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PRESERVERS OF CONDITION SPECTRA AND PSEUDO

SPECTRA OF HERMITIAN MATRIX JORDAN PRODUCTS

M. BENDAOUD ∗ , A. BENYOUNESS AND A. CADE

(Communicated by L. Molnár)

Abstract. Let Hn be the real space of n×n complex Hermitian matrices. Complete descriptions
are given of the maps of Hn leaving invariant the pseudo spectral radius or the condition spectral
radius of Jordan product of matrices. As application, maps on Hn that preserve the condition
spectrum of Jordan product of matrices are classified.

1. Introduction

Throughout, Mn will be the algebra of all n×n matrices over the field of complex
numbers C with identity matrix I . For A ∈ Mn we write A∗ for its adjoint, Atr for its
transpose, σ(A) for its spectrum, and ‖A‖ the (spectral) norm of A . For 0 < ε < 1,
the ε -condition spectrum of A is defined by

σε(A) := {z ∈ C : ‖zI−A‖‖(zI−A)−1‖ � ε−1}
with the convention that ‖zI−A‖‖(zI−A)−1‖ = ∞ when zI−A is not invertible, and
is a non empty set, compact, perfect set (no isolated points); see [14]. The ε -condition
spectral radius of A is

rε (A) := sup{|z| : z ∈ σε(A)}.
For ε > 0, the ε -pseudo spectrum of A is given by

Λε(A) := {z ∈ C : ‖(zI−A)−1‖ > ε−1}
with the convention that ‖(zI −A)−1‖ = ∞ if z ∈ σ(A) , and coincides with the set
∪{σ(A+E) : E ∈ Mn,‖E‖ < ε}. The ε -pseudo spectral radius of A is

δε(A) := sup{|z| : z ∈ σε(A)}.
Unlike the spectrum, which is a purely algebraic concept, both the ε -condition spec-
trum and ε -pseudospectrum depend on the norm and contain the usual spectrum as a
subset.
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Recently, general preserver problems with respect to various algebraic operations
on Mn or on operator algebras, attracted a lot of attention of researchers in the fields;
see for instance [2, 6, 7, 9, 10, 13, 15, 17] and the references therein. On the subject
focused on the structures of nonlinear transformations on Mn that respect the condition
spectra or the pseudo spectra of certain algebraic operations, we mention: [8] where the
authors studied mappings on Mn that preserve the pseudo spectrum of different kind of
binary operations on matrices, [11] concerned with the preservers of the pseudo spectra
of the matrix Lie products, [5] treated the preservers of the condition spectra of the
usual matrix products or the Jordan matrix triple products, and [3, 4] general preserver
problems that to do with the corresponding pseudo spectra case are considered.

The aim of this paper is to study maps on Hn , the real space of n× n complex
Hermitian matrices, that preserve the condition spectra or the pseudo spectra of matrix
Jordan products. Complex Hermitian matrices are used to describe different geometries
on Cn , and in particular, they are used to describe all possible unitary geometries on
Cn . More on different geometries can be found in a book by Artin [1]. In the next
section, we characterize map Φ on Hn that preserves the ε -condition spectral radius
of Jordan products in a sense that

rε (Φ(A)Φ(B)+ Φ(B)Φ(A)) = rε(AB+BA) (A,B ∈ Hn).

It is shown that such a map Φ has a nice structure. Precisely, Φ has the form A �→
ξ (A)UAU∗ or T �→ ξ (A)UAtrU∗ for some unitary matrix U ∈ Mn and a (general)
functional ξ from Hn into {−1,1} . As a consequence, we describe mappings on
Hn that preserve the ε -condition spectrum of Jordan product of matrices. We prove
that such transformations are of standard forms up a square root of unity. While the
last section is devoted to the preservers of ε -pseudo spectral radius of matrix Jordan
products of Hermitian matrices. Particularly, the obtained result in Theorem 3 below
leads to pseudo spectral radius version of [10, Theorem 5.1 ] which describes non linear
maps on Hn that are ε -pseudo spectrum preserving.

2. Preservers of condition spectra

In this section, we give the structure of non linear maps on Hn that preserve
the condition spectral radius or the condition spectrum of Jordan product of Hermitian
matrices. First, we fix some notation. The inner product on Cn will be denoted by
〈., .〉 . For x, f ∈ C

n , as usual we denote by x⊗ f the rank at most one matrix in Mn

given by x⊗ f z = 〈z, f 〉x for every column vector z ∈ Cn . We know that all at most
rank one matrices in Mn can written into this form.

Before stating the main results of this section, we collect some lemmas needed in
what follows. The first one summarizes some properties of the condition spectrum; see
[14].

LEMMA 1. For 0 < ε < 1 and A ∈ Mn , the following statements hold.

(i) σε(A) = σ(A) if and only if A is a scalar multiple of the identity.
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(ii) σε(α + βA) = α + β σε(A) for all α,β ∈ C .

(iii) σε(Atr) = σε(A) and σε(UAU∗) = σε(A) for every unitary matrix U ∈ Mn .

In the sequel, for r � 0 and a ∈ C we will denote by D(a,r) the closed disc of
C centered at a and of radius r . The second lemma, quoted from [5], describe the
condition spectra of Hermitian matrices in terms of their usual spectrums.

LEMMA 2. Let 0 < ε < 1 and A ∈ Mn be a Hermitian matrix. Then

σε(A) =
⋃

α ,β∈σ(A)

D

(
α −β ε2

1− ε2 ,
ε|α −β |
1− ε2

)

and

rε(A) = max

( |i(A)− εs(A)|
1− ε

,
|s(A)− εi(A)|

1− ε

)

where i(A) and s(A) denote the infimum and the supremum of σ(A) , respectively.

The third one, established in [12], determines the structure of mappings on Hn

that preserve zero-Jordan product of matrices when restricted to the set of rank one
matrices.

LEMMA 3. Let n � 3 and let φ be a map from Hn into itself. If φ satisfies

φ(A)φ(B)+ φ(B)φ(A) = 0 ⇐⇒ AB+BA = 0 (A,B ∈ Hn),

then there is a functional h : Hn → R \ {0} and a unitary matrix U ∈ Mn such that
either

(i) φ(A) = h(A)UAU∗ for every rank one matrix A ∈ Hn , or

(ii) φ(A) = h(A)UAtrU∗ for every rank one matrix A ∈ Hn .

The next two lemmas may be of independent interest.

LEMMA 4. Let A,B ∈ Mn be Hermitian matrices and λ > 0 . If

|〈Ax,x〉|+ λ ‖Ax‖ = |〈Bx,x〉|+ λ ‖Bx‖ (1)

holds for all unit vector x ∈ Cn , then A = ±B.

Proof. By the equality (1),

(1+ λ ) |〈Ax,x〉| � |〈Ax,x〉|+ λ ‖Ax‖
= |〈Bx,x〉|+ λ ‖Bx‖
� (1+ λ )‖Bx‖
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for every unit vector x ∈ Cn . This together with the fact that A is a Hermitian matrix,
we see that ‖A‖ � ‖B‖ , thus we must have ‖A‖ = ‖B‖ .

Now, by the assumption on A , there is a orthonormal basis f1, . . . , fn of eigenvec-
tors of A ; thus, A = ∑n

k=1 μk fk⊗ fk and A fk = μk fk for k = 1,2, . . . ,n , where μ1, . . . ,μn

are the corresponding eigenvalues with |μ1| � |μ2| � . . . � |μn| whenever i < j . We
have

|〈A f1, f1〉| = ‖A f1‖ = |μ1| = ‖A‖ = ‖B‖ ,

and so by taking into account the equality (1), we have

(1+ λ )‖B‖ = |μ1|+ λ |μ1|
= |〈A f1, f1〉|+ λ ‖A f1‖
= |〈B f1, f1〉|+ λ ‖B f1‖
� |〈B f1, f1〉|+ λ ‖B‖ .

So ‖B‖ � |〈B f1, f1〉| , and thus we must have ‖B‖ = |〈B f1, f1〉| ; which implies that
there exists a scalar η1 with |η1| = ‖B‖ such that B f1 = η1 f1 . Since |η1| = |μ1| , one
gets B f1 = ξ1μ1 f1 where ξ1 =±1. Hence [ f1] , the linear span of f1 , is invariant under
B and B = ξ1μ1I1⊕B1 , where I1 is the identity on [ f1] and B1 is the restriction of B
on ⊕n

k=2[ fk] . Similarly, considering B1 and A1 = ∑n
k=2 μk fk⊗ fk on ⊕n

k=2[ fk] , one gets
that B f2 = ξ2μ2 f2 with ξ2 = ±1. Continuing this process, and by induction, we see
that, for every 1 � k � n , B fk = ξkμk fk with ξk = ±1. We claim that ξk = ξ1 for all
1 � k � n . Assume, to the contrary, that μ1 �= 0 �= μk and ξ1 = 1 but ξk =−1 for some

1 � k � n . Take x =
f1 + fk√

2
, and note that x is a unit vector satisfying ‖Ax‖ = ‖Bx‖ ,

but

|〈Ax,x〉| = |μ1 + μk|
2

�= |μ1 − μk|
2

= |〈Bx,x〉| ;

which contradicts the equality (1). This proves the claim and shows that A = B or
A = −B , as desired. �

LEMMA 5. Let 0 < ε < 1 and A,B ∈ Mn be Hermitian matrices. If

rε(Ax⊗ x+ x⊗ xA) = rε(Bx⊗ x+ x⊗ xB) (2)

holds for all unit vector x ∈ Cn , then A = ±B.

Proof. Let x be an arbitrary unit vector x ∈ Cn , and set RA = Ax⊗ x + x⊗ xA .
Write Ax = αx+βy for some scalars α,β ∈C and a unit vector y∈Cn with 〈x,y〉= 0,
and note that α = 〈Ax,x〉 is a real number since A is Hermitian. Then, with respect to
a suitable orthonormal basis in Cn = [x,y]⊕ [x,y]⊥ ,

RA =
(

2α β
β 0

)
⊕0.
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Clearly, RA is an Hermitian matrix, and so by taking into account Lemma 2, we have

rε (RA) = max

{ |i(RA)− εs(RA)|
1− ε

,
|s(RA)− εi(RA)|

1− ε

}

where i(RA) and s(RA) denote the infimum and the supremum of σ(RA) , respectively.
Straightforward computations give that

s(RA) = α +
√

α2 + |β |2 = 〈Ax,x〉+‖Ax‖ � 0

and

i(RA) = α −
√

α2 + |β |2 = 〈Ax,x〉−‖Ax‖ � 0,

implying that

|i(RA)− εs(RA)| = |(1− ε)〈Ax,x〉− (1+ ε)‖Ax‖|
and

|s(RA)− εi(RA)| = |(1− ε)〈Ax,x〉+(1+ ε)‖Ax‖| .
From this together the fact that

max(|a−b|, |a+b|) = b+ |a|
for any real numbers a,b satisfying |a| � b , we infer that

rε (RA) =
1+ ε
1− ε

‖Ax‖+ |〈Ax,x〉| .

Similarly, considering RB = Bx⊗ x+ x⊗ xB , one gets

rε (RB) =
1+ ε
1− ε

‖B(x)‖+ |〈B(x),x〉| .

Thus, by the equality (2), we have

1+ ε
1− ε

‖A(x)‖+ |〈A(x),x〉| = 1+ ε
1− ε

‖B(x)‖+ |〈B(x),x〉|

for all unit vector x ∈ Cn . Lemma 4 tells us that A = ±B , and the proof is therefore
complete. �

We now have collected all the necessary ingredients and are therefore in a position
to state and prove the main results of this section. The following theorem is one of
the purposes of this paper. It characterizes nonlinear maps on Hn that preserve the
condition spectral radius of Jordan product of matrices.

THEOREM 1. Let n � 3 and 0 < ε < 1 . A map Φ : Hn → Hn satisfies

rε (Φ(A)Φ(B)+ Φ(B)Φ(A)) = rε (AB+BA) (A,B ∈ Hn) (3)

if and only if there is a functional ξ : Hn → {−1,1} and a unitary matrix U ∈ Mn

such that Φ has the form

A �→ ξ (A)UAU∗ or A �→ ξ (A)UAtrU∗.
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Proof. Checking the ‘if’ part is straightforward, so we will only deal with the
‘only if’ part. So assume that Φ satisfices (3). From the first statement of Lemma 1,
the map Φ preserves zero Jordan product of matrices in both directions, i.e., for any
A,B ∈ Hn , Φ(A)Φ(B) + Φ(B)Φ(A) = 0 if and only if AB + BA = 0. Therefore, by
Lemma 3, there is a functional h : Hn → R \ {0} and a unitary matrix U ∈ Mn such
that either

Φ(A) = h(A)UAU∗ or Φ(A) = h(A)UAtrU∗

for all rank one matrix A ∈ Hn . Assume firstly that Φ(A) = h(A)UAU∗ for every rank
one matrix A ∈ Hn . We assert that the map h can be chosen so that

h(A) = ±1

for every A ∈ Hn . Indeed, every rank one Hermitian matrix A can be written as
A = x⊗ x for some nonzero column vector x ∈ Cn , and so

2‖x‖2 rε (x⊗ x) = rε(2(x⊗ x)2) = rε(2Φ(x⊗ x)2) = 2h(x⊗ x)2‖x‖2 rε (x⊗ x)

implying that |h(x⊗ x)| = 1 for every rank one matrix x⊗ x ∈ Hn . Redefine h , if
necessary, by letting h(A) = 1 when A is not of rank one, we get a functional h : Hn →
{−1,1} as asserted.

Set
Ψ(A) = h(A)U∗Φ(A)U

for every A ∈ Hn , and note that

Ψ(x⊗ x) = x⊗ x (4)

for every rank one matrix x⊗ x ∈ Hn .
Now, let us prove that, for every A ∈ Hn , Ψ(A) = �(A)A with �(A) = ±1. To do

so, let A be an arbitrary Hermitian matrix in Hn . Since the map Ψ satisfies (3) and
(4), one gets

rε (Ψ(A)x⊗ x+ x⊗ xΨ(A)) = rε (Ax⊗ x+ x⊗ xA)

for all unit vector x in Cn . As the matrices A and Ψ(A) are Hermitian, Lemma 5
tells us that Ψ(A) = ±A as required. By letting ξ (A) = h(A)�(A) , we get a functional
ξ : Hn →{−1,1} for which the map Φ has the form Φ : A �→ ξ (A)UAU∗ , as desired.

In the remainder case when Φ(A) = h(A)UAtrU∗ for all rank one matrix A ∈ Hn ,
set χ(A) := Φ(Atr) and h′(A) := h(Atr) so that χ(A) = h′(A)UAU∗ for every A∈ Hn .
From Lemma 1, the map χ satisfies (3). Thus, by what has been shown above, the
map h′ can be chosen so that h′(A) = ±1 for every A ∈ Hn ; which yields the desired
conclusion in this case too. The proof of the theorem is therefore complete. �

As a consequence, the following result describes maps on Hn that preserve the
condition spectrum of Jordan product of matrices.

THEOREM 2. Let n � 3 and 0 < ε < 1 . A map Φ : Hn → Hn satisfies

σε(Φ(A)Φ(B)+ Φ(B)Φ(A)) = σε (AB+BA) (A,B ∈ Hn) (5)
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if and only if there is a scalar c ∈ {−1,1} and a unitary matrix U ∈ Mn such that Φ
has the form

A �→ cUAU∗ or A �→ cUAtrU∗.

Proof. The sufficiency condition can be readily checked. To prove the necessity,
assume that Φ satisfies (5), and note that the map Φ preserves the ε -condition spectral
radius of Jordan product of matrices. By Theorem 1, there exist a functional ξ : Hn →
{−1,1} and a unitary matrix U ∈ Mn such that either φ(T ) = ξ (T )UTU∗ or φ(T ) =
ξ (T )UT ∗U∗ for all T ∈ Hn .

Assume firstly that Φ(T ) = ξ (T )UTU∗ for all T ∈ Hn . We claim that

ξ (x⊗ x) = ξ (I) (6)

for all unit vector x ∈ Cn . Fix an arbitrary unit vector x ∈ Cn , and note that, by the
equality (5),

2σε(x⊗ x) = σε((x⊗ x)I + I(x⊗ x))
= σε(Φ(x⊗ x)Φ(I)+ Φ(I)Φ(x⊗ x))
= σε(2ξ (I)ξ (x⊗ x)x⊗ x)
= 2ξ (I)ξ (x⊗ x)σε(x⊗ x).

Using Lemma 2, one gets

σε(x⊗ x) = D

(
1

1− ε2 ,
ε

1− ε2

)
∪D

( −ε2

1− ε2 ,
ε

1− ε2

)
,

and consequently ξ (x⊗ x)ξ (I) = 1. This yields that ξ (x⊗ x) = ξ (I) since ξ (I)2 = 1,
and proves the claim.

Next, let us prove that
ξ (A) = ξ (x⊗ x) (7)

for all A ∈ Hn and all x ∈ Cn . Let A ∈ Hn be an arbitrary matrix, and let x be a fixed
unit vector in Cn . From the proof of Lemma 5, we have

σ(Ax⊗ x+ x⊗ xA)= {0,λ1,λ2},

where λ1 = 〈Ax,x〉+ ‖Ax‖ � 0 and λ2 = 〈Ax,x〉 −‖Ax‖ � 0. Thus, it follows from
Lemma 2 that

σε(Ax⊗ x+ x⊗ xA)=
⋃

α ,β∈{0,λ1,λ2}
D

(
α −β ε2

1− ε2 ,
ε |α −β |
1− ε2

)
. (8)

On the other hand, the third statement of Lemma 1 together with (5) yields that

ξ (A)ξ (x⊗ x)σε(Ax⊗ x+ x⊗ xA))= σε (Ax⊗ x+ x⊗ xA).
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From this together with the above equality (8), we infer that ξ (A)ξ (x⊗ x) = 1, and
consequently ξ (A) = ξ (x⊗ x) since ξ (x⊗ x)2 = 1. By combining (6) and (7), we ob-
tain ξ (A) = ξ (I) for all A ∈ Hn , and thus, by letting c = ξ (I) , the desired conclusion
in the theorem follows in the case when Φ has the first form.

In the remainder case when Φ has the form Φ : A �→ ξ (A)UAtrU∗ , set χ(A) :=
Φ(Atr) and ξ ′(A) := ξ (Atr) so that χ(A) = ξ ′(A)UAU∗ for every A ∈ Hn , and note
that the map χ satisfies (5). Thus, by what has been shown above, ξ ′(A) = ξ ′(I) for
every A ∈ Hn . This chows that Φ has the asserted form described in the theorem in
this case too, and achieves the proof. �

3. Preservers of pseudo spectra

In this section, we characterize pseudo spectral radius preservers of Jordan product
of any pair of Hermitian matrices. The following theorem is one of the purposes of this
paper. It extends [10, Theorem 5.1 ].

THEOREM 3. Let n � 3 and ε > 0 . A map Φ : Hn → Hn satisfies

δε(Φ(A)Φ(B)+ Φ(B)Φ(A)) = δε (AB+BA) (A,B ∈ Hn) (9)

if and only if there is a functional ξ : Hn → {−1,1} and a unitary matrix U ∈ Mn

such that Φ has the form

A �→ ξ (A)UAU∗ or A �→ ξ (A)UAtrU∗.

Before proving this result, we provide some lemmas needed in the sequel. The
first one gives some pseudo spectral properties of matrices; see [16].

LEMMA 6. For ε > 0 and A ∈ Mn , the following statements hold.

(i) Λε(Atr) = Λε(A) and Λε(UAU∗) = Λε(A) for every unitary matrix U ∈ Mn .

(ii) If A is Hermitian, then Λε(A) = σ(A)+D(0,ε) and δε (A) = ‖A‖+ ε .

The second one, quoted from [10, Proposition 2.5], identifies the ε -pseudo spec-
tral radius of rank one matrices.

LEMMA 7. Let ε > 0 and x, f ∈ Cn be arbitrary. Then

δε (x⊗ f ) =
1
2
(
√
|〈x, f 〉|2 +4ε2 +4ε‖x‖‖ f‖+ |〈x, f 〉|).

The third lemma, proved in [3], characterizes zero matrix through their pseudo
spectral properties.

LEMMA 8. Let A ∈ Mn be a matrix. Then δε(A) = ε if and only if A = 0 .

The next one gives the pseudo spectral radius version of Lemma 5.
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LEMMA 9. Let ε > 0 and A,B ∈ Mn be Hermitian matrices. If

δε(Ax⊗ x+ x⊗ xA) = δε(Bx⊗ x+ x⊗ xB) (10)

holds for all unit vector x ∈ Cn , then A = ±B.

Proof. Let x be an arbitrary unit vector x ∈ Cn . Similar argument as the one
given in the beginning of the proof of Lemma 5, allows to get σ(Ax⊗ x + x⊗ xA) =
{0,λ1,λ2} , where λ1 = 〈Ax,x〉+‖Ax‖ � 0 and λ2 = 〈Ax,x〉−‖Ax‖ � 0. Since Ax⊗
x+ x⊗ xA is a Hermitian matrix, the second statement of Lemma 6 tells us that

σε(Ax⊗ x+ x⊗ xA)= D(0,ε)∪D(λ1,ε)∪D(λ2,ε);

which implies that

δε(Ax⊗ x+ x⊗ xA) = max(|λ1| , |λ2|)+ ε

=

{
‖Ax‖+ 〈Ax,x〉+ ε, if〈Ax,x〉 � 0

‖Ax‖−〈Ax,x〉+ ε, if〈Ax,x〉 � 0

= ‖Ax‖+ |〈Ax,x〉|+ ε.

Similarly, δε (Bx⊗ x+ x⊗ xB)= ‖Ax‖+ |〈Bx,x〉|+ ε . Thus, by (10),

‖Ax‖+ |〈Ax,x〉| = ‖Bx‖+ |〈Bx,x〉|

for all unit vector x ∈ Cn , and so, from Lemma 4, A = ±B as desired. �

We are now ready to prove the main result of this section.

Proof of Theorem 3. We only need to check the necessity condition. So as-
sume that Φ satisfies (9), and note that, by Lemma 8, the map Φ preserves zero
Jordan product of matrices in both directions. Therefore, by Lemma 3, there is a
functional h : Hn → R \ {0} an a unitary matrix U ∈ Mn such that either Φ(A) =
h(A)UAU∗ or Φ(A) = h(A)UAtrU∗ for all rank one matrix A ∈ Hn .

Assume firstly that Φ(A) = h(A)UAU∗ for every rank one matrix A ∈ Hn . We
claim that the map h can be chosen so that h(A) = ±1 for all A ∈ Hn . Observe that,
for every x ∈ Cn , we have, by (9),

δε(2‖x‖2 x⊗ x) = δε(2(x⊗ x)2) = δε(2Φ(x⊗ x)2) = δε(2ξ (x⊗ x)2‖x‖2 x⊗ x).

Using Lemma 7, one gets

2‖x‖4 + ε = 2 |ξ (x⊗ x)|2 ‖x‖4 + ε;

which shows that |h(x⊗ x)| = 1 for every rank one matrix x⊗ x ∈ Hn . Redefine h , if
necessary, by letting h(A) = 1 when A is not of rank one, we get a functional h : Hn →
{−1,1} as claimed.
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Set Ψ(A) := h(A)U∗Φ(A)U for every A ∈ Hn , and note that the map Ψ satisfies
(9) and Ψ(x⊗ x) = x⊗ x for every x ∈ Cn . Therefore, for every A ∈ Hn ,

δε(Ψ(A)x⊗ x+ x⊗ xΨ(A)) = δε(Ax⊗ x+ x⊗ xA)

for all unit vector in C
n , and consequently, by Lemma 9, Ψ(A) = ±A for all A ∈ Hn .

Now, by inspecting the end of the proof of Theorem 1, with no extra efforts, one can
see that same approach used there allows to get that the map Φ has the desired form;
which achieves the proof. �

4. Concluding remarks

We end this papper by the following remarks.

(a) We believe that our main results remains true in the case of 2× 2 matrices. It
would be nice to prove or disprove our conjecture.

(b) Our approach in this paper works for the space of complex Hermitian matrices
setting. The following natural problem, concerning the general C∗ -algebra set-
ting, suggests itself.

PROBLEM. Can the real space Hn be replaced by the set of self-adjoint element
of a general C∗ -algebra in Theorems 1, 2 and 3 of this paper?
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