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Abstract. In this article we study analogues of the weak expectation property of discrete group
C*-algebras and their crossed products, in the discrete quantum group setting, i.e., discrete quan-
tum group C*-algebras and crossed products of C*-algebras with amenable discrete quantum
groups.

In this article the notation ⊗ denotes the minimum tensor product of C*-algebras.

1. Introduction

The weak expectation property was introduced by Lance [8] in his study of nucle-
arity of (discrete) group C*-algebras. A weak expectation of a represented C*-algebra
A ⊂ B(H) is a unital completely positive map

Φ : B(H) → A′′

such that Φ|A = idA , where A′′ denotes the double commutant of A in B(H) . A C*-
algebra is said to have the weak expectation property if A admits a weak expectation
for every faithful representation A ⊂ B(K) .

We recall a few well-known facts about the weak expectation property. For a dis-
crete group Γ , the weak expectation property of the reduced group C*-algebra C∗

r (Γ)
is equivalent to the amenability of the group Γ , see [8, 4]. Also, in general, the weak
expectation property has poor permanence properties, unlike those of nuclearity, exact-
ness and the quotient weak expectation property (see [7, 9, 4] for definitions, examples
and permanence results). However, as a particular instance, where permanence does
hold: it was shown in [2] that, under an amenable action of a discrete group Γ on a
C*-algebra A , the C*-crossed product A� Γ has the weak expectation property if and
only if so has A .

Let G be a compact quantum group and Ĝ denote the discrete quantum dual of G .
The purpose of this article is to investigate the following in the context of the discrete
quantum group Ĝ :
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1. Equivalence of existence of a weak expectation Φ : B(L2(G))→C∗
r (Ĝ)′′ and the

amenability (or co-amenability) of Ĝ (or G ).

2. Permanence property for weak expectations of the crossed product A �α Ĝ and
A , for amenable Ĝ .

While an answer to (1.) in full generality is yet to be discovered (owing to the non-
traciality of the Haar functional of a general compact quantum group), a close analogue
to the discrete group case is obtained by the existence of a special weak expectation,
which we introduce in Definition 3.1 and call quantum weak expectation. Our defini-
tion of quantum weak expectation is motivated from [17]. See also [5]. We have the
following theorem in this regard:

THEOREM 1.1. Let G be a compact quantum group and let Ĝ denote the discrete
quantum dual of G . Then C∗

r (Ĝ) admits a quantum weak expectation if and only if Ĝ

is amenable.

The permanence question in (2.) is completely settled and is analogous to the
discrete group case. To achieve this, we use Skalski and Zacharias’ finite rank approxi-
mation results of the crossed product algebra by a discrete quantum group [11] and give
an explicit constructive proof. In this case we have the following result:

THEOREM 1.2. Let α be a faithful action of an amenable discrete quantum group
Ĝ on a unital C∗ -algebra A , then A �α Ĝ has the weak expectation property if and
only if A does.

REMARK 1.3. From a natural perspective, Theorem 1.2 may be regarded as a
complement to the permanence results in [11, Theorem 4.4] in the discrete quantum
group setting, just as [2, Theorem(s) 2.1, 3.1] complements [4, Theorem 4.3.4] in the
discrete group setting.

This article is organized as follows: in section 2 we briefly recall the necessary
definitions and constructions required for our purpose. In section 3 we present the
proof(s) of Theorem(s) 1.1 and 1.2.

2. Preliminaries

We briefly recall some definitions and notations used in this article. This section,
by no means, aim to be a detailed recollection of facts. The readers are directed to the
references cited herein for a comprehensive exposition to the subject matter.

Compact quantum groups. [14, 15] A C*-algebraic compact quantum group is a
pair G = (A,Δ) , where A is a unital C∗ -algebra, and Δ : A → A⊗ A is a unital ∗ -
homomorphism such that:

• Δ is coassociative: (Δ⊗ id)◦Δ = (id⊗Δ)◦Δ
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• span((1⊗A)Δ(A)) = A⊗A = span((A⊗1)Δ(A))

We denote the equivalence classes of irreducible representations of the compact
quantum group G by IrrG .

Discrete quantum groups. [10, 13, 15] The Pontryagin dual of a compact quantum
group G is a discrete quantum group denoted by Ĝ . The discrete dual Ĝ (C*-algebraic
version) is a pair Ĝ = (c0(Ĝ), Δ̂) or (vonNeumann algebraic version) Ĝ = (�∞(Ĝ), Δ̂)
where:

c0(Ĝ) =
⊕

α∈IrrG
B(Hα), �∞(Ĝ) = ∏

α∈IrrG
B(Hα)

and Δ̂ is the comultiplication on c0(Ĝ) or �∞(Ĝ) . If Ĝ = Γ (discrete group) then we
have the respective algebras as c0(Γ) and �∞(Γ) .

Regular representation. The multiplicative unitary W ∈ B(L2(G)⊗L2(G)) associ-
ated with the discrete quantum group Ĝ is such that:

Δ̂(x) = W
∗(1⊗ x)W,

where Δ̂ is the co-multiplication of Ĝ . Let ω̂ ∈ �1(Ĝ) := �∞(Ĝ)∗ . The left regular

representation λ̂ : �1(Ĝ) → B(L2(G)) of Ĝ is defined by:

λ̂ (ω̂) = (ω̂ ⊗ id)W.

The reduced discrete quantum group algebra is defined as:

C∗
r (Ĝ) := λ̂ (�1(Ĝ)).

||·||B(L2(G))

By definition, we have C∗
r (Ĝ) = A where G = (A,Δ) . Further, for compact quantum

groups, we have �∞(Ĝ) ⊂ B(L2(G)) as a von-Neumann subalgebra (see [14, 15, 6, 3]
for details).

Amenability. [1, 16, 12, 3] An invariant mean m on Ĝ is a state m ∈ �∞(Ĝ)∗ sat-
isfying m(ω̂ ⊗ id)Δ̂ = ω̂(1)m . A discrete quantum group Ĝ is said to be amenable if
there exists an invariant mean on �∞(Ĝ) . This definition of amenability of Ĝ is one
of the many equivalent ones in the literature (see the references mentioned above for
equivalent definitions and other details).

Actions and crossed products. [13, 3, 11] A (left) action of a discrete quantum
group Ĝ on a C∗ -algebra A is a non-degenerate ∗ -homomorphism α : A →M(c0(Ĝ)⊗
A ) satisfying (Δ̂⊗ idA ) ◦α = (idc0(Ĝ) ⊗α) ◦α and such that α(A )(c0(Ĝ)⊗ 1) is

dense in c0(Ĝ)⊗A . Here we assume A ⊂ B(H ) .
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The reduced crossed product of A by the action α of the discrete quantum group
Ĝ is the C∗ -subalgebra of B(L2(G)⊗H ) generated by α(A ) and C∗

r (Ĝ)⊗ 1. The
reduced crossed product algebra is denoted by A �α ,r Ĝ . We omit the definition of
the universal crossed product (denoted by A �α Ĝ) as for amenable actions of Ĝ , the
reduced and the universal algebras coincide.

3. Proofs of the main results

NOTATION. We follow the notations as given below (which are in contrast with
those in [11]): The co-multiplication of the discrete quantum group (Ĝ, Δ̂) is given by
the multiplicative unitary W , i.e. Δ̂(·) = W

∗(1⊗·)W .
The following definition is motivated from [17]. Recall that, we have l∞(Ĝ) ⊂

B(L2(G)) and L∞(G) = C∗
r (Ĝ)

′′
. In what follows, we denote the center of a von-

Neumann algebra M by Z(M) .

DEFINITION 3.1. (Quantum weak expectation) Let Ĝ be a discrete quantumgroup.
A quantum weak expectation is a unital completely positive map

Φ : B(L2(G)) →C∗
r (Ĝ)

′′

such that Φ(x) = x for every x ∈C∗
r (Ĝ) and satisfying Φ(�∞(Ĝ)) ⊂ Z(L∞(G)) .

Now we give the proof of Theorem 1.1 below.

Proof of Theorem 1.1. First, assume that C∗
r (Ĝ) admits a quantum weak expec-

tation Φ : B(L2(G)) → C∗
r (Ĝ)′′ such that Φ(a) = a for every a ∈ C∗

r (Ĝ) satisfying
Φ(�∞(Ĝ)) ⊂ Z(L∞(G)) . Let h be the Haar state on the compact quantum group G .
Consider the restriction of the state h ◦Φ on B(L2(G)) to �∞(Ĝ) , and let

m := h ◦Φ|
�∞(Ĝ).

We will show that m is a left invariant mean on �∞(Ĝ) . It is sufficient to prove that
m((ω̂ ⊗ id)Δ̂(x)) = ω̂(1)m(x) for every ω̂ ∈ �1(Ĝ)+ , x ∈ �∞(Ĝ)+1 . To show this, we
explicitly use the structure of �∞(Ĝ) and the structure of the associated unitary W .

Fix ω̂ ∈ �1(Ĝ)+ and x∈ �∞(Ĝ)+1 . Recall that, for the discrete quantum group Ĝ =
(�∞(Ĝ), Δ̂) , there exists a family of central, mutually orthogonal, finite dimensional
projections (zα)α∈IrrG such that

�∞(Ĝ) = ∏
α∈IrrG

�∞(Ĝ)zα = ∏
α∈IrrG

B(Hα)

and 1B(L2(G)) = ∑α∈IrrG zα (in SOT). Let ω̂α(·) := ω̂(zα ·) . Then ω̂ = ∑ω̂α and

ω̂α(y) = trα(βαzαy) for any y ∈ �∞(Ĝ) , some βα � 0 and with trα being the nor-
malized trace in B(Hα) . We have

‖ω̂‖ = ∑ trα βα .
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Next, let ε > 0. Choose a finite subset F ⊂⊂ IrrG such that the functional

ω̂F := ∑
α∈F

ω̂α

satisfies ‖ω̂ − ω̂F‖ < ε
2 . Note that, ω̂F � ω̂ and supp ω̂F = zF := ∑α∈F zα . The

multiplicative unitary W has the form⊕
α

∑
iα , jα

eα
iα , jα ⊗aα

iα , jα ,

where eα
iα , jα are appropriate matrix units and aα

iα , jα ∈ C∗
r (Ĝ) . Now, consider the ex-

pression (ω̂F ⊗ id)Δ̂(x) . Using the fact that (zα ⊗1)W = W(zα ⊗1) and the expression
of the co-multiplication Δ̂ , it is clear that

(ω̂F ⊗ id)Δ̂(x) = ∑
α ,α ′∈F

ω̂F((eα
iα , jα )∗(eα ′

iα′ , jα′ ))(a
α
iα , jα )∗x(aα ′

iα′ , jα′ ).

Observe that, the sum on the right hand side of the equation above is finite. Consider
the extension of the operator Δ̂ to B(L2(G)) by the recipe

T 
−→ W
∗(1⊗T)W

for T ∈ B(L2(G)) . By slight abuse of notation, we continue to denote this extension
by Δ̂ , where the appropriate definition is applicable depending on the argument of this
operator. The fact that Φ is a weak expectation, the expression (ω̂F ⊗ id)Δ̂(x) has
finitely many terms in the summation formula and using the extended definition of Δ̂
we have

Φ◦ (ω̂F ⊗ id)Δ̂(x) = (ω̂F ⊗ id)Δ̂(Φ(x)),

since C∗
r (Ĝ) lies in the multiplicative domain of Φ by virtue of the bimodule property

of Φ from Definition 3.1. This equality leads to the following computation:

m((ω̂F ⊗ id)Δ̂(x)) = h ◦Φ((ω̂F ⊗ id)(W∗(1⊗ x)W))
= h((ω̂F ⊗ id)(W∗(1⊗Φ(x))W))
= h((ω̂F ⊗ id)(1⊗Φ(x)))
= h(ω̂F(1)Φ(x))
= ω̂F(1)(h ◦Φ(x))
= ω̂F(1)m(x),

where the third equality is due to the condition of quantum weak expectation i.e.,
Φ(�∞(Ĝ)) ⊂ Z(L∞(G)) . To finish off this direction of the proof we have the estimate:

|m((ω̂ ⊗ id)Δ̂(x))− ω̂(1)m(x)|
�|m(((ω̂ − ω̂F)⊗ id)Δ̂(x))|+ |m((ω̂F ⊗ id)Δ̂(x))− ω̂(1)m(x)|
�‖m‖‖((ω̂ − ω̂F)⊗ id)Δ̂(x))‖+ |ω̂F(1)m(x)− ω̂(1)m(x)|
�‖ω̂ − ω̂F‖‖Δ̂(x)‖+ |(ω̂F(1)− ω̂(1))m(x)|
�ε

2
+

ε
2

= ε,
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as x ∈ �∞(Ĝ)+1 and the first part of the third inequality is a well-known fact. Since ε
was arbitrary we have the desired result.

Conversly, assume that Ĝ is amenable. Then by [17], G is quantum injective
(c.f. [17, 3] for definition) i.e., there exists a conditional expectation E : B(L2(G)) →
L∞(G) such that E(�∞(Ĝ)) ⊂ Z(L∞(G)) which by definition is also a quantum weak
expectation. �

REMARK 3.2. In the proof of Theorem 1.1 given above, observe that the non-
traciality of the Haar functional of a general compact quantum group is of no conse-
quence owing to the nature of the quantum weak expectation. Indeed, the Haar func-
tional may as well be replaced by any positive functional in �∞(G)∗ to yield the same
result. Further, if G is of the Kac-type (i.e. the Haar functional is tracial), then the
assumption of the existence of an ordinary weak expectation is enough to establish the
existence of an invariant mean on �∞(Ĝ) . However, by [17], even in this case, the
existence of a quantum weak expectation is guaranteed.

REMARK 3.3. The results of [17] hold in the general context of locally compact
quantum groups. As mentioned earlier, our definition of the quantum weak expectation
is motivated from the notion of quantum injectivity. However, due to the lack of an ex-
plicit description of the von-Neumann algebra structure of �∞(Ĝ) , Peter-Weyl duality
and the structure of the associated unitary W in the locally compact quantum group set-
ting; our proof of Theorem 1.1 holds true only in the context described in the statement
of the theorem.

Next, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let Ĝ be an amenable discrete quantum group and A ⊂
B(HA ) be the universal representation of A on its universal Hilbert space HA . As-
sume that A has the weak expectation property. Since we have Ĝ to be amenable,
henceforth we simply denote the unique crossed product by A �α Ĝ as the reduced
and universal crossed products are the same.

The faithful action α yields a canonical copy of A inside the crossed product
algebra by α(A ) ∼= α(A )(1C∗

r (Ĝ) ⊗1) ⊂ A �α Ĝ [11, Remark 2.5.]. So we have the
following faithfully represented inclusions:

α(A )(1C∗
r (Ĝ) ⊗1)⊂ A �α Ĝ ⊂ B(L2(G)⊗HA ).

Denote (for ease of notation) the universal representation of A �α Ĝ by π on the
universal Hilbert space Hu of A �α Ĝ . Since A has the weak expectation property,
there exists a ucp map ΦA : B(HA )→A ′′ such that ΦA (a) = a for all a∈A . Next,
consider the representation π0 : A → B(Hu) defined by π0(a) = π(α(a)) and denote
its normal extension to A ′′ by

π ′′ : A ′′ → B(Hu).

We have the von-Neumann algebraic inclusion π ′′(A ′′) ⊂ π(A �α Ĝ)′′ .
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For the discrete quantum group Ĝ = (c0(Ĝ), Δ̂) , there exists a family of cen-
tral, mutually orthogonal, finite dimensional projections (zi)i∈IrrG such that c0(Ĝ) =⊕

i∈IrrG c0(Ĝ)zi and 1B(L2(G)) = ∑i∈IrrG zi (in SOT). If F is a finite non-empty subset

of IrrG , then zF = ∑i∈F zi ∈ Z(c0(Ĝ)) ⊂ B(L2(G)) is a finite rank orthogonal projec-
tion and zFB(L2(G))zF = B(zFL2(G)) .

Let {ep}m
p=1 be an orthonormal basis of the finite dimensional Hilbert space HF :=

zFL2(G) . In what follows, we adopt notations which are similar to those used in the
proof of [11, Theorem 3.1.] if not the same.

Define a ucp map φF : B(L2(G)⊗HA ) → B(HF)⊗B(HA ) by

φF (y) = (zF ⊗1)y(zF ⊗1)

for y ∈ B(L2(G)⊗HA ) . Note that, for y = α(a)(x⊗1) ∈ A �α Ĝ one has

φF(α(a)(x⊗1)) = (zF ⊗1)α(a)(zFxzF ⊗1).

Next, we consider the unitary operator in B(L2(G)⊗Hu) given by:

W̃ := (id⊗π)(W⊗1)

and for ξ ∈ HF , define the operator Ṽξ ∈ B(HF ⊗Hu,Hu) given as a row matrix by:

Ṽξ = [λ̃ (ω̂ξ ,e1
) · · · λ̃ (ω̂ξ ,ep)]

where λ̃ (ω̂ξ ,e j
) = (ω̂ξ ,e j

⊗ id)W̃ ; j = 1, . . . , p . From [11, Theorem 3.1.] we know that

Ṽξ is a co-isometry. Let idF denote the map idB(HF ) .

Define a ucp map Θξ : B(HA ⊗L2(G)) → π(A �α Ĝ)′′ by the formula:

Θξ := RṼξ
◦ (idF ⊗π ′′)◦ (idF ⊗ΦA )◦φF

where RṼξ
(T ) = Ṽξ TṼ ∗

ξ for T ∈ B(HF ⊗Hu) and ΦA is the weak expectation.

It is clear from the definition of Θξ and the fact that λ̃ (ω̂) ∈ π(A �α Ĝ)′′ for any

ω̂ ∈ �1(Ĝ) , that range Θξ ⊂ π(A �α Ĝ)′′ . Now, we compute the image of α(a)(x⊗
1) ∈ A �α Ĝ under the action of Θξ below:

Θξ (α(a)(x⊗1)) = (RṼξ
◦ (idF ⊗π ′′))((zF ⊗1)α(a)(zFxzF ⊗1))

= RṼξ
((idF ⊗π)((zF ⊗1⊗1)((id⊗α)α(a))(zFxzF ⊗1⊗1)))

= π((Vξ ⊗1)(zF ⊗1⊗1)((id⊗α)α(a))(zFxzF ⊗1⊗1)(V∗
ξ ⊗1))

= π(α(a)(Tωξ (x)⊗1)),

where Vξ is the operator as defined in the proof of [11, Theorem 3.1.] and Tωξ is

the convolution operator on C∗
r (Ĝ) . The last equality is a direct consequence of [11,

Equation (3.1)].
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Since Ĝ is amenable, by Tomatsu [12], there exist a net of finitely supported
vectors {ξ j} j ⊂ L2(G) , i.e. zFjξ j = ξ j for all j and Fj ⊂⊂ I , such that Tωξ j

(x) → x

for all x ∈C∗
r (Ĝ) . Let {Θξ j

} j be the net of ucp maps defined above corresponding to
the net of vectors {ξ j} j and let

Θ := pt.wk.− lim
j

Θξ j
.

Then Θ : B(L2(G)⊗HA )→ π(A �α Ĝ)′′ and Θ|
A �α Ĝ

= π . By virtue of the injectiv-

ity of B(L2(G)⊗HA ) , we have a weak expectation Θ̃ for the universal representation
π of A �α Ĝ , which proves that A �α Ĝ has the weak expectation property.

Conversely, suppose A �α Ĝ has the weak expectation property. By injectivity
of the map (action) α there exists a conditional expectation from A �α Ĝ onto A
[11, Lemma 2.2]. Therefore, A has the weak expectation property. This concludes our
proof. �
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