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Abstract. For given square matrices A and B we denote by Y = AB−BA and by Z = AY −YA .
It is well known that if A and Y commute, i.e., if Z = 0 , then Y is a nilpotent matrix. In this note
we show that the same is true if YZ = ZY . We also generalize this result by using commutators
of higher order.

The Kleinecke-Shirokov theorem [4, 6] (see also [1] and the references therein)
asserts that if, for given bounded operators A and B on a Banach space, A and its
commutator AB−BA commute then AB−BA is a quasinilpotent operator. In the finite
dimensional case this result is also known as Jacobson’s Lemma [3]. We will remain in
finite dimensions and will replace the above condition with a weaker one.

All the matrices in the sequel are assumed to be complex or defined over an al-
gebraically closed field. Let A and B be two square matrices and denote by δA(B) :=
AB−BA their commutator. Similarly, for a given matrix B of order r× s and matrices
A1 and A2 of order r× r and s× s , respectively, we denote

δA1A2(B) := A1B−BA2

and, for k = 2,3, . . . , we successively define

δ k
A1A2

(B) := A1δ k−1
A1A2

(B)− δ k−1
A1A2

(B)A2.

Assume that square matrix A has a block diagonal matrix form with diagonal square
blocks A1 , A2 ,. . . , An (not necessarily of the same size) and matrix B is of the same
order as A and with the same block partition,

A =

⎡
⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
. . .

...
Bn1 Bn2 · · · Bnn

⎤
⎥⎥⎥⎦ . (1)
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Then, it is easy to verify that the commutator δA(B) has the following form

δA(B) =

⎡
⎢⎢⎢⎣

δA1(B11) δA1A2(B12) · · · δA1An(B1n)
δA2A1(B21) δA2(B22) · · · δA2An(B2n)

...
...

. . .
...

δAnA1(Bn1) δAnA2(Bn2) · · · δAn(Bnn)

⎤
⎥⎥⎥⎦ . (2)

For given square matrices A and B let us denote by Y := δA(B) and by Z :=
δA(Y ) . If we assume that A and Y commute, that is if Z = 0, then, by Kleinecke-
Shirokov theorem, Y is a nilpotent matrix. We can ask ourselves if the same is true in
the case when A and Y are quasi-commutative in the sense of McCoy [5], that is, if
δA(Z) = 0 and δY (Z) = 0. In fact, the second condition is sufficient.

THEOREM 1. If for given square matrices A and B over algebraically closed field
it holds

YZ = ZY,

where Y = δA(B) and Z = δA(Y ) , then Y is a nilpotent matrix.

Proof. We may assume that Y is expressed in the Jordan canonical form as

Y =

⎡
⎢⎢⎢⎣

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...
0 0 · · · Yp

⎤
⎥⎥⎥⎦ , (3)

where we grouped the blocks corresponding to the same eigenvalue. So, for each k ∈
{1,2, . . . , p} the block Yk has the form

Yk =

⎡
⎢⎢⎢⎢⎣

λk t(k)1 0 · · · 0

0 λk t(k)2 · · · 0
...

...
. . .

. . . t(k)rk−1

0 0 · · · · · · λk

⎤
⎥⎥⎥⎥⎦

, (4)

where rk is the algebraic multiplicity of eigenvalue λk and numbers t(k)1 ,t(k)2 , . . . ,t(k)rk−1

equal either 0 or 1. Let us denote by

Nk :=

⎡
⎢⎢⎢⎢⎣

0 t(k)1 0 · · · 0

0 0 t(k)2 · · · 0
...

...
. . .

. . . t(k)rk−1

0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

. (5)

Assume that matrices A and Z are in the same block partition form as Y . Fix any
pair of indices i and j from {1,2, . . . , p} where i < j . Clearly, Z = δA(Y ) = −δY (A) .
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Then, for the block Zi j of Z and for the block Ai j of A , taking into the account the
form of blocks given in (2), we obtain

−Zi j = δYiYj (Ai j) = (λiI +Ni)Ai j −Ai j(λ jI +Nj) = qAi j +NiAi j −Ai jNj,

where q = λi−λ j �= 0. Since Yi and Yj correspond to different eigenvalues and Y and
Z commute, it follows that Zi j = 0 (see [5, p. 329]). Let us denote simply m = ri and
n = r j . Then, we have the following matrix equation for the m×n block X = Ai j ,

(qIm +Ni)X −XNj = 0, (6)

where Im denotes the identity matrix of order m . With the vectorization of this equation
and using the Kronecker product (see [2, p. 257]), we obtain

Svec(X) = 0

where vec(X) is the matrix of order nm× 1 consisting of columns c1,c2, . . . ,cn of
matrix X and S is of the form

S = (In⊗ (qIm +Ni))−NT
j ⊗ Im.

It is easy to see that S consists of n2 blocks of size m×m , all its diagonal blocks are
equal to

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

q t(i)1 0 · · · 0

0 q t(i)2 · · · 0
...

...
. . .

. . .
...

0 0 · · · q t(i)m−1
0 0 0 · · · q

⎤
⎥⎥⎥⎥⎥⎥⎦

,

all its subdiagonal blocks are successively equal to: −t( j)
1 Im, −t( j)

2 Im, . . . ,−t( j)
n−1Im ,

while all the other blocks of S are zero. Since S is of block lower triangular form, we
have det(S) = det(Q)n = qmn �= 0. Hence, S is nonsingular, consequently vec(X) = 0,
that is X = 0. Thus, Ai j = 0.

In the same way we obtain the following equation for the block Aji of A ,

−Zji = δYjYi(Aji) = (λ jI +Nj)Aji−Aji(λiI +Ni) = −qAji +NjA ji −AjiNi.

Further, with the vectorization as above, we obtain for the n×m block X = Aji :

T vec(X) = 0,

where
T = (Im⊗ (−qIn +Nj))−NT

i ⊗ In.

Now, T consists of m2 blocks of order n×n , all its diagonal blocks are equal to

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

−q t( j)
1 0 · · · 0

0 −q t( j)
2 · · · 0

...
...

. . .
. . .

...

0 0 · · · −q t( j)
n−1

0 0 0 · · · −q

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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all its subdiagonal blocks are successively equal to: −t(i)1 In, −t(i)2 In, · · · , −t(i)m−1In ,
and all the other blocks equal zero. Matrix T is of lower block triangular form, conse-
quently, det(T ) = det(P)m = (−q)mn �= 0, hence vec(X) = 0. Thus, Aji = 0. Since i
and j were arbitrary indices, matrix A has block diagonal form as in (1) where n = p .

Finally, we take into account that Y = δA(B) where B has the block form (1)
with n = p . Thus, for each k ∈ {1,2, . . . , p} we have Yk = δAk(Bkk) and, consequently,
tr(Yk) = 0, hence λk = 0. So, Y is a nilpotent matrix. �

As a consequence we obtain Kleinecke-Shirokov theorem (or Jacobson’s lemma)
for matrices.

COROLLARY 1. If matrices A and Y = δA(B) commute then Y is nilpotent.

Moreover, we have a generalization to the quasi-commutativity condition.

COROLLARY 2. If matrices A and Y = δA(B) quasi-commute (i.e., if δA(Y ) com-
mutes with both A and Y ) then Y is nilpotent.

The assumption of the above theorem was that Y commutes with δA(Y ) , which
is equivalent to the assumption that Y commutes with δY (A) . This can be further
generalized in assuming that Y commutes with some higher order commutator δ k0

Y (A)
instead of δY (A) . Let N = {1,2, . . .} denote the set of natural numbers.

THEOREM 2. If for given square matrices A, B over algebraically closed field
and Y = δA(B) it holds

Yδ k0
Y (A) = δ k0

Y (A)Y,

for some k0 ∈ N , then Y is a nilpotent matrix.

Proof. With the same notations as above, where Y is of the form (3), we have for
fixed i, j ∈ {1,2, . . . , p} , i < j , the following successive relations for the block X = Ai j

of the matrix A :

X (1) := δYiYj (X) = qX +NiX −XNj,

X (2) := δYiYj (X
(1)) = qX (1) +NiX

(1)−X (1)Nj,

...

X (k0+1) := δYiYj (X
(k0)) = qX (k0) +NiX

(k0) −X (k0)Nj.

Since X (k0+1) = δ k0+1
YiYj

(X) = 0 by assumption, we have for X = X (k0) the matrix equa-

tion (6) and, as in the proof of the Theorem 1, we obtain X (k0) = 0. Following the
above successive relations we obtain in the same way X (k0−1) = · · · = X (1) = 0 and,
finally, X = 0, hence Ai j = 0. In the similar way we can prove that also Aji = 0. This
means, as above, that A is of the block diagonal form (1). Since Y = δA(B) , for each
k ∈ {1,2, . . . , p} we again obtain that Yk = δAk(Bkk) and, consequently tr(Yk) = 0 and
λk = 0. It follows that Y is nilpotent. �
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QUESTION 1. Can Theorems 1 and 2 be generalized for bounded operators on
infinite dimensional spaces?
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