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DUALITY OF GENERALIZED HARDY AND BMO SPACES ASSOCIATED
WITH SINGULAR PARTIAL DIFFERENTIAL OPERATOR

A. GHANDOURI, H. MEJJAOLI AND S. OMRI

(Communicated by V. V. Peller)

Abstract. First we define and study the generalized bounded mean ossilation space Bmo as-
sociated with the Riemann-Liouville operator %, . Next we prove the duality between Bmog,
and the genralized Hardy space H!, associated with %y, .

1. Introduction

The theory of Hardy spaces H” (R") plays a very important role in harmonic anal-
ysis and operator theory and it’s shown that it has many interesting applications in
different fields. These spaces were studied and developed by of C. Fefferman, E. M.
Stein [1 1], R. Coifman and G. Weiss [9]. There are many equivalent definitions of these
spaces HP(R™) either by using the Poisson maximal function or by using the atomic
decomposition or also by mean of Littlewood-Paley g-function [20]. In [1], the authors
introduced the Riemann-Liouville operator and defined the generalized Hardy spaces
H?, connected with. They showed mainely the equivalence between the maximal func-
tion and the atomic decomposition definitions. The bounded mean oscillation spaces
in the Euclidean setting emerged in the sixties and played a central role in both of har-
monic analysis and partial differential equations. It’s shown by Fefferman and Stein
[11] that in the Euclidean case the BMO space is the dual of the Hardy space H' (R").

In [5], Baccar, Ben Hamadi and Rachdi have considered the singular partial dif-
ferential operators defined by

0
A=y
2> 2a+19 9?
= — S — . oo >
Ay 972 o o (r,x) €]0,+oo[xR, o >0

and they associated to A; and A, the following integral transform %, called the
Riemann-Liouville operator defined on %, (R?) (The space of continuous functions on
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R2, even with respect to the first Variable), by

—//f V12 x+m)(1—)% 11— )% Ldrds, if o0 > 0,

Ko (f)(r,x) =
d .
/ fr\/l—t2x+rt ifo=0.
(1- )
The Riemann-Liouville operator %, generalizes the spherical mean operator given by
2
Ro(f)(rx) = =— f(rsin®,x+rcos0)do,

21 Jo
which plays an important role in image processing of the so-called synthetic aperture
radar (SAR) data and in the linearized inverse scattering problem in acoustics as well as
in the interpretation of many physical phenomena in quantum mechanics. [10, 12, 13].

According to [5], the Fourier transform .%, associated with the Riemann-Liouville
operator is defined by

V(sy) €Y, Fulf)(s,y) = /O - /R F(r.) % (cos(s.)e™™) (1)

r2a+1

20T (o +1)V21
for a suitable integrable function, where Y is a set that will be defined later.

Many harmonic analysis results have been already proved by Baccar, Ben Hamadi,
Rachdi, Rouz and Omri for the Riemann-Liouville operator and its Fourier transform
[3, 4, 5, 6, 7, 17]. Hleili, Mejjaoli, Omri and Rachdi have also established several
uncertainty principles for the same Fourier transform %, [14, 16, 18, 19].

Our purpose in this paper is to define and to study the bounded mean oscillation
space Bmo, associated with the Riemann-Liouville operator %, and to prove that
Bmoy, coincides with the dual of the genralized Hardy space #J,.

The paper is organized as follows. In the second section we give some classical
harmonic analysis results related to the Riemann-Liouville operator, the third section is
devoted to the characterization of the Hardy and BMO spaces related to %, by using its
Poisson maximal function. In the last section we introduce the atomic decomposition
which will allow us to characterize the space H/, and to prove the main result of this
work that is the duality between Hardy and BMO spaces.

drdx,

2. Riemann-Liouville operator

In this section we give and develop some harmonic analysis results related to the
Riemann-Liouville operator that we will use later. All theses results are well known
and for more details about their proofs and globaly about the harmonic analysis related
to the operator %, , we refere the reader to [5, 7, 17].

In [5], Baccar, Ben Hamadi and Rachdi considered the following system

Aqu= —idu(r,x)
Dou = —p?u(r;x)
u(0,0)=1, 34(0,x),Vx € R
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and showed that for all (u,A), this system admits a unique infinitely differentiable

solution given by
Pua (nX) = ja(ry/ 12 +22)e™™,

where j, is the modified Bessel function of first kind and index «, see [15, 22].
The function ¢y, ; is bounded on [0, +eo[xR if and only if (u,4) belongs to the
set
Y =R>U {(irx), (rx) € R?, |r] < lx[}.

In this case we have

up | (13)| = 1.
(r,x)eR?

We introduce the following notations

e Vv, the measure defined on [0,+oo[xR by

r2o¢+1
dvy(r,x) = —————drdx.
a(r%) 20T (o +1)\/21

o [7(dvy), p € [1,42], is the Lebesgue space of all measurable functions f on
[0,4-co[xR such that || f|| v, < +e°, where

- >
I ([ Luearavto)" peit =
PVa —

esssup |f(rx)], if p = oo.
(rx)€[0,+eo[ xR

° Lloc(d V) the space of measurable functions on [0, +eo[ xR that are locally inte-
grable on [0, +oo[ xR with respect to the measure V.

According to [2], the eigenfunction @, ; satisfies the following product formula

l T
Ou i (nx)Qu 2 (s,y) = \/_;O(‘;_i_) I / <(p#7,1(\/r2 + 524 2rscos 67x+y)> sin’* 0d6.

This allows us to define the translation operators as follows.

DEFINITION 2.1. Forevery (r,x) € [0,+eo[xR, the translation operator 7(,.,) as-
sociated with the operator %y, is defined on L' (dvg) by, for all (s,y) € [0, +oo[xR,

T(a+1)
VAT (a+ %)

whenever the integral an the right hand side is well defined.

T () (5,y) = / F(Vr2+ 2+ 2rscos 0,x+y) sin®* 040,
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PROPOSITION 2.2. Let f bein L'(dvy), then for all (r,x) € [0, +o[ xR, we have

/o+w/RT(r.,x)(f)(S,y)dva(sJ) = /()JFN/RJC(S»y)dVO‘(S’y)'

PROPOSITION 2.3. Forevery f € LP(dvy), 1 < p < oo, and for every (r,x) €
[0, +eo[ xR, the function T, (f) belongs to LP(dVy) and we have

1700 ()l pve < 1l povar- 2.1)

DEFINITION 2.4. The convolution product of two measurable functions f and g
on [0, 4oo[xR is defined by

~-o0
et = [ [ T g(D3)ssdva(s.), V() € [0, e[xER,
where f(s,y) = f(s,—y), whenever the integral an the right hand side is well defined.

THEOREM 2.5. If p,q,r € [1,+e| are such that %—i— 1= %—I— é then, for every
Sunction f € LP(dvy) and g € LY(dvy,), f*g belongs to L' (dvy) and we have the
Young’s inequality

1 8llrave < 11l p.vel8llg.ve-

DEFINITION 2.6. The Fourier transform .%,, associated with the operator %, is
defined for every integrable function f on [0, 4+eo[xR with respect to the measure vy,
by

Jroo
VA €Y, FulNA) = [ [ 00 (rx)ava(rn).
PROPOSITION 2.7.
(i) Let f € L'(dvy) and (r,x) € [0,+oo[xR we have
V(.LL,)L) €Y, ya(lr(r,—x)(f))(uvk) = %,}L(hx)ya(f)(#vl)
(ii) Let f,g € L'(dVy), then we have

In the following we denote by
e Y, the subspace of Y given by

Yo =[0,+eo[xRU{(ir,x), (rx) € [0,+eo[xR[0 < r < |x[}.
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e By, the o—algebra defined on Y| by
By, = {67 !(B),B € Bor([0,+c0[xR)},

where Bor([0,4oo[xR)} is the usual Borel 6— algebra on [0,+co[xR and 0 is
the bijective function defined by

0: Y‘+ — [0,+°°[XR
(H.A) — (VIZ+ A2,2).
® 7, the mesure defined on By, by

Ya(A) = va(6(A)), VA € By, .

o [7(dYy),p € [1,+o0] is the Lebesgue space on Y with respect to the measure
Yo equipped with the L” -norm denoted by ||.||,.y, , Where

(/}r+ f(u,Ml”dm(u,A)) g . ifpe[l,+oof

ess sup |f (1, A)], if p = oo,
(W,A)eY

1A llpve =

o .7,(R?) the space of infinitely differentiable functions on R?, rapidly decreass-
ing together with all their derivatives, even with respect the first variable. The
space .7,(R?) is equipped with the topology associated to the following count-
able family of normes

VmeN, pu(@)= sup (1+r+x")DP(¢)(rx)].
(r.x,)ci[‘(;‘#:o[xR

e 7,(R?) the space of infinitely differentiable functions on R? with compact sup-
port, even with respect the first variable.

THEOREM 2.8. (Inversion formula for .%,) Let f € L'(dvy) such that Fo(f)
belongs to L' (dYy). Then for almost every (r,x) € [0,+oo[xR, we have

162 = [ [ Falr)@un . 2).

THEOREM 2.9. (Plancherel’s theorem) The Fourier transform %, can be ex-
tended to an isometric isomorphism from L*(dvy) onto L*(dyy).
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3. Generalized *Bmo and Hardy spaces associated with the
Riemann-Liouville operator

We introduce the following notations
e A cube of [0, +[xR denotes a subset of [0, +oo[xR of the form
0 = [ao,bo] X |ay,b1],
where bg —ag=by —a; =L >0.

e ( the set of cubes of [0, +oo[xR.

DEFINITION 3.1. Let f € L} (dvy) and Q € C. The average of the function f
on Q is defined by

Avg(f /f 1,x)d Ve (r,x).

DEFINITION 3.2. (Bmog space) Let f € L} (dvy). The function f is said to
be of bounded mean oscillation if f satisfies

||fH Bmog — SUP
oec Vol

5 /Q 70) = Ave( Va0 < o

We designate by Bmo,, the set of all bounded mean oscillation functions f € Lllac(d Vo).

REMARK 3.3. We can easily see that, the map f —— || f||smo, i a semi-norm
on Bmoy, .

PROPOSITION 3.4. L*(dvy) C Bmog and for every function f € L”(dvy), we
have

1Al Bmoo < 2[1flee, v (3.1

Proof. 1t is obvious that L™ (dVey) C L}, (dve). Let f € L*(d V), then for every
Q € C, we have

a0 Ly~ Averidvelr) < o [ 1 va(n) v

1
TG o v )
<2fll-a:

Consequently
I fllmoq <201 flleoe- O
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LEMMA 3.5. Let f € L} (dvy). If there exists A > 0 such that for every cube

loc

Q € C there exists cg such that

1 /
r,x) —coldvey(r,x) <A.
7 Jo 0~ colava(rn)
Then f € Bmog and || f||smoe, < 24A.

Proof. Let K C [0,+co[xR be a compact and Qk € C such that K C Qk then
JU0)ldva(r0) < [ 17(0:3) = colava(r) + [ [eoglavalr)

< [ 17(r0) = coyldverx) +cocva(K)

Ok
< AVa(0x) + o va(K)
< oo,
Then f € L} (dvy).

loc

|f(rx) — Aggfl < |f(rx) —col + \Aggf— col

< |f(r,x)—cQ\+

1
W/Qf(nx)—chva(r,x)

1
<100 el + 3 /Q £ (%) — coldve (1)
< |f(r,x) _CQ‘ +A

Then
1
Va (Q)

Consequently

1
Vo (Q)

1700~ Ave flava(©) < — [ [7(53) — coldva(r) +4.
0 0 0

1flBmog SA+A=24. O

PROPOSITION 3.6. Let f € Bmoy. Then || f||wmo, =0 if and only if f is con-
stant.

Proof. Let f € L}, (dvy). Itis clear that if f = c we have || f||mo, = 0.
Conversely if || f||@mo, = 0, then

VO EC, |f — Avgf| =0.
(9]

In particular, for every N € N*, we have

If= Avg f]=0.
[0,N]x[~N,N]
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This implies that for all N € N* and (r,x) € [0,N] x [-N,N], we have

f(r7x) =CN,

where cy =  Avg  f. Also forevery N € N,
[0,N]x[-N,N]|

[0,N] x [-N,N] C[0O,N+1] x [-N—1,N+1].
Then ¢y = cy+1. This implies that f is constant. [

THEOREM 3.7. For every f € Bmoy the function |f| belongs to Bmoy and we
have

|HfH“Bm0a < 2Hf||€3maa~

Proof. Let f € Bmoy and Q €C.
Y(rx) € 0,

1f(rox)| — Ave || < || (rx)| — | Ave f]| + IAngI—Ang‘
0 0 0 0

N

1
@) Jy v (s)

[f(nx)| —[Ave f]| + |[Avg f] —
0 0

N

01 ave | + oo |1 Ave 1) ldva(r)

1
<|lrtr0l - laver] + 0 |1averi =116l avats.)

<1 —Avefl+ oo | IAve — flsldvas )

Then

5 'frx ~Avelfdvalrn) < o [ 1700~ v fldve(re)

V

#Q / 050~ Ave fldva ).

T Ve@)

This implies that
H|f|||%maa <2 ”fH%moa' U

PROPOSITION 3.8. Let f and g € *Bmoy. Then we have

(i) If [ and g are two real-valued functions then max(f,g) € Bmoy and we have

3
Hmax(fag)H%moa < E(H.f”%maa + ||g||23m0a)~ (32)
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(ii) If [ and g are two real-valued functions then min(f,g) € Bmoy and we have

. 3
||m1n(fag)||‘3m()a < E(HfH‘Bm()a + HgH%m()a)' (33)

Proof. Let f and g be two real functions belonging to the space Bmoy, .

(i) We know that max(f,g) = H%lf_g‘. Using Remark 3.3 and Theorem 3.7, we

obtain

f+g+lf—g

”max(fvg)H%moa — ' %

Bmoy

1
E(Hf"‘g”%maa'i' |Hf g|||%maa)
1
E(Hfu%moa + HgH%mOa +2[f - g”%maa)
3

(”fH%mOa + HgH%mOa)

(ii) We know that min(f,g) = Hg%‘f_g'. Using Remark 3.3 and Theorem 3.7, we

l

obtain
Imin(7.) s, = | ~EH=E
Bmog
< 517+ &llmmoq + I1F ~ &ll5m0,)
< 51 Nasmoq + gl B+ 2117~ &ll o)
< (Ul + 8l O

DEFINITION 3.9. For every ¢ > 0, the Poisson kernel p; associated with the
Riemann-Liouville operator %y, is defined on R? by

Pt(";x)://T e’ S2+2y2¢s,y(rax)d7a(5a}’)
+

= F, (e V2 (1 x).

DEFINITION 3.10. (Bounded distribution) Let v € .%/(R?). We say that v is a
bounded tempered distribution if
Vo € S(R?), @ xv e L™ (dvy)
and if the operator
9 So(R?) — L7(dVe)

QO QxVv

is bounded.
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DEFINITION 3.11. Let f € .#/(R?) be a bounded tempered distribution. The
Poisson maximal function 73!‘2‘ associated with the Riemann-Liouville operator R, is

defined on R? by

Py (rx) = sup|p; = f(r.x)].
>0

DEFINITION 3.12. (Hardy space) For every p € [1,+<o[, the Hardy space Hb,
associated with the Riemann- Liouville operator is the space of all the bounded tem-
pered distributions f on R? satisfying

PY € LP(dva).

We set
1112z, = IPF 1 p.ver- (3.4)

DEFINITION 3.13. (Atomic Decomposition ) A function f is called an L™ -atom
of HL,, if there exists a cube Q € C satisfying

(i) Supp(f)CQ.

(i) [ fllove < kg
(iii) / f(x,r)dve (x,r) = 0.
4

DEFINITION 3.14. A function f € L!'(dvy) belongs to the set H%o™ if there
exists a sequence {A;};cy € I'(N) and a sequence {fi}ien of L™-atom of H/} such
that

Jroo
f= Elifi € Ll(dva)-
i=1
We set
+°° oo

+
||fHHz&mmic = inf{ 2 A f = Elifi where {4;};eny € I(N) and
=1

i =
{fi}ien L™-atom for H, }

We have recently established that

PROPOSITION 3.15. There exists a constant C >0 such that for every f € L' (dvg)
we have

1
g, < W lgome < Cllf g (3.5)

Proof. [1] O
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4. Duality between H%°™¢ and Bmo

e For any normed C-vector space E, we denote by E* its topological dual. E* be
provided with the dual topology associated to the norm defined by

VfeE", |flle—c= sup |f(x)].

xXe
[l =1
e Forevery Q € C, we denote by

- Lé(d Vo) the space of functions f € L?>(dv,,) with supporton Q.
— L y(dvy) the space of functions f € L (dvy) such that Avg f = 0.
: 0

PROPOSITION 4.1. H&omic C [1(dvy) and we have

Hf”l.,va < ZHf”Htgomir.

Proof. Let f € H¥o™¢ we can find a sequence {4;};cy and a sequence {fi}ien
of L*-atom of H}, such that

oo
2 |A’l| < 2||fHHz&Iomic.
J=1

We have

o0
[ (rx)| = X Aifi(r.x)|
j=1
o0
SOWHIVIGE]
j=1

T

<
j=1 V(X(Ql')

S

20:(1,X).
Then

1/

1,vg S 2 ‘Al| S 2||fHH‘(‘Xm"”“" ‘:l
J=1

In the following we denote by H(IL « the vector space of all finite linear combina-
tions of L™ -atom of H,.

PROPOSITION 4.2. Let b € Bmoy, and @y, the mapping defined by
q)b ZH(lla —C

f»—>/O+N/Rf(nx)b(nx)dva(r,x).

Then @ € (Hj )"
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Proof. Forevrey g € H(l)_ o » there exists m € N such that
V(r,x) € [0,4o[xR, g(rx)= Elg,rx

where for every 1 <i<m, A; € C and g; is a L -atom for H}x. For every ¢ € C and
b € Bmoy, , we have

Dyic(g) :/O+N/Rg(r,x)(b(r,x)+c)dva(r7x)
/*‘X’/ iligi(r,x)(b(r,x)+c)dva(r,x)

il, </+m/g, 1,x)b(r,x)d Ve (r,x) +c/ gi(rx dva(rx)>

—

/gl 1,X)b(r,x)d Ve (r,x)

2h)
/ / b(r,x)dvy(r,x)
Dy(g)-

Therefore
Vg € Hi oo Ppic(g) = Pi(g). (4.1)

Let f € Héﬂ and Q € C such that Supp(f) C Q. Using the Relation (4.1), we obtain
Vb € Bmog, |Pp(f)|=[Pp-aveys(f)]

<[ L0l - Aveplava(ry
= [ 1) b0:x) — Aveblavar)
Q Q

<1l /Q (1.0) - Aveblava(r.)

<[ flleo,ve Va (@)Dl B1mog
:CHbH%moa
< oo,

Then @, is well defined. Moreover, it is clear that @, is linear, since |®@p(f)] <
C||b||Bmo, » we deduce that @, is bounded. [

PROPOSITION 4.3. Let b € L”(dvy) and ®, the mapping defined by
q)b :Hc&mmic - C

f»—>/O+N/Rf(nx)b(nx)dva(r,x).
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Then @), € (H&omic)*,

Proof. The linearity of @, is obvious. In addition, we use the Remark 3.4, we
deduce that for any f € H%o™i¢ we have

@u(nl< [ [ 17l dvat

[1Bllew,vec[L£111,0x

<
< 20 g

Therefore

1©p || gggomic . < [[Dlleove- B

LEMMA 4.4. Let f € Bmoy be a real-valued function and K,L € R such that
K < L. We define the function fxr, on [0,4o[xR by

fxr = max(K,min(f,L)).

Then
9
HfKLH%m()a < Z”fH%moow (42)

Proof. Let f € Bmoy be the real-valued function and K,L € R such that k < L.
It is clear that

Sfxr = max(K,min(f,L)).

Using Relations (3.2) and (3.3) and the Proposition 3.6, we obtain

| fxLl|Bmo,, = || max(K,min(f,L))|Bmo,

3 .
< 5 (”K”‘Bmoa + H mln(faL)”‘Bm()a)
3. .
= EHmln(f7L)H%m()a
3/3
< (=L mo, mo,
3 (GO0 + 1))

9
== mog- I
LEMMA 4.5. There exists a constant C such that for every b € L™ (dvy,), we have

H¢hHH?XIO””‘L‘*}C < C”b”‘Bmoaa (4.3)

where @y, is the function defined in Proposition 4.3.



118 A. GHANDOURI, H. MEJJAOLI AND S. OMRI

Proof. Let f € H4o™<  then there exist a sequence (A4)reny of C and a sequence
(fo, Jken of L™ -atom for HY, supported respectively in Oy such that

~+oo
=2 fo,-
k=1
Using the the Proposition 4.1, we have

I - | A6V (0] < [ | - L1 idva )

1Bl ve £ 11, ve
2||b||°°,\/aHf||Hc&wmic
< oo,

<
<

Thus we use the term by term Integration Theorem, we obtain

@ (0= [ [ raptavatr

= Z?Lk/ fo (rnx)b(r,x)dve(r,x)

- kz?tk |, Forlr0)b(r) ~ Avebave

+oo
=S Al foulleve /Q (b(r,x) — Aveb)dve (r,x)
k=1 k

Ok

too
< D 1Al l1Bllmoq
k=1

<2 g Bl mog-
Thus
Hq)bHH/&mmic_}(c < 2||b||%m0a. D

THEOREM 4.6. For every b € Bmog, the linear form ®y, extends to a continuous
linear form ®;, on HA™M<. Moreover, there exists C > 0 such that

H&)wagvmifﬁc <D Bmog -

Proof. Let b € Bmoy, M € N and by = max(—M,min(|b|,M)). Then, by €
L*(dvg) and ||by|e,v, < M. Moreover, we use the Theorem 3.7 ainsi and the Relation
(4.2), we have

HbM”‘Bmoa S H|b|H%m0a X ||b||‘Bm()a (44)
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Moreover, by using Relations (4.3) and (4.4) we deduce that
9C
VM S N, ||q)bM||H‘&mmiC_>(C < C”bMH%moa < 7||b||%M()a'

This implies that the sequence (®p,,)yen belongs to the ball B(0, % |[b||smo,) of
(H&omic)* which is compact from the Banch-Alaoglu-Bourbaki theorem in the weak*
topology. Then, there exists a subsequence (CI)bp o) )men such that

VfeHGME, Tim @y (f) = Dy(f)- (4.5)

M—+o00

Let fp be a L~ -atom for HY, and Q € C such that Supp(fp) C Q. Then we have

4, (o) ~ Dol fo)] = \ | Folrx)bpun (r)ave(rx) — [ folrob(rx)ava(r)

= ‘/Qfg(r,x) (bp(M)(r,x) —b(r,x))dva(r,x)
< N follove /Q by ar) (1) — (1, )| Ve (1, ).

However

ME}I}FN/ |b —b(r,x)|dve(r,x) = 0.
Then
Jim 1@y, (o)~ @y(fo)| =
As aresult,

Vg€ Hig, Jim @y, (2) =Po(g)- (4.6)
Thus by combining the Relations (4.5) and (4.6), we deduce that
Vg € Hp g0 () = Pp(g).

In the other hand, we know that H(l)_ o= Hg{”’m"‘, therefore &)b is the only extension of
®@;, on ‘H4omic  Using the Relation (4.4) we obtain

Mli{lloo”q)bp(M) ||Hc&tumic_>(c < EHbH‘Bmoa

Consequently _
||q)b||7-(ggvmicg<c < CdeH%mOa' O

PROPOSITION 4.7. Let Q € C and u € L}, (dVy) such that Supp(u) C Q. If for
every v € L2Q(dva) we have

/ u(r,x)v(r,x)dvy(r,x) = 0. 4.7)
9]

Then u=20 a.e.
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Proof. Let u € L}, (dvy) and Q € C such Supp(u) C Q. It is clear that u €
L' (dvg).
Let (u,A4) € [0,+o0[xR and v, 3 the function defined on [0, +eo[xR by
v (1:%) = ua () x0(r,x).
We have

1
2
Iiloe = ( / (%,Mr,x))zdva(r,x))
< s 9ua(n0)VvalQ)
(rx)€[0,+eo[ xR
Voc(Q)-
Then vy, 5 € L (dVe). Which implies that
o0
Falw@A) = [ [ ur00u2(n0)dva(r)
/ 1,X) @y 2 (r,x)d Ve (1, x)

/ u(r,x)vy 5 (r,x)dve (r,x)
=0.

Thus by using the Inversion formula we deduce that u =0 a.e. [

COROLLARY 4.8. Let Q € C and u € L}, (dVy) such that Supp(u) C Q. If for
every v € LO’Q(dva), we have

/ u(r,x)v(r,x)dvy(r,x) = 0. (4.8)
(@)
Then u is constant a.e.

Proof. Let v e LZQ(dva) and o, the function defined on [0, 4| xR by

,(r,x) = v(r,x) — Avgv,
0

it is clear that @, € LZQ(dva). Moreover, we have
/ @, (r,x)d Ve (r,x) = / v(r,x) — Avgvd vy (r,x)
Q Q Q

:/ v(r,x)d Ve (r,x) — Vo (Q) Avgy
0 0

=0.
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Then
w, € L&Q(dva).

Using the Relation (4.8) we deduce that

/ @, (r,x)u(r,x)dvy(r,x) =0,
o

since
/cov r,x)u(r,x)dve (r,x) /V (r,x)dve (r,x) — AVgV/ u(r,x)dve(r,x)
0 o
/ (r,x)d Ve (1, x) — Avgu/ v(r,x)d Ve (r,x)
0 9]
—/ v(r,x) —Avgu | dvy(rx).
o
We get

/ v(r,x) (u(r,x) - Avgu> dve(r,x) =0.
0 0

Then by using Proposition 4.7 we deduce that

u—Avgu =0 ae.
0

Consequently

u=Avgu ae. [
Q

PROPOSITION 4.9. For every Q € C, LzQ(dva) C Homi¢ qnd there exists ¢ > 0
such that for every f € LzQ(dva)

1f | ygomic < e7/va(Q) (4.9)

THEOREM 4.10. Let ® be a continuous linear form on H&™ . Then there exists
b € Bmoy, and a constant C > 0 such that

Vf € Hp o @(f) = Dp(f),

and
15l Bmog < Cll P 3ggomic -

Proof. Let @ be a continuous linear form on H‘&’"mic and Q € C. Then, we use
the Relation (4.9), we deduce that for every f € L&Q(a’ V) not identically null, we have

(/)]

H@”Htltoml(‘_)(:||fHHalomtc

Cy/ Va Hq)”?_‘zgomir

<
<
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Consequently
H‘D”L(Z)‘Q(dva)_)(c < C/ Va(Q)Hq)HHc&tumicH(c. (410)

Thus, ® est a bounded linear function on L(%.Q(d Vi) which is a Hilbert space, therefore
using the Riesz representation theorem, we deduce that there exists a unique function
F9 € L§ ,(dve) such that

¥ € L3 gdve), ®(F) = | FOR0f(x)dva (1)
' o
and
1F2l.a < 19l 13 ave)—c- (4.11)

Moreover, such as Avg f = 0, we deduce that for every ¢ € C, we have
(9]

/ (FO(r,x) + ) f (1, x)d Ve (1) = / FO(r,x) £ (1, x)dVee (1, ).
0 o

Let Q' € C such that Q C Q'. Then, in view of the above, we know that there exists
F¢ € L§ ;(dVq) such that

Wf € L g (@va), O(f) = | O (x) (rx)dva(rx).

In particular
Vf € 13 o(dve), D(f) = /Q FO (1) £ (1, x)dVe (1,%).

Then
Vf € 13 o(dve), /Q (F2 (rx) = F2(r)) Frx)ave () = 0.

Using the Corollary 4.8, we obtain that F' @ _ FQ isaconstanton Q. Forevery m € N*,
Let O, = [0,m] x [—m,m]. Let b the function defined on [0,+[xR by

Y(r,x) € O, b(r,x) = F2n (r,x) — Avg Fom.
01
We will show now in the following that the value b does not depend of m and therefore
the function b is well defined. Indeed, let n,m € N* such that n < m, it is clear that
Qn C Qm and Ly, (dVe) C Lj , (dVe) and then we have F2 — FO is constant on
O, . Thus,

Y(r,x) € Qu, F2(r,x) — AvgF9" = F9 (r,x) — Avg F9n.
0 0

Let Q € C and Qy, s € N* the smallest cube that contains Q. Then,

Co=— (FQ(r,x) — F%(r,x) +AngQ-‘>
01
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is a constant on Q and we have
Y(r,x) € Q, b(r,x) = F¢(r,x) +Cp.

Now, we will show that b € L} (dvy). Let K C [0, +e[xR be a compactand Q € C
such that K C Q, then

/K (1) | dVe (%) < / 1b(r,) | dVer (1, )
9
< / IF2(r,x)|d Ve (1,x) + CoVe(Q)
9

<VVa(Q)IF2|2.0 4+ Cova(Q)

<Aoo

Using Relations (4.10) and (4.11) and Cauchy-Schwarz inequality, we obtain that

1 1
— — Q
0 | 1p(r0) ~ Coldveri) = - o | IFeDlava ()
1
X Va(Q) || 2,00
SNl @avi)—c

< C”q)HHz&mmit_}(c
< o0,

Then using the Lemma 3.5 we obtain
b € Bmogy

and
HbH‘Bmoa < CH‘D”Hg‘tomirHC.

It is clear that for every Q € C and g € L%’Q, we have

(g) = /Q b(r,x)g(rx)dve (1)
_ /Q (FO(r,x) +C)g(r,x)dVe (1,x)

:/QFQ(r,x)g(r,x)dVa(V»x)
=d(g).

Let h e Hé’a such that

k
h(rx) = Zliai(nx),
i=1
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where
Ai€Canda;isanL” —atom, 1 <i<k.

Then . .
q)(h) = Z?Licl)(ai) = Z?L,-(Db(ai) = q)b(h)

i=1 i=1

Since H; ,, is dense in Hg " we have
d=d, 0O
THEOREM 4.11. (Duality of H&omic) (Haomic)* js jsomorphic to Bmog.

Proof. Let

W : Brmog — (Homie)*
b— q)b.

Y is a linear map. In the one hand, using the Theorem 4.10, the wap ¥ is surjective.
In the one hand, let by,b, € Bmo, such that

W(by) =¥ (b2),
then for every f € H¥o™Mi¢ we have
q)bl (f) = q)hz(f)7
then
~+oo
/ / (b1.(1,) — ba (1)) £ (1, X)dVeg (1 x) = 0.
0o Jr

Using Proposition 4.7, we get that b — b, is constant. [

COROLLARY 4.12. (HL)* is isomorphic to Bmoy,.

Proof. Using the fact that there exists C such that
1
EHf”H}Z < Hf”’)—(t&tomir < C”fHH}X O
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