(ln(ε +1))
(Ω + ε)

))

<
+∞

∑
[n]=0

(1
2

)[n]
= L3. (4.17)

Therefore summarizing (4.15), (4.16) and (4.17) we get that

M[F ;Sr] � L4r
exp(α−1((Ω+ε)β (ln(2r)))), (4.18)

where L2 , L3 , and L4 are constants. Hence from (4.18) we obtain that

ln[2] M[F ;Sr] � α−1((Ω + ε)β (ln(2r)))+ ln[2] r+o(1).

Since α(ln r)
β (r) → 0 as r → +∞ and β ∈ L1 , so it follows from above that

α(ln[2] M[F ;Sr]) � (1+o(1))(Ω + ε)β (ln(2r))

i.e.,
α(ln[2] M[αsr])

(1+o(1))β (ln(r))
� (1+o(1))(Ω + ε). (4.19)

Making r tends to infinity, we get from (4.19) that

ρ(F) = limsup
r→+∞

α(ln[2] M[αsr])
β (lnr)

� Ω + ε. (4.20)

As ε(> 0) is arbitrary, we get from (4.20) that

ρ(F) � Ω. (4.21)

Hence the theorem follows from (4.10) and (4.21). �

Now we prove the following lemma which will be needed in the sequel.

LEMMA 1. Let F(X) be a function in several complex matrix variables of com-
mon order N which have a Taylor series expansion in (3.1). Suppose there are numbers
η > 0 and ξ > 0 and an integer γ = γ(η ,ξ ) > 0 such that

(|an|/σn) �

⎛
⎜⎜⎝ (e)

1
η

N ·
(

exp

(
β−1

(
ln

((
exp(α(ln([n])))

ηξ

) 1
η
))))

⎞
⎟⎟⎠

[n]
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for all [n] > γ . Then, F(X) is an entire matrix function, and given any ε > 0 , there is
a number R = R(ε) > 0 such that

M[F ;Sr] < exp

(
1
η
· exp(α−1(ln(η(ξ + ε)(exp(β (ln(r))))η )))

)
for all r > R.

Proof. As (|an|/σn)�

⎛
⎜⎝ (e)

1
η

N·
(

exp

(
β−1

(
ln

((
exp(α(ln([n])))

ηξ

) 1
η
))))

⎞
⎟⎠

[n]

, for all these mul-

ti-indices with [n] > γ , it holds that

(
N[n]|an|

σn

) 1
[n]

� (e)
1
η(

exp

(
β−1

(
ln

((
exp(α(ln([n])))

ηξ

) 1
η
)))) .

Therefore,
(

N[n]|an|
σn

) 1
[n] → 0 as [n] → +∞ , and F(X) is an entire matrix function.

Moreover,

(
(Nr)[n]|an|

σn

) 1
[n]

� (e)
1
η(

exp

(
β−1

(
ln

((
exp(α(ln([n])))

ηξ

) 1
η
)))) r <

1
2
,

if multi-indices with [n] > κ = κ(r) = exp(α−1(ln(ηξ (exp(β (ln(2((e)
1
η r)))))η ))) .

Choosing R1 = R1(η ,ξ ) > 1, which is so large that κ(r) > γ , and if r > R1 , then(
(Nr)[n]|an|

σn

)
<
(1

2

)[n]
,

provided multi-indices with [n] > κ . We now establish an upper bound for M[F ;Sr] in
the following way:

M[F ;Sr] � max
i j

max
Sr

∑
[n]=0

|an||Xn| � 1
N

+∞

∑
[n]=0

|an|
σn

(Nr)[n]

=
1
N

κ

∑
[n]=0

|an|
σn

(Nr)[n] +
1
N

+∞

∑
[n]=κ+1

|an|
σn

(Nr)[n]

<
κ

∑
[n]=0

|an|
σn

(Nr)[n] +
+∞

∑
[n]=κ+1

1

2[n]

<
κ

∑
[n]=0

|an|
σn

(Nr)[n] +1, if r > R1. (4.22)
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However,

κ

∑
[n]=0

|an|
σn

(Nr)[n] =
γ

∑
[n]=0

|an|
σn

(Nr)[n] +
κ

∑
[n]=γ+1

|an|
σn

(Nr)[n]

< rγ
γ

∑
[n]=0

|an|
σn

N[n] + (κ − γ) · max
γ+1�[n]�κ

|an|
σn

(Nr)[n]. (4.23)

Now

max
γ+1�[n]�κ

|an|
σn

(Nr)[n] � max
γ+1�[n]

|an|
σn

(Nr)[n]

< max
γ+1�[n]

⎛
⎜⎜⎝ (e)

1
η

N
(

exp
(

β−1
(

ln
((

exp(α(ln([n])))
ηξ

) 1
η
))))

⎞
⎟⎟⎠

[n]

(Nr)[n]

� max
1�[n]

⎛
⎜⎜⎝ (e)

1
η(

exp
(

β−1
(

ln
((

exp(α(ln([n])))
ηξ

) 1
η
))))

⎞
⎟⎟⎠

[n]

r[n]

� max
1�[n]

⎛
⎜⎜⎝ (e)

1
η r(

exp
(

β−1
(

ln
((

exp(α(ln([n])))
ηξ

) 1
η
))))

⎞
⎟⎟⎠

[n]

.

The maximum is achieved for all these multi-indices with

[n] = exp(α−1(ln(ηξ (exp(β (ln(r))))η )));

hence from above we get that

max
γ+1�[n]�κ

|an|
σn

(Nr)[n] < exp
( 1

η
· exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

)
.

Therefore, if r > R1 , then from (4.22), (4.23) and above we obtain that

M[F ;Sr] < rγ
γ

∑
[n]=0

|an|
σn

N[n]+(κ−γ)·exp
( 1

η
·exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

)
+1

i.e.,

M[F ;Sr] < rγ
γ

∑
[n]=0

|an|
σn

N[n] + (exp(α−1(ln(ηξ (exp(β (ln(2((e)
1
η r)))))η )))− γ)

·exp
( 1

η
· exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

)
+1
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i.e.,

M[F ;Sr] < exp

(
1
η
· exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

)

·
{

exp(α−1(ln(ηξ (exp(β (ln(2((e)
1
η r)))))η )))− γ

+exp

(
− 1

η
· exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

)

+rγ exp

(
− 1

η
· exp(α−1(ln(ηξ (exp(β (ln(r))))η )))

) γ

∑
[n]=0

|an|
σn

N[n]
}

Given any ε > 0, there is a number R = R(ε) > R1 such that the expression in the right

side of the above inequality is less than exp
(

1
η · exp(α−1(ln(ηε(exp(β (ln(r))))η )))

)
provided that r > R . Hence,

M[F ;Sr] < exp
( 1

η
· exp(α−1(ln(η(ξ + ε)(exp(β (ln(r))))η )))

)
for all r > R. �

THEOREM 5. If F(X) is an entire matrix function of finite generalized growth
order ρ(F) (0 < ρ(F) < +∞) and growth type λ (F) , then

λ (F) = limsup
[n]→+∞

exp(α(ln([n])))⎛
⎝exp

⎛
⎝β

⎛
⎝ln

⎛
⎝ 1

N
e

{ |an|
σn

} 1
[n]

⎞
⎠
⎞
⎠
⎞
⎠
⎞
⎠

ρ(F) . (4.24)

Proof. Suppose λ (F) is finite. Then, for given any π > λ (F) , there is a number
R = R(π) > 0 such that

M[F ;Sr] < exp
( 1

ρ(F)
· exp(α−1(ln(ρ(F)π(exp(β (ln(r))))ρ(F))))

)
for all r > R.

According to Cauchy’s inequality in (3.2), we obtain for all r > R that

N[n]
∣∣∣ an

σn

∣∣∣ � NM[F ;Sr]
r[n]

<
N exp

(
1

ρ(F) · exp(α−1(ln(ρ(F)π(exp(β (ln(r))))ρ(F))))
)

r[n] . (4.25)

The minimum value of
exp

(
1

ρ(F) ·exp(α−1(ln(ρ(F)π(exp(β (ln(r))))ρ(F))))
)

r[n] occurs for

r = exp
(

β−1
(

ln
((exp(α(ln([n])))

ρ(F)π

) 1
ρ(F)

)))
;
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thus from (4.25), we get that

N[n]
∣∣∣ an

σn

∣∣∣< N
exp
(

[n]
ρ(F)

)
(

exp
(

β−1
(

ln
((

exp(α(ln([n])))
ρ(F)π

) 1
ρ(F)

))))[n]
, (4.26)

for all these multi-indices with [n] > γ and

r = exp
(

β−1
(

ln
((exp(α(ln([n])))

ρ(F)π

) 1
ρ(F)

)))
> R(π).

Rewriting (4.26), we have

N
ρ(F)
[n] >

Nρ(F)

e
·
(

exp
(

β−1
(

ln
((exp(α(ln([n])))

ρ(F)π

) 1
ρ(F)

))))ρ(F) ·
{∣∣∣ an

σn

∣∣∣}
ρ(F)
[n]

.

(4.27)
Hence it follows from (4.27) that

π � 1
ρ(F)

limsup
[n]→+∞

exp(α(ln([n])))⎛
⎜⎝exp

⎛
⎜⎝β

⎛
⎜⎝ln

⎛
⎜⎝
⎛
⎝ 1

Nρ(F)
e {| an

σn
|}

ρ(F)
[n]

⎞
⎠

1
ρ(F)

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

ρ(F) .

Since π is an arbitrary number exceeding λ (F) , so we get from above that

λ (F) � 1
ρ(F)

limsup
[n]→+∞

exp(α(ln([n])))⎛
⎜⎝exp

⎛
⎜⎝β

⎛
⎜⎝ln

⎛
⎜⎝
⎛
⎝ 1

Nρ(F)
e {| an

σn
|}

ρ(F)
[n]

⎞
⎠

1
ρ(F)

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

ρ(F) ,

where the right-hand side is clearly finite. Now let π1 be any number exceeding the
right-hand side of (4.24). Then, there is a number γ = γ(π1) > 0 such that

N[n]
∣∣∣ an

σn

∣∣∣< exp
(

[n]
ρ(F)

)
(

exp
(

β−1
(

ln
((

exp(α(ln([n])))
ρ(F)π

) 1
ρ(F)

))))[n]
, for all [n] > γ .

Applying Lemma 1 with ξ = π1 and η = ρ(F) , given such that

M[F ;Sr] < exp
( 1

ρ(F)
· exp(α−1(ln(ρ(F)(π1 + ε)(exp(β (ln(r))))ρ(F))))

)
for all r > R.
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Therefore, λ (F) � π1 and because of the choice of π1 ,

λ (F) � 1
ρ(F)

limsup
[n]→+∞

exp(α(ln([n])))⎛
⎜⎝exp

⎛
⎜⎝β

⎛
⎜⎝ln

⎛
⎜⎝
⎛
⎝ 1

Nρ(F)
e {| an

σn
|}

ρ(F)
[n]

⎞
⎠

1
ρ(F)

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

ρ(F) .

Thus, the result is derived. Also, if the right-hand side of (4.24) is finite so is λ (F) ,
and if λ (F) is infinite, so is the right-hand side of (4.24). �

5. Concluding remarks

In this paper, we investigate certain properties of generalized order and the gener-
alized type the entire function of several complex matrices variables in hyperspherical
region which considerably extend some recent works of Abul-Ez et al. [1]. Accord-
ingly, it is interesting to study about the similar properties of linear substitution for
entire function of several complex matrices variables. In fact some results in this di-
rection have also been explored by Abul-Ez et al. [1]. Those outcomes may also be
extended by using the concepts of generalized order and the generalized type which are
left to the interested readers or the involved authors for future study in this research
subject.

Acknowledgement. The authors are very much grateful to the reviewer for his/her
valuable suggestions to bring the paper in its present form.
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[13] E. LINDELÖF, Sur la détermination de la croissance des fonctions entiéres définies par un
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