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DUALITY OF GENERALIZED HARDY AND BMO SPACES ASSOCIATED

WITH SINGULAR PARTIAL DIFFERENTIAL OPERATOR

A. GHANDOURI, H. MEJJAOLI AND S. OMRI

(Communicated by V. V. Peller)

Abstract. First we define and study the generalized bounded mean ossilation space Bmoα as-
sociated with the Riemann-Liouville operator Rα . Next we prove the duality between Bmoα
and the genralized Hardy space H1

α associated with Rα .

1. Introduction

The theory of Hardy spaces Hp(Rn) plays a very important role in harmonic anal-
ysis and operator theory and it’s shown that it has many interesting applications in
different fields. These spaces were studied and developed by of C. Fefferman, E. M.
Stein [11], R. Coifman and G. Weiss [9]. There are many equivalent definitions of these
spaces Hp(Rn) either by using the Poisson maximal function or by using the atomic
decomposition or also by mean of Littlewood-Paley g -function [20]. In [1], the authors
introduced the Riemann-Liouville operator and defined the generalized Hardy spaces
Hp

α connected with. They showed mainely the equivalence between the maximal func-
tion and the atomic decomposition definitions. The bounded mean oscillation spaces
in the Euclidean setting emerged in the sixties and played a central role in both of har-
monic analysis and partial differential equations. It’s shown by Fefferman and Stein
[11] that in the Euclidean case the BMO space is the dual of the Hardy space H1(Rn) .

In [5], Baccar, Ben Hamadi and Rachdi have considered the singular partial dif-
ferential operators defined by⎧⎪⎪⎨⎪⎪⎩

Δ1 =
∂
∂x

,

Δ2 =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

− ∂ 2

∂x2 ; (r,x) ∈]0,+∞[×R, α � 0

and they associated to Δ1 and Δ2 the following integral transform Rα , called the
Riemann-Liouville operator defined on Ce(R2)

(
The space of continuous functions on
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R2 , even with respect to the first variable
)
, by

Rα( f )(r,x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2,x+ rt)(1− t2)α− 1

2 (1− s2)α−1 dt ds, if α > 0,

1
π

∫ 1

−1
f (r
√

1− t2,x+ rt)
dt√

(1− t2)
; if α = 0.

The Riemann-Liouville operator Rα generalizes the spherical mean operator given by

R0( f )(r,x) =
1
2π

∫ 2π

0
f (r sinθ ,x+ rcosθ )dθ ,

which plays an important role in image processing of the so-called synthetic aperture
radar (SAR) data and in the linearized inverse scattering problem in acoustics as well as
in the interpretation of many physical phenomena in quantum mechanics. [10, 12, 13].

According to [5], the Fourier transform Fα associated with the Riemann-Liouville
operator is defined by

∀(s,y)∈ϒ, Fα( f )(s,y)=
∫ +∞

0

∫
R

f (r,x)Rα
(
cos(s.)e−iy.) (r,x) r2α+1

2α Γ(α +1)
√

2π
drdx,

for a suitable integrable function, where ϒ is a set that will be defined later.
Many harmonic analysis results have been already proved by Baccar, Ben Hamadi,

Rachdi, Rouz and Omri for the Riemann-Liouville operator and its Fourier transform
[3, 4, 5, 6, 7, 17]. Hleili, Mejjaoli, Omri and Rachdi have also established several
uncertainty principles for the same Fourier transform Fα [14, 16, 18, 19].

Our purpose in this paper is to define and to study the bounded mean oscillation
space Bmoα associated with the Riemann-Liouville operator Rα and to prove that
Bmoα coincides with the dual of the genralized Hardy space H1

α .
The paper is organized as follows. In the second section we give some classical

harmonic analysis results related to the Riemann-Liouville operator, the third section is
devoted to the characterization of the Hardy and BMO spaces related to Rα by using its
Poisson maximal function. In the last section we introduce the atomic decomposition
which will allow us to characterize the space H1

α and to prove the main result of this
work that is the duality between Hardy and BMO spaces.

2. Riemann-Liouville operator

In this section we give and develop some harmonic analysis results related to the
Riemann-Liouville operator that we will use later. All theses results are well known
and for more details about their proofs and globaly about the harmonic analysis related
to the operator Rα , we refere the reader to [5, 7, 17].

In [5], Baccar, Ben Hamadi and Rachdi considered the following system⎧⎪⎪⎨⎪⎪⎩
�1u = −iλu(r,x)

�2u = −μ2u(r;x)

u(0,0) = 1, ∂u
∂x (0,x),∀x ∈ R
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and showed that for all (μ ,λ ) , this system admits a unique infinitely differentiable
solution given by

ϕμ,λ (r,x) = jα(r
√

μ2 + λ 2)e−iλ x,

where jα is the modified Bessel function of first kind and index α , see [15, 22].
The function ϕμ,λ is bounded on [0,+∞[×R if and only if (μ ,λ ) belongs to the

set
ϒ = R

2∪
{
(ir,x), (r,x) ∈ R

2, |r| � |x|
}
.

In this case we have
sup

(r,x)∈R2
|ϕμ,λ (r,x)| = 1.

We introduce the following notations

• να the measure defined on [0,+∞[×R by

dνα(r,x) =
r2α+1

2α Γ(α +1)
√

2π
drdx.

• Lp(dνα) , p ∈ [1,+∞] , is the Lebesgue space of all measurable functions f on
[0,+∞[×R such that ‖ f‖p,να < +∞ , where

‖ f‖p,να =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫ +∞

0

∫
R

| f (r,x)|pdνα(r,x)
) 1

p

, if p ∈ [1,+∞[

ess sup
(r,x)∈[0,+∞[×R

| f (r,x)|, if p = +∞.

• L1
loc(dνα) the space of measurable functions on [0,+∞[×R that are locally inte-

grable on [0,+∞[×R with respect to the measure να .

According to [2], the eigenfunction ϕμ,λ satisfies the following product formula

ϕμ,λ (r,x)ϕμ,λ (s,y)=
Γ(α +1)√
πΓ(α + 1

2 )

∫ π

0

(
ϕμ,λ (

√
r2 + s2 +2rscosθ ,x+ y)

)
sin2α θdθ .

This allows us to define the translation operators as follows.

DEFINITION 2.1. For every (r,x) ∈ [0,+∞[×R , the translation operator T(r,x) as-
sociated with the operator Rα is defined on L1(dνα) by, for all (s,y) ∈ [0,+∞[×R ,

T(r,x)( f )(s,y) =
Γ(α +1)√
πΓ(α + 1

2)

∫ π

0
f (
√

r2 + s2 +2rscosθ ,x+ y)sin2α θdθ ,

whenever the integral an the right hand side is well defined.
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PROPOSITION 2.2. Let f be in L1(dνα ) , then for all (r,x)∈ [0,+∞[×R, we have∫ +∞

0

∫
R

T(r,x)( f )(s,y)dνα (s,y) =
∫ +∞

0

∫
R

f (s,y)dνα (s,y).

PROPOSITION 2.3. For every f ∈ Lp(dνα) , 1 � p � +∞ , and for every (r,x) ∈
[0,+∞[×R , the function T(r,x)( f ) belongs to Lp(dνα) and we have

‖T(r,x)( f )‖p,να � ‖ f‖p,να . (2.1)

DEFINITION 2.4. The convolution product of two measurable functions f and g
on [0,+∞[×R is defined by

f ∗ g(r,x) =
∫ +∞

0

∫
R

T(r,−x)( f̌ )(s,y)g(s,y)dνα (s,y), ∀(r,x) ∈ [0,+∞[×R,

where f̌ (s,y) = f (s,−y), whenever the integral an the right hand side is well defined.

THEOREM 2.5. If p,q,r ∈ [1,+∞] are such that 1
r + 1 = 1

p + 1
q then, for every

function f ∈ Lp(dνα) and g ∈ Lq(dνα) , f ∗ g belongs to Lr(dνα) and we have the
Young’s inequality

‖ f ∗ g‖r,dνα � ‖ f‖p,να‖g‖q,να .

DEFINITION 2.6. The Fourier transform Fα associated with the operator Rα is
defined for every integrable function f on [0,+∞[×R with respect to the measure να ,
by

∀(μ ,λ ) ∈ ϒ, Fα( f )(μ ,λ ) =
∫ +∞

0

∫
R

f (r,x)ϕμ,λ (r,x)dνα (r,x).

PROPOSITION 2.7.

(i) Let f ∈ L1(dνα) and (r,x) ∈ [0,+∞[×R we have

∀(μ ,λ ) ∈ ϒ, Fα(T(r,−x)( f ))(μ ,λ ) = ϕμ,λ (r,x)Fα ( f )(μ ,λ ).

(ii) Let f ,g ∈ L1(dνα) , then we have

∀(μ ,λ ) ∈ ϒ, Fα( f ∗ g)(μ ,λ ) = Fα ( f )(μ ,λ )Fα (g)(μ ,λ ).

In the following we denote by

• ϒ+ the subspace of ϒ given by

ϒ+ = [0,+∞[×R∪
{
(ir,x), (r,x) ∈ [0,+∞[×R |0 � r � |x|

}
.
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• Bϒ+ the σ−algebra defined on ϒ+ by

Bϒ+ = {θ−1(B),B ∈ Bor([0,+∞[×R)},

where Bor([0,+∞[×R)} is the usual Borel σ− algebra on [0,+∞[×R and θ is
the bijective function defined by

θ : ϒ+ −→ [0,+∞[×R

(μ ,λ ) 
−→ (
√

μ2 + λ 2,λ ).

• γα the mesure defined on Bϒ+ by

γα(A) = να(θ (A)), ∀A ∈ Bϒ+ .

• Lp(dγα), p ∈ [1,+∞] is the Lebesgue space on ϒ+ with respect to the measure
γα equipped with the Lp -norm denoted by ‖.‖p,γα , where

‖ f‖p,γα =

⎧⎪⎪⎨⎪⎪⎩
(∫

ϒ+
| f (μ ,λ )|pdγα(μ ,λ )

) 1
p

, if p ∈ [1,+∞[

ess sup
(μ,λ )∈ϒ+

| f (μ ,λ )|, if p = +∞.

• Se(R2) the space of infinitely differentiable functions on R2 , rapidly decreass-
ing together with all their derivatives, even with respect the first variable. The
space Se(R2) is equipped with the topology associated to the following count-
able family of normes

∀m ∈ N, ρm(ϕ) = sup
(r,x)∈[0,+∞[×R

k+|β |�m

(1+ r2 + x2)k|Dβ (ϕ)(r,x)|.

• De(R2) the space of infinitely differentiable functions on R2 with compact sup-
port, even with respect the first variable.

THEOREM 2.8. (Inversion formula for Fα ) Let f ∈ L1(dνα) such that Fα( f )
belongs to L1(dγα) . Then for almost every (r,x) ∈ [0,+∞[×R , we have

f (r,x) =
∫ ∫

ϒ+
Fα( f )ϕμ,λ (r,x)dγα(μ ,λ ).

THEOREM 2.9. (Plancherel’s theorem) The Fourier transform Fα can be ex-
tended to an isometric isomorphism from L2(dνα) onto L2(dγα ) .
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3. Generalized Bmo and Hardy spaces associated with the
Riemann-Liouville operator

We introduce the following notations

• A cube of [0,+∞[×R denotes a subset of [0,+∞[×R of the form

Q = [a0,b0]× [a1,b1],

where b0−a0 = b1−a1 = L > 0.

• C the set of cubes of [0,+∞[×R.

DEFINITION 3.1. Let f ∈ L1
loc(dνα ) and Q ∈ C . The average of the function f

on Q is defined by

Avg
Q

( f ) =
1

να (Q)

∫
Q

f (r,x)dνα (r,x).

DEFINITION 3.2. (Bmoα space) Let f ∈ L1
loc(dνα) . The function f is said to

be of bounded mean oscillation if f satisfies

‖ f‖Bmoα = sup
Q∈C

1
να(Q)

∫
Q
| f (r,x)−Avg

Q
( f )|dνα (r,x) < +∞.

We designate by Bmoα the set of all boundedmean oscillation functions f ∈L1
loc(dνα) .

REMARK 3.3. We can easily see that, the map f 
−→ ‖ f‖Bmoα is a semi-norm
on Bmoα .

PROPOSITION 3.4. L∞(dνα ) ⊂ Bmoα and for every function f ∈ L∞(dνα) , we
have

‖ f‖Bmoα � 2‖ f‖∞,να . (3.1)

Proof. It is obvious that L∞(dνα) ⊂ L1
loc(dνα ) . Let f ∈ L∞(dνα ) , then for every

Q ∈ C , we have

1
να(Q)

∫
Q
| f (r,x)−Avg

Q
f |dνα (r,x) � 1

να(Q)

∫
Q
| f (r,x)|dνα (r,x)+ |Avg

Q
f |

� 2
1

να(Q)

∫
Q
| f (r,x)|dνα (r,x)

� 2‖ f‖∞,α .

Consequently
‖ f‖Bmoα � 2‖ f‖∞,α . �
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LEMMA 3.5. Let f ∈ L1
loc(dνα ). If there exists A > 0 such that for every cube

Q ∈ C there exists cQ such that

1
να(Q)

∫
Q
| f (r,x)− cQ|dνα(r,x) � A.

Then f ∈ Bmoα and ‖ f‖Bmoα � 2A.

Proof. Let K ⊂ [0,+∞[×R be a compact and QK ∈ C such that K ⊂ QK then∫
K
| f (r,x)|dνα (r,x) �

∫
K
| f (r,x)− cQK |dνα(r,x)+

∫
K
|cQK |dνα(r,x)

�
∫

QK

| f (r,x)− cQK |dνα(r,x)+ cQK να(K)

� Aνα(QK)+ cQK να(K)
< +∞.

Then f ∈ L1
loc(dνα).

| f (r,x)−Avg
Q

f | � | f (r,x)− cQ|+ |Avg
Q

f − cQ|

� | f (r,x)− cQ|+
∣∣∣∣∣ 1
να (Q)

∫
Q

f (r,x)− cQdνα(r,x)

∣∣∣∣∣
� | f (r,x)− cQ|+

1
να(Q)

∫
Q
| f (r,x)− cQ|dνα(r,x)

� | f (r,x)− cQ|+A.

Then

1
να (Q)

∫
Q
| f (r,x)−Avg

Q
f |dνα (Q) � 1

να(Q)

∫
Q
| f (r,x)− cQ|dνα(r,x)+A.

Consequently
‖ f‖Bmoα � A+A = 2A. �

PROPOSITION 3.6. Let f ∈ Bmoα . Then ‖ f‖Bmoα = 0 if and only if f is con-
stant.

Proof. Let f ∈ L1
loc(dνα ) . It is clear that if f = c we have ‖ f‖Bmoα = 0.

Conversely if ‖ f‖Bmoα = 0, then

∀Q ∈ C, | f −Avg
Q

f | = 0.

In particular, for every N ∈ N∗ , we have

| f − Avg
[0,N]×[−N,N]

f | = 0.
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This implies that for all N ∈ N∗ and (r,x) ∈ [0,N]× [−N,N] , we have

f (r,x) = cN ,

where cN = Avg
[0,N]×[−N,N]

f . Also for every N ∈ N,

[0,N]× [−N,N] ⊂ [0,N +1]× [−N−1,N +1].

Then cN = cN+1 . This implies that f is constant. �

THEOREM 3.7. For every f ∈ Bmoα the function | f | belongs to Bmoα and we
have

‖| f |‖Bmoα � 2‖ f‖Bmoα .

Proof. Let f ∈ Bmoα and Q ∈ C .

∀(r,x) ∈ Q,

|| f (r,x)|−Avg
Q

| f || �
∣∣∣∣∣| f (r,x)|− |Avg

Q
f |
∣∣∣∣∣+
∣∣∣∣∣|Avg

Q
f |−Avg

Q
| f |
∣∣∣∣∣

�
∣∣∣∣∣| f (r,x)|− |Avg

Q
f |
∣∣∣∣∣+
∣∣∣∣∣|Avg

Q
f |− 1

να(Q)

∫
Q
| f (y)|dνα (s,y)

∣∣∣∣∣
�
∣∣∣∣∣| f (r,x)|− |Avg

Q
f |
∣∣∣∣∣+
∣∣∣∣∣ 1
να (Q)

∫
Q
|Avg

Q
f |− | f (s,y)|dνα(r,x)

∣∣∣∣∣
�
∣∣∣∣∣| f (r,x)|− |Avg

Q
f |
∣∣∣∣∣+ 1

να(Q)

∫
Q

∣∣∣∣∣|Avg
Q

f |− | f (s,y)|
∣∣∣∣∣dνα(s,y)

� | f (r,x)−Avg
Q

f |+ 1
να(Q)

∫
Q
|Avg

Q
f − f (s,y)|dνα(s,y).

Then

1
ναQ)

∫
Q

∣∣∣∣∣| f (r,x)|−Avg
Q

| f |
∣∣∣∣∣dνα (r,x) � 1

να(Q)

∫
Q
| f (r,x)−Avg

Q
f |dνα(r,x)

+
1

να(Q)

∫
Q
| f (r,x)−Avg

Q
f |dνα (r,x).

This implies that
‖| f |‖Bmoα � 2 ‖ f‖Bmoα . �

PROPOSITION 3.8. Let f and g ∈ Bmoα . Then we have

(i) If f and g are two real-valued functions then max( f ,g) ∈ Bmoα and we have

‖max( f ,g)‖Bmoα � 3
2
(‖ f‖Bmoα +‖g‖Bmoα ). (3.2)
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(ii) If f and g are two real-valued functions then min( f ,g) ∈ Bmoα and we have

‖min( f ,g)‖Bmoα � 3
2
(‖ f‖Bmoα +‖g‖Bmoα ). (3.3)

Proof. Let f and g be two real functions belonging to the space Bmoα .

(i) We know that max( f ,g) = f+g+| f−g|
2 . Using Remark 3.3 and Theorem 3.7, we

obtain

‖max( f ,g)‖Bmoα =

∥∥∥∥∥ f +g+ | f −g|
2

∥∥∥∥∥
Bmoα

� 1
2
(‖ f +g‖Bmoα +‖| f −g|‖Bmoα )

� 1
2
(‖ f‖Bmoα +‖g‖Bmoα +2‖ f −g‖Bmoα )

� 3
2
(‖ f‖Bmoα +‖g‖Bmoα).

(ii) We know that min( f ,g) = f+g−| f−g|
2 . Using Remark 3.3 and Theorem 3.7, we

obtain

‖min( f ,g)‖Bmoα =

∥∥∥∥∥ f +g−| f −g|
2

∥∥∥∥∥
Bmoα

� 1
2
(‖ f +g‖Bmoα +‖| f −g|‖Bmoα )

� 1
2
(‖ f‖Bmoα +‖g‖Bmoα +2‖ f −g‖Bmoα )

� 3
2
(‖ f‖Bmoα +‖g‖Bmoα ). �

DEFINITION 3.9. For every t > 0, the Poisson kernel pt associated with the
Riemann-Liouville operator Rα is defined on R2 by

pt(r,x) =
∫ ∫

ϒ+
e−t

√
s2+2y2ϕs,y(r,x)dγα(s,y)

= F−1
α (e−t

√
.2+2.2)(r,x).

DEFINITION 3.10. (Bounded distribution) Let v ∈ S ′
e (R

2) . We say that v is a
bounded tempered distribution if

∀ϕ ∈ Se(R2),ϕ ∗ v ∈ L∞(dνα)

and if the operator

φv : Se(R2) −→ L∞(dνα )
ϕ 
−→ ϕ ∗ v

is bounded.
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DEFINITION 3.11. Let f ∈ S ′
e (R

2) be a bounded tempered distribution. The
Poisson maximal function Pα

f associated with the Riemann-Liouville operator Rα is

defined on R2 by
Pα

f (r,x) = sup
t>0

|pt ∗ f (r,x)|.

DEFINITION 3.12. (Hardy space) For every p ∈ [1,+∞[ , the Hardy space Hp
α

associated with the Riemann- Liouville operator is the space of all the bounded tem-
pered distributions f on R2 satisfying

Pα
f ∈ Lp(dνα).

We set
‖ f‖Hp

α
= ‖Pα

f ‖p,να . (3.4)

DEFINITION 3.13. (Atomic Decomposition ) A function f is called an L∞ -atom
of H1

α , if there exists a cube Q ∈ C satisfying

(i) Supp( f )⊂ Q .

(ii) ‖ f‖∞,να � 1
να (Q) .

(iii)
∫

Q
f (x,r)dνα (x,r) = 0.

DEFINITION 3.14. A function f ∈ L1(dνα ) belongs to the set Hatomic
α if there

exists a sequence {λi}i∈N ∈ l1(N) and a sequence { fi}i∈N of L∞ -atom of H1
α such

that

f =
+∞

∑
i=1

λi fi ∈ L1(dνα).

We set

‖ f‖Hatomic
α

= inf
{+∞

∑
i=1

|λi| : f =
+∞

∑
i=1

λi fi where {λi}i∈N ∈ l1(N) and

{ fi}i∈N L∞-atom for H1
α

}
.

We have recently established that

PROPOSITION 3.15. There exists a constant C > 0 such that for every f ∈L1(dνα)
we have

1
C
‖ f‖H1

α
� ‖ f‖Hatomic

α
� C‖ f‖H1

α
(3.5)

Proof. [1] �
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4. Duality between Hatomic
α and Bmoα

• For any normed C-vector space E , we denote by E∗ its topological dual. E∗ be
provided with the dual topology associated to the norm defined by

∀ f ∈ E∗, ‖ f‖E→C = sup
x∈E
‖x‖=1

| f (x)|.

• For every Q ∈ C , we denote by

– L2
Q(dνα ) the space of functions f ∈ L2(dνα ) with support on Q .

– L2
0,Q(dνα) the space of functions f ∈ L2

Q(dνα ) such that Avg
Q

f = 0.

PROPOSITION 4.1. Hatomic
α ⊂ L1(dνα) and we have

‖ f‖1,να � 2‖ f‖Hatomic
α

.

Proof. Let f ∈ Hatomic
α , we can find a sequence {λi}i∈N and a sequence { fi}i∈N

of L∞ -atom of H1
α such that

+∞

∑
j=1

|λi| � 2‖ f‖Hatomic
α

.

We have

| f (r,x)| = |
+∞

∑
j=1

λi fi(r,x)|

�
+∞

∑
j=1

|λi|| fi(r,x)|

�
+∞

∑
j=1

|λi|
να(Qi)

χQi(r,x).

Then

‖ f‖1,να �
+∞

∑
j=1

|λi| � 2‖ f‖Hatomic
α

. �

In the following we denote by H1
0,α the vector space of all finite linear combina-

tions of L∞ -atom of H1
α .

PROPOSITION 4.2. Let b ∈ Bmoα and Φb the mapping defined by

Φb :H1
0,α → C

f 
→
∫ +∞

0

∫
R

f (r,x)b(r,x)dνα (r,x).

Then Φb ∈ (H1
0,α)∗ .
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Proof. For evrey g ∈H1
0,α , there exists m ∈ N such that

∀(r,x) ∈ [0,+∞[×R, g(r,x) =
m

∑
i=1

λigi(r,x),

where for every 1 � i � m, λi ∈ C and gi is a L∞ -atom for H1
α . For every c ∈ C and

b ∈ Bmoα , we have

Φb+c(g) =
∫ +∞

0

∫
R

g(r,x)(b(r,x)+ c)dνα(r,x)

=
∫ +∞

0

∫
R

m

∑
i=1

λigi(r,x)(b(r,x)+ c)dνα(r,x)

=
m

∑
i=1

λi

(∫ +∞

0

∫
R

gi(r,x)b(r,x)dνα (r,x)+ c
∫

Rd
gi(r,x)dνα (r,x)

)
=

m

∑
i=1

λi

∫ +∞

0

∫
R

gi(r,x)b(r,x)dνα (r,x)

=
∫ +∞

0

∫
R

g(r,x)b(r,x)dνα (r,x)

= Φb(g).

Therefore
∀g ∈H1

0,α , Φb+c(g) = Φb(g). (4.1)

Let f ∈H1
0,α and Q ∈ C such that Supp( f ) ⊂ Q. Using the Relation (4.1), we obtain

∀b ∈ Bmoα , |Φb( f )| = |Φb−AvgQ b( f )|

�
∫ +∞

0

∫
R

| f (r,x)||b(r,x)−Avg
Q

b|dνα(r,x)

=
∫

Q
| f (r,x)||b(r,x)−Avg

Q
b|dνα(r,x)

� ‖ f‖∞,να

∫
Q
|b(r,x)−Avg

Q
b|dνα(r,x)

� ‖ f‖∞,να να(Q)‖b‖Bmoα

=C‖b‖Bmoα

< +∞.

Then Φb is well defined. Moreover, it is clear that Φb is linear, since |Φb( f )| �
C‖b‖Bmoα , we deduce that Φb is bounded. �

PROPOSITION 4.3. Let b ∈ L∞(dνα) and Φb the mapping defined by

Φb :Hatomic
α −→ C

f 
→
∫ +∞

0

∫
R

f (r,x)b(r,x)dνα (r,x).
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Then Φb ∈ (Hatomic
α )∗ .

Proof. The linearity of Φb is obvious. In addition, we use the Remark 3.4, we
deduce that for any f ∈Hatomic

α , we have

|Φb( f )| �
∫ +∞

0

∫
R

| f (r,x)||b(r,x)|dνα (r,x)

� ‖b‖∞,να‖ f‖1,α

� 2‖b‖∞,να‖ f‖Hatomic
α

.

Therefore

‖Φb‖Hatomic
α →C

� ‖b‖∞,να . �

LEMMA 4.4. Let f ∈ Bmoα be a real-valued function and K,L ∈ R such that
K � L. We define the function fKL on [0,+∞[×R by

fKL = max(K,min( f ,L)).

Then

‖ fKL‖Bmoα � 9
4
‖ f‖Bmoα . (4.2)

Proof. Let f ∈ Bmoα be the real-valued function and K,L ∈ R such that k � L .
It is clear that

fKL = max(K,min( f ,L)).

Using Relations (3.2) and (3.3) and the Proposition 3.6, we obtain

‖ fKL‖Bmoα = ‖max(K,min( f ,L))‖Bmoα

� 3
2

(‖K‖Bmoα +‖min( f ,L)‖Bmoα )

=
3
2
‖min( f ,L)‖Bmoα

� 3
2

(
3
2

(‖L‖Bmoα +‖ f‖Bmoα )
)

=
9
4
‖ f‖Bmoα . �

LEMMA 4.5. There exists a constant C such that for every b∈ L∞(dνα) , we have

‖Φb‖Hatomic
α →C

� C‖b‖Bmoα , (4.3)

where Φb is the function defined in Proposition 4.3.
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Proof. Let f ∈Hatomic
α , then there exist a sequence (λk)k∈N of C and a sequence

( fQk )k∈N of L∞ -atom for H1
α supported respectively in Qk such that

f =
+∞

∑
k=1

λk fQk .

Using the the Proposition 4.1, we have

|
∫ +∞

0

∫
R

f (r,x)b(r,x)dνα (r,x)| � ‖b‖∞,να

∫ +∞

0

∫
R

| f (r,x)|dνα (r,x)

� ‖b‖∞,να‖ f‖1,να

� 2‖b‖∞,να‖ f‖Hatomic
α

< +∞.

Thus we use the term by term Integration Theorem, we obtain

|Φb( f )| =
∣∣∣∣∫ +∞

0

∫
R

f (r,x)b(r,x)dνα (r,x)
∣∣∣∣

=

∣∣∣∣∣+∞

∑
k=1

λk

∫
Qk

fQk (r,x)b(r,x)dνα (r,x)

∣∣∣∣∣
=

∣∣∣∣∣+∞

∑
k=1

λk

∫
Qk

fQk (r,x)(b(r,x)−Avg
Qk

b)dνα(r,x)

∣∣∣∣∣
=

∣∣∣∣∣+∞

∑
k=1

λk‖ fQk‖∞,να

∫
Qk

(b(r,x)−Avg
Qk

b)dνα(r,x)

∣∣∣∣∣
�

+∞

∑
k=1

|λk|‖b‖Bmoα

� 2‖ f‖Hatomic
α

‖b‖Bmoα .

Thus
‖Φb‖Hatomic

α →C
� 2‖b‖Bmoα . �

THEOREM 4.6. For every b∈Bmoα , the linear form Φb extends to a continuous
linear form Φ̃b on Hatomic

α . Moreover, there exists C > 0 such that

‖Φ̃b‖Hatomic
α →C

� C‖b‖Bmoα .

Proof. Let b ∈ Bmoα , M ∈ N and bM = max(−M,min(|b|,M)) . Then, bM ∈
L∞(dνα) and ‖bM‖∞,να � M . Moreover, we use the Theorem 3.7 ainsi and the Relation
(4.2), we have

‖bM‖Bmoα � 9
4
‖|b|‖Bmoα � 9

2
‖b‖Bmoα . (4.4)
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Moreover, by using Relations (4.3) and (4.4) we deduce that

∀M ∈ N, ‖ΦbM‖Hatomic
α →C

� C‖bM‖Bmoα � 9C
2
‖b‖Bmoα .

This implies that the sequence (ΦbM )M∈N belongs to the ball B(0, 9C
2 ‖b‖Bmoα ) of

(Hatomic
α )∗ which is compact from the Banch-Alaoglu-Bourbaki theorem in the weak*

topology. Then, there exists a subsequence (Φbρ(M) )M∈N such that

∀ f ∈Hatomic
α , lim

M−→+∞
Φbρ(M) ( f ) = Φ̃b( f ). (4.5)

Let fQ be a L∞ -atom for H1
α and Q ∈ C such that Supp( fQ) ⊂ Q . Then we have

|Φbρ(M) ( fQ)−Φb( fQ)| =
∣∣∣∣∫

Q
fQ(r,x)bρ(M)(r,x)dνα (r,x)−

∫
Q

fQ(r,x)b(r,x)dνα (r,x)
∣∣∣∣

=
∣∣∣∣∫

Q
fQ(r,x)

(
bρ(M)(r,x)−b(r,x)

)
dνα(r,x)

∣∣∣∣
� ‖ fQ‖∞,να

∫
Q

∣∣bρ(M)(r,x)−b(r,x)
∣∣dνα (r,x).

However
lim

M−→+∞

∫
Q

∣∣bρ(M)(r,x)−b(r,x)
∣∣dνα(r,x) = 0.

Then
lim

M→+∞
|Φbρ(M) ( fQ)−Φb( fQ)| = 0.

As a result,
∀g ∈H1

0,α , lim
M→+∞

Φbρ(M) (g) = Φb(g). (4.6)

Thus by combining the Relations (4.5) and (4.6), we deduce that

∀g ∈H1
0,α , Φ̃b(g) = Φb(g).

In the other hand, we know that H1
0,α = Hatomic

α , therefore Φ̃b is the only extension of

Φb on Hatomic
α . Using the Relation (4.4) we obtain

lim
M→+∞

‖Φbρ(M)‖Hatomic
α →C

� 9
2
‖b‖Bmoα .

Consequently
‖Φ̃b‖Hatomic

α →C
� Cd‖b‖Bmoα . �

PROPOSITION 4.7. Let Q ∈ C and u ∈ L1
loc(dνα) such that Supp(u)⊂ Q. If for

every v ∈ L2
Q(dνα) we have ∫

Q
u(r,x)v(r,x)dνα (r,x) = 0. (4.7)

Then u = 0 a.e.
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Proof. Let u ∈ L1
loc(dνα ) and Q ∈ C such Supp(u) ⊂ Q . It is clear that u ∈

L1(dνα) .
Let (μ ,λ ) ∈ [0,+∞[×R and vμ,λ the function defined on [0,+∞[×R by

vμ,λ (r,x) = ϕμ,λ (r,x)χQ(r,x).

We have

‖vμ,λ‖2,α =
(∫

Q
(ϕμ,λ (r,x))2dνα(r,x)

) 1
2

� sup
(r,x)∈[0,+∞[×R

|ϕμ,λ (r,x)|
√

να(Q)

=
√

να(Q).

Then vμ,λ ∈ L2
Q(dνα) . Which implies that

Fα (u)(μ ,λ ) =
∫ +∞

0

∫
R

u(r,x)ϕμ,λ (r,x)dνα (r,x)

=
∫

Q
u(r,x)ϕμ,λ (r,x)dνα (r,x)

=
∫

Q
u(r,x)vμ,λ (r,x)dνα (r,x)

= 0.

Thus by using the Inversion formula we deduce that u = 0 a.e. �

COROLLARY 4.8. Let Q ∈ C and u ∈ L1
loc(dνα) such that Supp(u) ⊂ Q. If for

every v ∈ L2
0,Q(dνα) , we have∫

Q
u(r,x)v(r,x)dνα (r,x) = 0. (4.8)

Then u is constant a.e.

Proof. Let v ∈ L2
Q(dνα) and ωv the function defined on [0,+∞[×R by

ωv(r,x) = v(r,x)−Avg
Q

v,

it is clear that ωv ∈ L2
Q(dνα) . Moreover, we have∫

Q
ωv(r,x)dνα (r,x) =

∫
Q

v(r,x)−Avg
Q

vdνα(r,x)

=
∫

Q
v(r,x)dνα (r,x)−να(Q)Avg

Q
v

= 0.
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Then
ωv ∈ L2

0,Q(dνα).

Using the Relation (4.8) we deduce that∫
Q

ωv(r,x)u(r,x)dνα (r,x) = 0,

since∫
Q

ωv(r,x)u(r,x)dνα (r,x) =
∫

Q
v(r,x)u(r,x)dνα (r,x)−Avg

Q
v
∫

Q
u(r,x)dνα(r,x)

=
∫

Q
v(r,x)u(r,x)dνα (r,x)−Avg

Q
u
∫

Q
v(r,x)dνα (r,x)

=
∫

Q
v(r,x)

(
u(r,x)−Avg

Q
u

)
dνα(r,x).

We get ∫
Q

v(r,x)

(
u(r,x)−Avg

Q
u

)
dνα(r,x) = 0.

Then by using Proposition 4.7 we deduce that

u−Avg
Q

u = 0 a.e.

Consequently
u = Avg

Q
u a.e. �

PROPOSITION 4.9. For every Q ∈ C, L2
Q(dνα) ⊂ Hatomic

α and there exists c > 0
such that for every f ∈ L2

Q(dνα)

‖ f‖Hatomic
α

� c
√

να(Q)‖ f‖2,α . (4.9)

THEOREM 4.10. Let Φ be a continuous linear form on Hatomic
α . Then there exists

b ∈ Bmoα and a constant C > 0 such that

∀ f ∈H1
0,α , Φ( f ) = Φb( f ),

and
‖b‖Bmoα � C‖Φb‖Hatomic

α →C
.

Proof. Let Φ be a continuous linear form on Hatomic
α and Q ∈ C . Then, we use

the Relation (4.9), we deduce that for every f ∈ L2
0,Q(dνα) not identically null, we have

|Φ( f )| � ‖Φ‖Hatomic
α →C

‖ f‖Hatomic
α

� c
√

να(Q)‖Φ‖Hatomic
α →C

‖ f‖2,α .
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Consequently
‖Φ‖L2

0,Q(dνα )→C
� c
√

να(Q)‖Φ‖Hatomic
α →C

. (4.10)

Thus, Φ est a bounded linear function on L2
0,Q(dνα) which is a Hilbert space, therefore

using the Riesz representation theorem, we deduce that there exists a unique function
FQ ∈ L2

0,Q(dνα) such that

∀ f ∈ L2
0,Q(dνα), Φ( f ) =

∫
Q

FQ(r,x) f (r,x)dνα (r,x).

and
‖FQ‖2,α � ‖Φ‖L2

0,Q(dνα )→C
. (4.11)

Moreover, such as Avg
Q

f = 0, we deduce that for every c ∈ C , we have

∫
Q
(FQ(r,x)+ c) f (r,x)dνα (r,x) =

∫
Q

FQ(r,x) f (r,x)dνα (r,x).

Let Q′ ∈ C such that Q ⊂ Q′ . Then, in view of the above, we know that there exists
FQ′ ∈ L2

0,Q′(dνα ) such that

∀ f ∈ L2
0,Q′(dνα), Φ( f ) =

∫
Q′

FQ′
(r,x) f (r,x)dνα (r,x).

In particular

∀ f ∈ L2
0,Q(dνα), Φ( f ) =

∫
Q

FQ′
(r,x) f (r,x)dνα (r,x).

Then
∀ f ∈ L2

0,Q(dνα ),
∫

Q

(
FQ′

(r,x)−FQ(r,x)
)

f (r,x)dνα (r,x) = 0.

Using the Corollary 4.8, we obtain that FQ′ −FQ is a constant on Q . For every m∈N∗ ,
Let Qm = [0,m]× [−m,m] . Let b the function defined on [0,+∞[×R by

∀(r,x) ∈ Qm, b(r,x) = FQm(r,x)−Avg
Q1

FQm .

We will show now in the following that the value b does not depend of m and therefore
the function b is well defined. Indeed, let n,m ∈ N∗ such that n < m , it is clear that
Qn ⊂ Qm and L2

0,Qn
(dνα) ⊂ L2

0,Qm
(dνα) and then we have FQn −FQm is constant on

Qn . Thus,

∀(r,x) ∈ Qn, FQn(r,x)−Avg
Q1

FQn = FQm(r,x)−Avg
Q1

FQm .

Let Q ∈ C and Qs, s ∈ N∗ the smallest cube that contains Q . Then,

CQ = −
(

FQ(r,x)−FQs(r,x)+Avg
Q1

FQs

)
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is a constant on Q and we have

∀(r,x) ∈ Q, b(r,x) = FQ(r,x)+CQ.

Now, we will show that b ∈ L1
loc(dνα) . Let K ⊂ [0,+∞[×R be a compact and Q ∈ C

such that K ⊂ Q , then∫
K
|b(r,x)|dνα (r,x) �

∫
Q
|b(r,x)|dνα(r,x)

�
∫

Q
|FQ(r,x)|dνα (r,x)+CQνα(Q)

�
√

να(Q)‖FQ‖2,α +CQνα(Q)
< +∞

Using Relations (4.10) and (4.11) and Cauchy-Schwarz inequality, we obtain that

1
να(Q)

∫
Q
|b(r,x)−CQ|dνα(r,x) =

1
να(Q)

∫
Q
|FQ(r,x)|dνα (r,x)

� 1√
να(Q)

‖FQ‖2,α

� ‖Φ‖L2
0,Q(dνα )→C

� C‖Φ‖Hatomic
α →C

< +∞.

Then using the Lemma 3.5 we obtain

b ∈ Bmoα

and
‖b‖Bmoα � c‖Φ‖Hatomic

α →C
.

It is clear that for every Q ∈ C and g ∈ L2
0,Q, we have

Φb(g) =
∫

Q
b(r,x)g(r,x)dνα(r,x)

=
∫

Q
(FQ(r,x)+CQ)g(r,x)dνα(r,x)

=
∫

Q
FQ(r,x)g(r,x)dνα (r,x)

= Φ(g).

Let h ∈H1
0,α such that

h(r,x) =
k

∑
i=1

λiai(r,x),
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where
λi ∈ C and ai is anL∞ −atom , 1 � i � k.

Then

Φ(h) =
k

∑
i=1

λiΦ(ai) =
k

∑
i=1

λiΦb(ai) = Φb(h).

Since H1
0,α is dense in Hatomic

α we have

Φ = Φb. �

THEOREM 4.11. (Duality of Hatomic
α ) (Hatomic

α )∗ is isomorphic to Bmoα .

Proof. Let

Ψ : Bmoα → (Hatomic
α )∗

b 
→ Φb.

Ψ is a linear map. In the one hand, using the Theorem 4.10, the wap Ψ is surjective.
In the one hand, let b1,b2 ∈ Bmoα such that

Ψ(b1) = Ψ(b2),

then for every f ∈Hatomic
α , we have

Φb1( f ) = Φb2( f ),

then ∫ +∞

0

∫
R

(b1(r,x)−b2(r,x)) f (r,x)dνα (r,x) = 0.

Using Proposition 4.7, we get that b1−b2 is constant. �

COROLLARY 4.12. (H1
α)∗ is isomorphic to Bmoα .

Proof. Using the fact that there exists C such that

1
C
‖ f‖H1

α
� ‖ f‖Hatomic

α
� C‖ f‖H1

α
. �
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