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ON ITERATED DISCRETE HARDY TYPE OPERATORS

AIGERIM KALYBAY ∗ AND NAZERKE ZHANGABERGENOVA

(Communicated by D. Kimsey)

Abstract. The paper discusses a new iterated discrete inequality of Hardy type involving an
operator with some matrix kernel. Under certain conditions on this matrix kernel, the given
inequality is characterized.

1. Introduction

In the manuscript [7], V. Burenkov and R. Oinarov studied the problem of bound-
edness of the multidimensionalHardy operator from a Lebesgue space to a local Morrey-
type space. They proved that this problem of boundedness is equivalent to the validity
of the following inequality⎛⎜⎝ ∞∫
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for 1 � p < ∞ and 0 < q,r < ∞ , where u(·) , v(·) and w(·) are positive functions
locally summable on the interval (0;∞) . This result provided a strong impetus to study
inequalities of type (1), so that in the last decade numerous works have been focused
on them (see, e.g., [9], [10], [11], [14], [21], [22], [24] and references given therein).
Since the operator
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is quasilinear and contains iteration and, in addition, inequality (1) is a generalization
of the famous weighted Hardy inequality⎛⎝ ∞∫
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in all these works, inequalities of type (1) are referred to as iterated Hardy-type inequal-
ities or Hardy-type inequalities with quasilinear operators.

Inequalities of type (1) have one more interesting application: characterizations
of bilinear Hardy-type inequalities can easily be derived from characterisations of in-
equalities of type (1) (see, e.g., [5], [12], [13], [21], [24] and references given therein).
Due to these applications, inequalities of type (1) are currently one of the main objects
of research in the theory of Hardy inequalities.

In this work, we consider a discrete analogue of inequality (1)⎛⎝ ∞

∑
n=1

uq
n

(
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∣∣∣∣∣wk
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r) q
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(
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|v j f j|p
) 1

p

, ∀ f ∈ lp,v, (2)

with the operator

(K f )n =

(
n

∑
k=1

∣∣∣∣∣wk

k

∑
i=1

ak,i fi

∣∣∣∣∣
r) 1

r

that contains a matrix (ak,i) , k � i � 1, whose entries ak,i � 0 are non-decreasing in
k and non-increasing in i , satisfying the discrete Oinarov condition stating that there
exists a constant d � 1 such that

1
d

(ak, j +a j,i) � ak,i � d(ak, j +a j,i) (3)

for k � j � i � 1. Here u = {u j}∞
j=1 , v = {v j}∞

j=1 and w = {wj}∞
j=1 are weight

sequences, i.e., positive sequences of real numbers. The aim of this paper is to charac-
terize inequality (2) for 0 < r < p � q < ∞ and p > 1. The case when ak,i = 1 for all
k � i � 1 was studied in the work [20] for the following relations between p , q and r :
(1) 1 < p � q < ∞ , 0 < r < ∞ and (2) 0 < r < q < p < ∞ , p > 1. The paper [8] also
focuses on iterated discrete Hardy-type inequalities involving supremum operators.

If we denote by lp,v the space of sequences f = { f j}∞
j=1 of real numbers with the

finite norm

‖v f‖p =

(
∞

∑
j=1

|v j f j|p
) 1

p

and by A± f the matrix operator

(A+ f )k =
k

∑
i=1

ak,i fi, k � 1, (4)

or

(A− f )i =
∞

∑
k=i

ak,i fk, i � 1, (5)

then, as in the integral case, inequality (2) is a generalization of the following weighted
discrete Hardy-type inequality

‖uA± f‖q � C‖v f‖p, ∀ f ∈ lp,v. (6)
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Note that the validity of inequality (6) is equivalent to the problem of boundedness of
the operator A± f from lp,v to lq,u . It is still a well-known open problem to characterize
inequality (6) without any restrictions on the matrix (ak,i) . The problem has been
completely solved for the classical case ak,i = 1 in the works [2], [3], [4] and [6] (see
Theorem 8 in [16]). The case where entries of the matrix (ak,i) satisfy the discrete
Oinarov condition has been studied in [18] for 1 < p � q < ∞ , in [17] for 1 < q < p < ∞
and in [23] for 0 < p � 1, p � q < ∞ . The case where the matrix operators (ak,i)
satisfy a certain modified discrete Oinarov condition has been recently investigated in
[15] for 1 < p,q < ∞ . In the paper [19], the expanding classes of matrix operators O±

n ,
n � 0, have been introduced, matrices (ak,i) from which satisfy conditions weaker than
condition (3). Characterizations of inequality (6) for operators from these expanding
classes have been found in [19] for 1 < p � q < ∞ and in [25] for 1 < q < p < ∞ but
for operators from the classes O±

1 only. The method presented in the proof of the main
result is based on the reduction of the given problem to characterizations of inequality
(6) for operators from the class O−

2 . Since in [19] the range of parameters is 1 < p �
q < ∞ , here we are able to characterize inequality (2) in the case 0 < r < p � q < ∞
and p > 1. As soon as inequality (6) for operators from the class O−

2 are established
for 1 < q < p < ∞ , inequality (2) can be established for 0 < r < q < p < ∞ and q > 1
by the same method as presented here.

The paper is organized as follows. Section 2 contains all the auxiliary statements
and definitions necessary to characterize inequality (2). Section 3 presents the main re-
sult on inequality (2) in the case when the involved matrices satisfy the discrete Oinarov
condition. In Section 4, there is a comparison with the results obtained earlier in [20]
for the case when ak,i = 1 for all k � i � 1.

2. Auxiliary statements and definitions

Let 1
p + 1

p′ = 1. The symbol E � F means E � CF with some constant C ,
depending on the parameters p , q and r . Moreover, the notation E ≈ F means E �
F � E .

As pointed out in the Introduction, there are two expanding classes O+
n and O−

n ,
n � 0, of matrices (ak,i) in the paper [19]. To prove the main result we need the class

O−
n , n � 0. Let us present its definition. Assume that ak,i ≡ a(n)

k,i if (ak,i)∈O−
n . Define

the classes O−
n by induction. Let (ak,i) be a matrix, whose entries ak,i � 0 are non-

increasing in i for all k � i � 1. Suppose that the class O−
0 is the set of matrices of

the type a(0)
k,i = αk for all k � i � 1. Next, we assume that the classes O−

γ have already

been defined for γ = 0,1, . . . ,n−1, n � 1. A matrix (ak,i)≡ (a(n)
k,i ) belongs to the class

O−
n if and only if there exist matrices (a(γ)

k,i ) ∈ O−
γ , γ = 0,1, . . . ,n−1, such that

a(n)
k,i ≈

n

∑
γ=0

a(γ)
k, j b

γ,n
j,i (7)

for all k � j � i � 1, where bγ,n
j,i = inf

j�k�∞

a(n)
k,i

a
(γ)
k, j

, γ = 0,1, . . . ,n−1, and bn,n
j,i ≡ 1.
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REMARK 1. ([19, Remark 2]) We may assume that the matrices bγ,n
j,i , γ = 0,1, . . . ,

n , n � 1, are arbitrary non-negative matrices which satisfy (7).

To prove the main result we need characterizations of inequality (6) found in [19].

THEOREM A. [19, Theorem 4.2] Let 1 < p � q < ∞ . Let the matrix (ak,i) in (5)
belong to the class O−

n , n � 0 . Then estimate (6) for the operator (5) holds if and only
if one of the conditions

E−
1 = sup

j�1

⎛⎝ j

∑
i=1

uq
i

(
∞

∑
k= j

ap′
k,iv

−p′
k

) q
p′
⎞⎠

1
q

< ∞

and

E−
2 = sup

j�1

⎛⎜⎝ ∞

∑
k= j

v−p′
k

(
j

∑
i=1

aq
k,iu

q
i

) p′
q

⎞⎟⎠
1
p′

< ∞

holds. Moreover, C ≈ E−
1 ≈ E−

2 , where C is the best constant in (6).

In order to highlight that the introduced expanding classes include almost all
classes of matrix operators considered earlier to characterize inequality (6), let us present
two theorems, which are particular cases of TheoremA. Since a matrix (ak,i) , k � i � 1,
whose entries ak,i = 1, belongs to the class O−

0 , we have the following well-known re-
sult on the weighted discrete Hardy inequality (see, e.g., [2] or [16]):

THEOREM A1 . Let 1 < p � q < ∞ . The estimate(
∞

∑
i=1

∣∣∣ui

∞

∑
k=i

fk
∣∣∣q) 1

q

� C

(
∞

∑
j=1

|v j f j|p
) 1

p

, ∀ f ∈ lp,v, (8)

holds if and only if

H− = sup
j�1

(
j

∑
i=1

uq
i

) 1
q
(

∞

∑
k= j

v−p′
k

) 1
p′

< ∞.

Moreover, C ≈ H− , where C is the best constant in (8).

Since the matrices of the class O−
1 are characterized by the relation

a(1)
k,i ≈ a(1)

k, j +a(0)
k, j b

0,1
j,i = a(1)

k, j + αkb
0,1
j,i , ∀ k � j � i � 1, (9)

in view of Remark 1, it is obvious that a matrix satisfying condition (3) belongs to O−
1 .

Thus, we again get the well-known result on the boundedness of the matrix operator
(5), whose entries satisfy condition (3), from lp,v to lq,u found in [18]:



ON ITERATED DISCRETE HARDY TYPE OPERATORS 83

THEOREM A2 . Let 1 < p � q < ∞ and the entries of the matrix (ak,i) in (5)
satisfy condition (3). Then estimate (6) for the operator (5) holds if and only if M− =
max{M−

1 ,M−
2 } < ∞ , where

M−
1 = sup

j�1

(
j

∑
i=1

uq
i

) 1
q
(

∞

∑
k= j

ap′
k, jv

−p′
k

) 1
p′

,

M−
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j�1

(
j

∑
i=1
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i

) 1
q
(

∞

∑
k= j

v−p′
k

) 1
p′

.

Moreover, C ≈ M− , where C is the best constant in (6).

It is easy to see that due to condition (3) we can combine the values M−
1 and M−

2
so that this combination is equivalent to only one of the values either E−

1 or E−
2 .

The matrices of the class O−
2 are described by the relation

a(2)
k,i ≈ a(2)

k, j +a(1)
k, j b

1,2
j,i +a(0)

k, j b
0,2
j,i = a(2)

k, j +a(1)
k, j b

1,2
j,i + αkb

0,2
j,i , ∀ k � j � i � 1, (10)

where a(1)
k, j belongs to O−

1 . We have already mentioned in the Introduction that in the

proof of the main result we meet operators from the class O−
2 . Moreover, we have also

pointed out that expanding the range of values of the parameters p and q in Theorem
A can expand the range of them in the presented main result.

We also need the result of the work [17] for the operator (4) with entries satisfying
the discrete Oinarov condition.

THEOREM B. Let 1 < q < p < ∞ . Let the entries of the matrix (ak,i) in (4)
satisfy condition (3). Then inequality (6) for the operator (4) holds if and only if M+ =
max{M+

1 ,M+
2 } < ∞ , where

M+
1 =

⎛⎜⎝ ∞

∑
j=1

(
∞

∑
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q
k
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⎞⎟⎠
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,
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(
∞

∑
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k
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⎞⎟⎠
p−q
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.

Moreover, C ≈ M+ , where C is the best constant in (6).

For the proofs we use the following statement.

LEMMA A. [1, p. 844] Let γ > 0 and {βk}k be a nonnegative sequence. Then(
j

∑
k=1

βk

)γ

≈
j

∑
k=1

βk

(
k

∑
i=1

βi

)γ−1

, j � 1. (11)
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If ∑
k

βk < ∞ and 1 � j � m � ∞ , then

(
m

∑
k= j

βk

)γ

≈
m

∑
k= j

βk

(
m

∑
i=k

βi

)γ−1

. (12)

3. Main result

Let

E1 = sup
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(
n
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⎛⎝ ∞

∑
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(
j

∑
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r
i
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r

uq
j

⎞⎠
pr
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,

E2 = sup
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⎛⎜⎜⎝ ∞

∑
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j

⎛⎜⎝ k

∑
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(
j

∑
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r
i
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n

(
n

∑
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i
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p−r

⎞⎟⎠
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k�1

(
k

∑
n=1
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−p′
n

) 1
p′
⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
1
q

,

M2 = sup
k�1

⎛⎜⎝ k

∑
n=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r
(

n

∑
i=1

ap′
n,iv

−p′
i

) r(p−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

.

THEOREM 1. Let 0 < r < p � q < ∞ and p > 1 . Let (ak,i) be a matrix that
is non-decreasing in k , non-increasing in i , and that satisfies condition (3). Then
inequality (2) holds if and only if one of the conditions E1M = max{E1,M1,M2} < ∞
or E2M = max{E2,M1,M2} < ∞ holds. Moreover, C ≈ E1M ≈ E2M, where C is the
best constant in (2).

Proof. We estimate

C = sup
f�0

(
∞
∑

n=1
uq

n

(
n
∑

k=1

∣∣∣∣wk

k
∑
i=1

ak,i fi

∣∣∣∣r)
q
r
) 1

q

‖v f‖p
,

where C is the best constant in (2).
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Define θ = q
r , uq

n = ũθ
n and Gn =

n
∑

k=1

∣∣∣∣wk

k
∑
i=1

ak,i fi

∣∣∣∣r . Using the Hölder’s inequality

we have

Cr = sup
f�0

(
∞
∑

n=1
(ũnGn)θ

) 1
θ

‖v f‖r
p

= sup
ϕ�0

sup
f�0

∞
∑

n=1
ϕnGn

‖ũ−1ϕ‖θ ′‖v f‖r
p
,

where 1
θ + 1

θ ′ = 1. Replacing back instead of Gn its sum representation into the latter
expression and changing the order of sums, we obtain

Cr = sup
ϕ�0

sup
f�0

∞
∑

k=1

∣∣∣∣wk

k
∑
i=1

ak,i fi

∣∣∣∣r ∞
∑

n=k
ϕn

‖ũ−1ϕ‖θ ′‖v f‖r
p

= sup
ϕ�0

1
‖ũ−1ϕ‖θ ′

sup
f�0

⎛⎜⎜⎜⎜⎝
(

∞
∑

k=1
wr

k

∞
∑

n=k
ϕn

∣∣∣∣ k
∑
i=1

ak,i fi

∣∣∣∣r)
1
r

‖v f‖p

⎞⎟⎟⎟⎟⎠
r

.

Since 0 < r < p < ∞ and p > 1, by Theorem B we have

Cr ≈ sup
ϕ�0

⎛⎝ ∞
∑

n=1

(
∞
∑
j=n

ar
j,nw

r
j

∞
∑
i= j

ϕi

) p
p−r
(

n
∑
i=1

v−p′
i

) p(r−1)
p−r

v−p′
n

⎞⎠
p−r
p

‖ũ−1ϕ‖θ ′

+ sup
ϕ�0

⎛⎝ ∞
∑

n=1

(
∞
∑
j=n

wr
j

∞
∑
i= j

ϕi

) r
p−r
(

n
∑
i=1

ap′
n,iv

−p′
i

) r(p−1)
p−r

wr
n

∞
∑

k=n
ϕk

⎞⎠
p−r
p

‖ũ−1ϕ‖θ ′

= J1 + J2. (13)

Let us estimate J1 . Changing the order of sums, we get the matrix operator

∞

∑
j=n

ar
j,nw

r
j

∞

∑
i= j

ϕi =
∞

∑
i=n

ϕi

i

∑
j=n

ar
j,nw

r
j =

∞

∑
i=n

ãi,nϕi

with the matrix kernel ãi,n =
i

∑
j=n

ar
j,nw

r
j . Applying condition (3), for ãi,n we find that

ãi,n ≈
k

∑
j=n

ar
j,nw

r
j +

i

∑
j=k

ar
j,nw

r
j ≈ ãk,n +

i

∑
j=k

ar
j,kw

r
j +

i

∑
j=k

ar
k,nw

r
j

= ãk,n + ãi,k +ar
k,n

i

∑
j=k

wr
j = ãi,k +ai,k ·ar

k,n +1 · ãk,n, i � k � n � 1, (14)
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where ai,k =
i

∑
j=k

wr
j . Since for i � s � k � 1

ai,k =
i

∑
j=k

wr
j �

s

∑
j=k

wr
j +

i

∑
j=s

wr
j = ai,s +as,k

and

ai,k �
s

∑
j=k

wr
j and ai,k �

i

∑
j=s

wr
j so that ai,k � 1

2

(
ai,s +as,k

)
,

we conclude that
ai,k ≈ ai,s +as,k, i � s � k � 1. (15)

Therefore, the entries of the matrix (ai,k) , satisfying condition (3), belong to O−
1 (see

(9)). Moreover, by Remark 1, assuming that b1,2
k,n = ar

k,n and b0,2
k,n = ãk,n , from (14) we

have that the entries of the matrix (ãi,n) satisfy the condition (10). Thus, they belong
to the class O−

2 .
Since by the assumption 1

θ ′ = 1− 1
θ = 1− r

q = q−r
q and by the condition 0 < r <

p � q < ∞ and p > 1, we have that θ ′ = q
q−r � p

p−r . Hence, taking into account that
ũn = ur

n , by Theorem A we get

J1 = sup
ϕ�0

⎛⎝ ∞
∑

n=1

(
n
∑
i=1

v−p′
i

) p(r−1)
p−r

v−p′
n

(
∞
∑
i=n

ãi,nϕi

) p
p−r

⎞⎠
p−r
p

‖u−rϕ‖ q
q−r

≈ Er
1 ≈ Er

2. (16)

Let us estimate J2 . Setting Bn = wr
n

∞
∑

k=n
ϕk , An =

(
n
∑
i=1

ap′
n,iv

−p′
i

) r(p−1)
p−r

and D
p−r
p

as the numerator of J2 , we obtain

D =
∞

∑
n=1

(
∞

∑
j=n

wr
j

∞

∑
i= j

ϕi

) r
p−r
(

n

∑
i=1

ap′
n,iv

−p′
i

) r(p−1)
p−r

wr
n

∞

∑
k=n

ϕk =
∞

∑
n=1

Bn

(
∞

∑
j=n

B j

) r
p−r

An.

Let

Dm =
m

∑
n=1

Bn

(
m

∑
j=n

B j

) r
p−r

An.

Since the entries an,i � 0 are non-decreasing in n , the sequence {An}n is non-decreasing.
Using this fact, we define ΔAn = An−An−1 , where A0 = 0, and find

Dm =
m

∑
n=1

Bn

(
m

∑
j=n

B j

) r
p−r

An =
m

∑
n=1

⎛⎝ m

∑
k=n

Bk

(
m

∑
j=k

B j

) r
p−r
⎞⎠ΔAn.
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Applying inequality (12) to the last expression, we get

Dm ≈
m

∑
n=1

(
m

∑
k=n

Bk

) p
p−r

ΔAn.

The latter gives that

D = lim
m→∞

Dm ≈
∞

∑
n=1

(
∞

∑
k=n

Bk

) p
p−r

ΔAn.

Changing the order of sums, we find that

∞

∑
k=n

Bk =
∞

∑
k=n

wr
k

∞

∑
j=k

ϕ j =
∞

∑
j=n

ϕ j

j

∑
k=n

wr
k =

∞

∑
j=n

a j,nϕ j,

where the a j,n =
j

∑
k=n

wr
k satisfy the discrete Oinarov condition (see (15)). Therefore,

since θ ′ = q
q−r � p

p−r , by Theorem A2 we get

J2 = sup
ϕ�0

(
∞
∑

n=1
ΔAn

(
∞
∑
j=n

a j,nϕ j

) p
p−r
) p−r

p

‖u−rϕ‖ q
q−r

≈ max{M1,M2}, (17)

where

M1 = sup
k�1

(
k

∑
n=1

ΔAn

) p−r
p
⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
r
q

,

M2 = sup
k�1

⎛⎝ k

∑
n=1

(
k

∑
i=n

wr
i

) p
p−r

ΔAn

⎞⎠
p−r
p ( ∞

∑
j=k

uq
j

) r
q

.

Since
k
∑

n=1
ΔAn = Ak =

(
k
∑
i=1

ap′
k,iv

−p′
i

) r(p−1)
p−r

, we obtain

M1 = sup
k�1

⎛⎜⎝( k

∑
i=1

ap′
k,iv

−p′
i

) r(p−1)
p−r

⎞⎟⎠
p−r
p ⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
r
q

= sup
k�1

(
k

∑
i=1

ap′
k,iv

−p′
i

) r
p′
⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
r
q

= Mr
1. (18)
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Using inequality (12), we get

k

∑
n=1

(
k

∑
i=n

wr
i

) p
p−r

ΔAn ≈
k

∑
n=1

⎛⎝ k

∑
i=n

wr
i

(
k

∑
j=i

wr
j

) r
p−r
⎞⎠ΔAn

=
k

∑
n=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r

An =
k

∑
n=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r
(

n

∑
i=1

ap′
n,iv

−p′
i

) r(p−1)
p−r

.

Replacing the last expression in M2 , we find that M2 ≈Mr
2 . This equivalence and (18),

together with (17), give that

J2 ≈ max{Mr
1,M

r
2}. (19)

Combining (16) and (19) with (13), we complete the proof. �

4. Corollaries

Suppose that

F1 = sup
k�1

⎛⎜⎝ k

∑
n=1

v−p′
n

(
n

∑
i=1

v−p′
i

) p(r−1)
p−r

⎞⎟⎠
p−r
pr ⎛⎝ ∞

∑
j=k

(
j

∑
i=k

ar
i,kw

r
i

) q
r

uq
j

⎞⎠
1
q

,

F2 = sup
k�1

⎛⎜⎝ k

∑
n=1

a
pr

p−r
k,n v−p′

n

(
n

∑
i=1

v−p′
i

) p(r−1)
p−r

⎞⎟⎠
p−r
pr ⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
1
q

,

F3 = sup
k�1

⎛⎜⎝ k

∑
n=1

(
k

∑
i=n

ar
i,nw

r
i

) p
p−r

v−p′
n

(
n

∑
i=1

v−p′
i

) p(r−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

.

Using (14), each of the expressions E1 and E2 can be equivalently splitted into the
sum of three terms E1 ≈ E2 ≈ F1 +F2 +F3 . Therefore, Theorem 1 can be rewritten as
follows.

COROLLARY 1. Let 0 < r < p � q < ∞ and p > 1 . Let (ak,i) be a matrix that
is non-decreasing in k , non-increasing in i , and that satisfies condition (3). Then
inequality (2) holds if and only if FM = max{F1,F2,F3, M1,M2}< ∞ holds. Moreover,
C ≈ FM, where C is the best constant in (2).
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Applying (11) to F1 , it can be modified

F1 ≈ sup
k�1

⎛⎜⎝( k

∑
n=1

v−p′
n

) r(p−1)
p−r

⎞⎟⎠
p−r
pr ⎛⎝ ∞

∑
j=k

(
j

∑
i=k

ar
i,kw

r
i

) q
r

uq
j

⎞⎠
1
q

= sup
k�1

(
k

∑
n=1

v−p′
n

) 1
p′
⎛⎝ ∞

∑
j=k

(
j

∑
i=k

ar
i,kw

r
i

) q
r

uq
j

⎞⎠
1
q

.

In the case when an,i = 1, n � i � 1, we denote F1 , F2 , F3 , M1 and M2 by F̃1 ,
F̃2 , F̃3 , M̃1 and M̃2 , respectively. It is easy to see that

M̃1 = sup
k�1

(
k

∑
n=1

v−p′
n

) 1
p′
⎛⎝ ∞

∑
j=k

(
j

∑
i=k

wr
i

) q
r

uq
j

⎞⎠
1
q

≈ F̃1 = F̃2.

Applying (11), changing the order of sums and then applying (12), we obtain

M̃2 = sup
k�1

⎛⎜⎝ k

∑
n=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r
(

n

∑
i=1

v−p′
i

) r(p−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

≈ sup
k�1

⎛⎜⎝ k

∑
n=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r n

∑
i=1

v−p′
i

(
i

∑
j=1

v−p′
j

) p(r−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

= sup
k�1

⎛⎜⎝ k

∑
n=1

n

∑
i=1

wr
n

(
k

∑
j=n

wr
j

) r
p−r

v−p′
i

(
i

∑
j=1

v−p′
j

) p(r−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

= sup
k�1

⎛⎜⎝ k

∑
i=1

k

∑
n=i

wr
n

(
k

∑
j=n

wr
j

) r
p−r

v−p′
i

(
i

∑
j=1

v−p′
j

) p(r−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

≈ sup
k�1

⎛⎜⎝ k

∑
i=1

(
k

∑
n=i

wr
n

) p
p−r

v−p′
i

(
i

∑
j=1

v−p′
j

) p(r−1)
p−r

⎞⎟⎠
p−r
pr (

∞

∑
j=k

uq
j

) 1
q

= F̃3.

Thus, from Corollary 1 we get one more statement.
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COROLLARY 2. Let 0 < r < p � q < ∞ and p > 1 . Then the inequality

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
k=1

∣∣∣∣∣wk

k

∑
i=1

fi

∣∣∣∣∣
r) q

r
⎞⎠

1
q

� C

(
∞

∑
j=1

|v j f j|p
) 1

p

, ∀ f ∈ lp,v, (20)

holds if and only if M̃ = max{M̃1,M̃2} < ∞ holds. Moreover, C ≈ M̃ , where C is the
best constant in (20).

Corollary 2 completely coincides with the statement of [20, Theorem 2].
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