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MULTIPLICATIVE GENERALIZED LIE

n–DERIVATIONS ON COMPLETELY DISTRIBUTIVE

COMMUTATIVE SUBSPACE LATTICE ALGEBRAS
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(Communicated by C.-K. Ng)

Abstract. Let AlgL be a completely distributive commutative subspace lattice algebra and let
δ : AlgL → AlgL be a nonlinear map. It is shown that δ is a multiplicative generalized Lie
n -derivation on AlgL with an associated multiplicative generalized Lie n -derivation d if and
only if δ (A) = ψ(A)+ξ (A) holds for every A ∈ AlgL, where ψ : AlgL→ AlgL is an additive
generalized derivation and ξ : AlgL → Z(AlgL) is a central-valued map vanishing on each
(n−1) -th commutator pn(A1,A2, · · · ,An).

1. Introduction

Let R be an associative commutative unital ring and A be an algebra over R .
Recall that an R-linear mapping δ : A→A is called a Jordan derivation if δ (A2) =
δ (A)A+Aδ (A) holds for all A∈A ; δ is called a Lie derivation if δ ([A,B]) = [δ (A),B]
+ [A,δ (B)] holds for all A,B ∈ A , where [A,B] = AB− BA is the usual Lie prod-
uct; δ is called a Lie triple derivation if δ ([[A,B],C]) = [[δ (A),B],C]+ [[A,δ (B)],C]+
[[A,B],δ (C)] holds for all A,B,C ∈ A; δ is called a generalized Lie derivation if there
exists a derivation d such that

δ ([A,B]) = δ (A)B− δ (B)A+Ad(B)−Bd(A) for all A,B ∈A.

If there is no assumption of additivity for δ in the above definitions, then δ is said to be
multiplicative ( or nonlinear). We say a Lie derivation δ is standard if it can be decom-
posed as δ = ψ +ξ , where ψ is an ordinary derivation and ξ is a linear mapping from
A into the center of A vanishing on each commutator. Clearly, every (generalized)
derivation is a (generalized) Lie derivation as well as a (generalized) Jordan derivation,
and every (generalized) Lie (Jordan) derivation is a (generalized) Lie (Jordan) triple
derivation. The converse is, in general, not true (see [4, 7, 16]). The standard problem
is to find out whether (under some conditions) a Lie derivation is standard.
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In 1964, Martindale [18] introduced the notion of Lie derivations and proved that
every Lie derivation on a primitive ring is standard. From then on, many mathemati-
cians studied this problem and obtained abundant results(see [5, 19]). Hvala [9] studied
generalized Lie derivations of a prime ring and observed that every generalized Lie
derivation of a prime ring is standard, and Yu and Zhang [20] extended to consider
nonlinear generalized Lie derivations of triangular algebras. With the development of
research, many achievements about (nonlinear) Lie n -derivations have been obtained.

For A,B ∈ A , let [A,B] = AB−BA be the usual Lie product. Set p1(A) = A, and
for all integers n � 2,

pn(A1,A2, · · · ,An) = [pn−1(A1,A2, · · · ,An−1),An] = pn−1([A1,A2],A3, · · · ,An).

In [6, 12], they gave a definition about multiplicative generalized Lie n -derivations:

DEFINITION 1.1. [6, 12] Let A be an associated algebra. A map δ :A→A(not
necessarily linear ) is called a multiplicative generalized Lie n-derivation if there exists
a multiplicative Lie n -derivation d on A , such that

δ (pn(A1,A2, · · · ,An)) = pn(δ (A1),A2, · · · ,An)+
n

∑
i=2

pn(A1, · · · ,d(Ai), · · · ,An), (1.1)

for all Ai ∈A, and in this case, d is called an associated multiplicative Lie n-derivation
of δ .

Clearly, (multiplicative generalized) Lie 2-derivations are (multiplicative general-
ized) Lie derivations, and (multiplicative generalized) Lie 3-derivations are (multiplica-
tive generalized) Lie triple derivations. In this vein, there are indeed some interesting
works. The concept of a Lie n -derivation was introduced by Abdullaev [1], where the
form of Lie n -derivations of a certain von Neumann algebra was described. Benkovič
and Eremita [2] showed that every multiplicative Lie n -derivation (under some condi-
tions) on triangular rings has the standard form. Feng and Qi [6] extended Abdullaev’s
result to the case of multiplicative generalized Lie n -derivations on von Neumann al-
gebra. Recently, Ma, Zhang and Liu [17] have obtained that multiplicative generalized
Lie derivations on a reflexive algebra whose lattice is completely distributive and com-
mutative is standard. More details can be seen in [3, 12] and its references.

Inspired by the works mentioned, it is reasonable to consider the multiplicative
generalized Lie n -derivation of completely distributive commutative subspace lattice
algebras in this work.

2. Mathematical preliminaries

Let us introduce the notations and the concepts. Let H be a Hilbert space over
a real or complex field F . A subspace lattice L of H is a strongly closed collection
of projections on H , if it is closed under the usual lattice operations

∨
and

∧
, and

contains the zero operator 0 and the identity operator I . If each pair of projections
in L commute, then L is called a commutative subspace lattice(CSL), and the associ-
ated subspace lattice algebra AlgL = {T ∈ B(H) : T (L) ⊆ L,∀L ∈ L} is called a CSL
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algebra. A totally ordered subspace lattice is called a nest. Recall that a subspace lat-
tice is called completely distributive if e =

∨{N ∈ L : N− � e} for every 0 �= e ∈ L,
where N− =

∨{P ∈ L : P � N} , and its associated subspace lattice algebra is called
completely distributive CSL algebra(shortly written by CDC algebra). For standard
definitions concerning completely distributive subspace lattice algebras see [10, 13].

In [11], they proved that the collection of finite sums of rank-one operators in a
CDC algebra is strongly dense. This result will be frequently used in studying CDC
algebra. Set U(L) = {e ∈ L : e �= 0,e− �= H}.

LEMMA 2.1. [11] Let L be a subspace lattice on a Hilbert space H . Then the
rank one operator x⊗ y belongs to AlgL if and only if there is an element E ∈ U(L)
such that x ∈ E and y ∈ E⊥− . Here x⊗ y is defined as (x⊗ y)z = (z,y)x for z ∈H .

Let AlgL be a CDC algebra. We say e,e′ ∈ U(L) are connected if there exist
finitely many projections e1,e2, . . . ,em ∈ U(L), such that ei and ei+1 are comparable
for each i = 0,1, . . . ,m , where e0 = e,em+1 = e′. C ⊆ U(L) is called a connected
component if each pair in C is connected and any element in U(L)�C is not connected
with any element in C . Recall that a CDC algebra AlgL is irreducible if and only if
the commutant is trivial, i.e. (AlgL)′ = F I , which is also equivalent to the condition
that L⋂L⊥ = {0, I}, where L⊥ = {e⊥ : e ∈ L}. Clearly, Nest algebra is irreducible.
In [8, 14], it turns out that any CDC algebra can be decomposed into the direct sum of
irreducible CDC algebras.

LEMMA 2.2. [8, 14] Let AlgL be a CDC algebra on a separable Hitbert space
H . Then there are no more than countably many connected components {Cn : n ∈ Λ}
of E(L) such that E(L) = ∪{e : e ∈ Cn,n ∈ Λ} . Let em = ∨{e : e ∈ Cm,m ∈ Λ}. Then
{em,m ∈ Λ} ⊆ L∩L⊥ is a subset of pairwise orthogonal projections, and the algebra
AlgL can be written as a direct sum:

AlgL = ∑
m∈Λ

⊕(AlgL)em,

where each (AlgL)em viewed as a subalgebra of operators acting on the range of em

is an irreducible CDC algebra. Here, all convergence means strong convergence.

From the definition of en , we know that its linear span is a Hilbert space H ,
and pairwise orthogonal projections. It follows that the identity and center of AlgL
is I = ∑m∈Λ⊕em and Z(AlgL) = ∑m∈Λ⊕λmem, respectively, where λm ∈ F . In [14],
they prove that each Jordan isomorphism between irreducible CDC algebras is the sum
of an isomorphism and an anti-isomorphism.

LEMMA 2.3. [15] Let AlgL be a non-trivially irreducible completely distributive
commutative subspace lattice algebra on a complex Hilbert space H . Then there exists
a non-trivial projection e ∈ L, such that e(AlgL)e⊥ is faithful AlgL bimodule, i.e.,
for all A ∈ AlgL, if Ae(AlgL)e⊥ = {0}, then Ae = 0 and if e(AlgL)e⊥A = {0}, then
e⊥A = 0.

Let I be the identity operator on H . If L is non-trivial, by Lemma 2.3, there exists
a non-trivial projection e ∈ L, such that e(AlgL)e⊥ is faithful AlgL bimodule. Set
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e1 = e,e2 = I− e1, then e1,e2 are projections of AlgL . Moreover, by the definitions
of pn and ei , we have following results.

LEMMA 2.4. [2] Let AlgL be a non-trivially irreducible CDC algebra on a
complex Hilbert space H and e1 ∈ AlgL be an associated non-trivial projection, e2 =
I− e1. Then, for all A ∈ AlgL, and any positive integer n � 2, we have

pn(A,e1, · · · ,e1) = (−1)n−1e1Ae2 and pn(A,e2, · · · ,e2) = e1Ae2.

LEMMA 2.5. Let AlgL be a non-trivially irreducible CDC algebra on a com-
plex Hilbert space H with non-trivial projections e1,e2 , and δ : AlgL→ AlgL be a
multiplicative generalized Lie n-derivation with an associated multiplicative Lie n-
derivation d . Then there exists an inner derivation d′ : AlgL → AlgL and a multi-
plicative generalized Lie n-derivation δ ′ : AlgL→ AlgL , such that

δ = d′ + δ ′ and e1δ ′(e2)e2 = 0.

Proof. Define maps d′,δ ′ : AlgL→ AlgL by

d′(A) = [δ (e2),A] and δ ′(A) = δ (A)−d′(A)

for all A ∈ AlgL. Clearly, d′ is an inner derivation and δ ′ is a multiplicative gener-
alized Lie n -derivation. Moreover, it follows from δ ′(e2) = δ (e2)−d′(e2) = δ (e2)−
[δ (e2),e2] that e1δ ′(e2)e2 = 0. The proof is completed. �

REMARK 2.1. From Lemma 2.4, we can obtain

0 = δ (pn(e2,e2, · · · ,e2)) = pn(δ (e2),e2, · · · ,e2)+ pn(e2,d(e2), · · · ,e2)
= e1δ (e2)e2 + e1d(e2)e2.

It follows from Lemma 2.5 that e1d(e2)e2 = 0.
Therefore, without loss of generality, we can assume that the multiplicative gener-

alized Lie n -derivation δ and its associated multiplicative Lie n -derivation d of δ on
non-trivially irreducible CDC algebra satisfies e1δ (e2)e2 = e1d(e2)e2 = 0. Moreover,
assume that all algebras in this paper are (n−1)-torsion free.

3. Multiplicative generalized Lie n -derivations on irreducible completely
distributive commutative subspace lattice algebras

In this section, we begin with the irreducible case.

THEOREM 3.1. Let AlgL be an irreducible completely distributive commutative
subspace lattice algebra on a complex Hilbert space H and δ : AlgL → AlgL be a
nonlinear map. Then δ is a multiplicative generalized Lie n(� 2)-derivation if and
only if for every A ∈ AlgL, δ (A) = ψ(A) + ξ (A) , where ψ : AlgL → AlgL is an
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additive generalized derivation and ξ : AlgL→ Z(AlgL) vanishes on each (n−1)-th
commutator pn(A1,A2, · · · ,An).

Proof. If δ (A) = ψ(A)+ ξ (A) , it is easy to check that δ is a multiplicative gen-
eralized Lie n -derivation. So we only need to show “only if” part.

Two cases arise:

Case 1. If L is trivial, then AlgL is a C*-algebra. It follows from the main Theo-
rem of [6] that δ is standard.

Case 2. Assume that L is non-trivial, then there exists a non-trivial projection
e1 ∈ L. Set e2 = I − e1 . Then, for every A in AlgL , A can be decomposed as: A =
e1Ae1 + e1Ae2 + e2Ae2. Set Ai j = ei(AlgL)e j, then, AlgL can be decomposed as

AlgL = e1(AlgL)e1⊕ e1(AlgL)e2⊕ e2(AlgL)e2 = A11 ⊕A12⊕A22.

We divide the proof into several claims.

Claim 1. δ (Aii) ⊆A11 +A22 and δ (A12) ⊆A12.
For every Aii ∈ Aii , note that [Aii,e2] = 0, so we obtain

0 = δ (e1Aiie2) = δ (pn(Aii,e2, · · · ,e2))
= pn−1([δ (Aii),e2], · · · ,e2)+ pn−1([Aii,d(e2)],e2, · · · ,e2)

+
n

∑
i=3

pn−1([Aii,e2], · · · ,d(e2), · · · ,e2)

= e1δ (Aii)e2 + e1Aiid(e2)e2 − e1d(e2)Aiie2

by using Lemma 2.4 and the fact that δ (0) = 0. Following from e1d(e2)e2 = 0 and
e1δ (Aii)e2 = 0, δ (Aii) ⊆A11 +A22 .

For every A12 ∈A12, by Lemma 2.4, one has

δ (A12) = δ (e1A12e2) = δ (pn(A12,e2, · · · ,e2))

= pn(δ (A12),e2, · · · ,e2)+
n

∑
i=2

pn(A12,e2, · · · ,d(e2), · · · ,e2)

= e1δ (A12)e2 +(n−1)[A12,d(e2)].

Multiplying above equation left by e1 and right by e2 , we obatin (n−1)e1[A12,d(e2)]e2

= (n− 1)[A12,d(e2)] = 0. Following from the fact that AlgL is (n− 1)-torsion free,
then [A12,d(e2)] = 0. Consequently, δ (A12) = e1δ (A12)e2 ∈ A12.

Claim 2. d(e1),d(e2) ∈ FI.
Since the center of each irreducible CDC algebra coincides with F I , by using

[A12,d(e2)] = 0 and Lemma 2.3, we can obtain d(e2)∈FI. Then, for every A12 ∈A12,
since d is a multiplicative Lie n -derivation, and thus,

d(A12) = d((pn−1(A12,e2, · · · ,e2)) = d((pn(e1,A12,e2, · · · ,e2))
= e1[d(e1),A12]e2 + e1[e1,d(A12)]e2 = e1[d(e1),A12]e2 + e1d(A12)e2.
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From d(A12) ∈ A12 and 0 = e1[d(e1),A12]e2 = [d(e1),A12], we have d(e1) ∈ FI.

Claim 3. For every Aii ∈ Aii , δ (Aii) ∈ Aii +Fe j (i, j = 1,2 and i �= j).
Take any Ai j ∈ Ai j . If n > 3,

pn(A11,A22,A12,e1 · · · ,e1) = pn(A11,A22,A12,e2 · · · ,e2) = 0. (3.1)

Using Claim 2 and noting that d is a multiplicative Lie n -derivation, we have

0 = d(pn(A11,A22,A12,e2 · · · ,e2)) = [[d(A11),A22]+ [A11,d(A22)],A12].

Noting that [d(A11),A22] ∈ A22 and [A11,d(A22)] ∈ A11 , and combining Lemma 2.3,
we have

[d(A11),A22], [A11,d(A22)] ∈ FI. (3.2)

Also from Eq. (3.1), by Claim 2 and [A11,A22] = 0, one can obtain

0 = δ (pn(A11,A22,A12,e1 · · · ,e1))
= pn−1([δ (A11),A22],A12, · · · ,e1)+ pn−1([A11,d(A22)],A12, · · · ,e1)

+pn−1([A11,A22],d(A12), · · · ,e1)+
n−1

∑
i=4

pn−1([A11,A22],A12, · · · ,d(e1), · · · ,e1)

= pn−1([δ (A11),A22],A12,e1, · · · ,e1)+ pn−1([A11,d(A22)],A12,e1, · · · ,e1)

It follows from Eq. (3.2) and Lemma 2.4 that when n > 3, we have

0 = pn−1([δ (A11),A22],A12, · · · ,e1) = (−1)n−3e1[[δ (A11),A22],A12]e2. (3.3)

From Claim 1, we can assume that there exists Bii ∈Aii such that δ (A11) = B11 +B22 .
By using this in Eq. (3.3), we get for all Ai j ∈ Ai j , A12[δ (A11),A22] = A12[B22,A22] =
0, which implies A12[B22,A22] = 0. Hence, by Lemma 2.3, we obtain [B22,A22] = 0
for all n > 3. It means that B22 ∈ Fe2.

When n = 2, p2(A11,A22) = 0, and when n = 3, p3(A11,A22,A12) = 0, as we
have seen in the proof of above, just a special case. And hence, for every A11 ∈ A11 ,
δ (A11) = B11 +B22 ∈ A11 +Fe2.

Similarly, we have δ (A22) ∈ A22 +Fe1.
Next, from Claim 3, we define two maps θ : AlgL→FI and F : AlgL→ AlgL ,

respectively, by

θ (A) = e2δ (e1Ae1)e2 + e1δ (e2Ae2)e1 and F(A) = δ (A)−θ (A)

for every A ∈ AlgL. It follows from Claim 2 and 3 that for all Ai j ∈Ai j,

F(A12) = δ (A12) and F(Aii)− δ (Aii) ∈ FI. (3.4)

In addition, since d is a multiplicative Lie n -derivation, by a similar argument to
that of [19], one can obtain that there exists an additive derivation f : AlgL → AlgL
and a central-valued map γ : AlgL→FI annihilating each (n−1) th commutator, such
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that d(A) = f (A)+ γ(A). Moreover, by Claim 1 and Claim 3, the following claim is
true.

Claim 4. For every Ai j ∈Ai j , F(Ai j) ∈ Ai j.

Claim 5. For every Ai j,Bi j ∈Ai j , we have
(i) F(A11A12)= F(A11)A12+A11 f (A12) and F(A12A22)= F(A12)A22+A12 f (A22);
(ii) F(AiiBii) = F(Aii)Bii +Aii f (Bii).
For every Ai j ∈Ai j , since pn(A11,A12,e2,e2 · · · ,e2) = A11A12 ∈A12 , by Claim 3,

4 and Lemma 2.4, it yields that

F(A11A12) = δ (A11A12) = δ (pn(A11,A12,e2,e2 · · · ,e2))
= pn−1([δ (A11),A22],e2, · · · ,e2)+ pn−1([A11,d(A12)],e2, · · · ,e2)
= pn−1([δ (A11)−θ (A11),A12],e2, · · · ,e2)

+pn−1([A11, f (A12)+ γ(A12)],e2, · · · ,e2)
= pn−1([F(A11),A12],e2, · · · ,e2)+ pn−1([A11, f (A12)],e2, · · · ,e2)
= F(A11)A12 +A11 f (A12).

Analogously, one can show that for all Ai j ∈ Ai j , F(A12A22) = F(A12)A22 +
A12 f (A22) . Thus, (i) holds true. It remains to prove (ii). Let Ai j,Bi j ∈ Ai j ( i, j = 1,2),
by (i), we have

F(A11B11A12) = F(A11B11)A12 +A11B11 f (A12),

and

F(A11B11A12) = F(A11)B11A12 +A11 f (B11A12)
= F(A11)B11A12 +A11 f (B11)A12 +A11B11 f (A12).

Now, together with above two equalities, it implies that (F(A11B11)−F(A11)B11 −
A11 f (B11))A12 = 0. By using Lemma 2.3, we obtain F(A11B11)= F(A11)B11+A11 f (B11).

Analogously, we can prove that F(A22B22) = F(A22)B22 +A22 f (B22).

Claim 6. For any Ai j ∈ Ai j , we have
(i) F(A11 +A12)−F(A11)−F(A12) ∈ FI;
(ii) F(A12 +A22)−F(A12)−F(A22) ∈ FI.
For every Ai j,Bi j ∈ Ai j , if n � 3, by the fact that A11A12 = [A11 +B12,A12] , and

considering Lemma 2.4, Claim 3 and Eq. (3.4), we have

F(A11A12) = δ (A11A12) = δ (pn−1([A11 +B12,A12],e2, · · · ,e2))
= pn(δ (A11 +B12),A12,e2, · · · ,e2)+ pn(A11 +B12,d(A12),e2, · · · ,e2)
= pn−1([δ (A11 +B12),A12],e2, · · · ,e2)+ pn−1([A11 +B12,d(A12],e2, · · · ,e2)
= e1[δ (A11 +B12)−θ (A11 +A12),A12]e2 + e1[A11 +B12, f (A12)+ γ(A12)]e2

= e1[F(A11 +B12),A12]e2 +A11 f (A12).
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On the other hand, by Claim 5 (i) and Eq. (3.4), one can obtain

F(A11A12) = F(A11)A12 +A11 f (A12) = [F(A11),A12]+A11 f (A12).

Comparing the above two equalities gives that for all A12 ∈ A12 , e1[F(A11 +
B12)−F(A11),A12]e2 = 0, and then,

e1(F(A11 +B12)−F(A11))e1 + e2(F(A11 +B12)−F(A11))e2 ∈ FI. (3.5)

Also by Lemma 2.4, Claim 3 and Eq. (3.4), one has

F(B12) = δ (B12) = δ (pn(A11 +B12,e2 · · · ,e2))
= pn(δ (A11 +B12),e2, · · · ,e2) = pn(F(A11 +B12),e2, · · · ,e2)
= e1F(A11 +B12)e2.

This implies that e1(F(A11 + B12)−F(B12))e2 = 0. Then, it follows from Eq. (3.5)
that F(A11 +A12)−F(A11)− f (A12) ∈ FI. Note that when n = 2, using the fact that
A11A12 = [A11 +B12,A12], as we have seen in the proof of above, just a special case and
hence (i) holds true.

Analogously, one can prove that F(A12 +A22)−F(A12)− f (A22) ∈ FI .

Claim 7. For any Ai j,Bi j ∈Ai j and 1 � i � j = 2, F(Ai j +Bi j) = F(Ai j)+F(Bi j) .
Take any A12,B12 ∈A12 . Noting that A12+B12 = pn(e1+A12,B12+e2,e2, · · · ,e2) ,

by Eq. (3.4) and Claim 6, one can obtain

F(A12 +B12)
= δ (A12 +B12) = δ (pn(e1 +A12,B12 + e2,e2, · · · ,e2))
= pn(δ (e1 +A12),B12 + e2,e2, · · · ,e2)+ pn(e1 +A12,d(B12 + e2),e2, · · · ,e2)
= pn(F(e1 +A12),B12 + e2,e2, · · · ,e2)+ pn(e1 +A12, f (B12 + e2),e2, · · · ,e2)
= pn(F(e1)+F(A12),B12 + e2,e2, · · · ,e2)+ pn(e1 +A12, f (B12),e2, · · · ,e2)
= e1[F(e1)+F(A12),B12 + e2]e2 + e1[e1 +A12, f (B12)]e2

= F(e1)B12 +F(A12)+ f (B12) = F(A12)+F(B12). (3.6)

When n = 2, using the fact A12 +B12 = [e1 +A12,B12 + e2], Eq. (3.6) still holds true.
Taking any A11,B11 ∈ A11 and any A12 ∈ A12 , by Eq. (3.6) and Claim 5(i), one

has
F((A11 +B11)A12) = F(A11 +B11)A12 +(A11 +B11)F(A12)

and

F((A11 +B11)A12) = F(A11)A12 +F(B11)A12 +A11F(A12)+B11F(A12)

Comparing the above relations, one can obtain that for all A12 ∈ A12 ,

(F(A11 +B11)−F(A11)−F(B11))A12 = 0,
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it follows from Lemma 2.3 that F(A11 +B11) = F(A11)+F(B11). Similarly, one can
obtain F(A22 +B22) = F(A22)+F(B22).

Claim 8. For any Ai j ∈ Ai j , we have F(A11 +A12 +A22)−F(A11)−F(A12)−
F(A22) ∈ FI .

Take any Ai j ∈ Ai j . If n � 3, note that

pn(A11 +A12 +A22,B12,e2, · · · ,e2) = pn(A11 +A22,B12,e2, · · · ,e2)
= A11B12−B12A22 ∈ A12,

then, by Lemma 2.4, Claim 5, 6 and Eq. (3.4), we have

F(A11B12−B12A22) = δ (pn(A11 +A12 +A22,B12,e2, · · · ,e2))
= pn(δ (A11 +A12 +A22),B12,e2, · · · ,e2)+ pn(A11 +A12 +A22,d(B12),e2, · · · ,e2)
= pn(F(A11 +A12 +A22),B12,e2, · · · ,e2)+ pn(A11 +A12 +A22, f (B12),e2, · · · ,e2)
= e1[F(A11 +A12 +A22),B12]e2 +A11 f (B12)− f (B12)A22.

and

F(A11B12−B12A22) = δ (pn(A11 +A22,B12,e2, · · · ,e2))
= δ (pn(A11,B12,e2, · · · ,e2)+ pn(A22,B12,e2, · · · ,e2))
= pn(F(A11),B12,e2, · · · ,e2)+ pn(F(A22),B12,e2, · · · ,e2)

+pn(A11, f (B12),e2, · · · ,e2)+ pn(A22, f (B12),e2, · · · ,e2)
= e1[F(A11)+F(A22),B12]e2 +A11 f (B12)− f (B12)A22.

Comparing the above relations, one can obtain that for all B12 ∈ A12 ,

e1[F(A11 +A12 +A22)−F(A11)−F(A22),B12]e2 = 0. (3.7)

When n = 2, using the fact [A11 + A12 + A22,B12] = [A11 + A22,B12], one can
obtain that Eq. (3.7) still holds true. Then, one has

e1(F(A11 +A12 +A22)−F(A11)−F(A22))e1

+e2(F(A11 +A12 +A22)−F(A11)−F(A22))e2 ∈ FI.

Similar argument to that of Claim 6, notice that

e1(F(A11 +A12 +A22)−F(A11)−F(A22))e2

= pn(F(A11 +A12 +A22)−F(A11)−F(A22,e2, · · · ,e2)
= pn(δ (A11 +A12 +A22),e2, · · · ,e2)− pn(δ (A11),e2, · · · ,e2)− pn(δ (A22),e2, · · · ,e2)
= δ (pn(A11 +A12 +A22,e2, · · · ,e2)− pn(A11,e2, · · · ,e2)− pn(A22,e2, · · · ,e2))
= δ (pn(A12,e2, · · · ,e2) = δ (A12) = F(A12).

Thus, the claim is true.
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Now, from Claim 8, we define two maps: h : AlgL→ FI and ψ : AlgL→ AlgL
respectively, by

h(A) = F(A11 +A12 +A22)−F(A11)−F(A12)−F(A22) and ψ(A) = F(A)−h(A)
(3.8)

for all A = A11 +A12 +A22 ∈ AlgL. It is easy to see that for all Ai j ∈ Ai j, h(Ai j) = 0.
Hence from Claim 7, we get that for all Ai j ∈ Ai j,

ψ(A11 +A12 +A22) = ψ(A11)+ ψ(A12)+ ψ(A22). (3.9)

Thus, for all A ∈ AlgL, one has

δ (A) = F(A)+ θ (A) = ψ(A)+h(A)+ θ (A) = ψ(A)+ ξ (A), (3.10)

where ξ ≡ h + θ is a central-valued map on an irreducible completely distributive
commutative subspace lattice algebra AlgL.

Claim 9. ψ is an additive generalized derivation with associated derivation f .
Take any A = A11 +A12 +A22,B = B11 +B12 +B22 ∈ AlgL (Ai j,Bi j ∈ Ai j) . By

Claim 7 and Eqs. (3.8), (3.9), one obtains

ψ(A+B) = ψ(A11 +A12 +A22 +B11 +B12 +B22)
= ψ(A11 +B11)+ ψ(A12 +B12)+ ψ(A22 +B22)
= ψ(A11)+ ψ(B11)+ ψ(A12)+ ψ(B12)+ ψ(A22)+ ψ(B22)
= ψ(A11 +A12 +A22)+ ψ(B11 +B12 +B22) = ψ(A)+ ψ(B).

From Claims 4 and 5, Eqs. (3.4), (3.8) and (3.9), we have

ψ(AB) = ψ(A11B11 +A11B12 +A12B22 +A22B22)
= ψ(A11B11)+ ψ(A11B12)+ ψ(A12B22)+ ψ(A22B22)
= F(A11B11)+F(A11B12)+F(A12B22)+F(A22B22)
= F(A11)B11 +A11 f (B11)+F(A11)B12 +A11 f (B12)

+F(A12)B22 +A12 f (B22)+F(A22)B22 +A22 f (B22)
= (ψ(A11)+ ψ(A12)+ ψ(A22))(B11 +B12 +B22)

+(A11 +A12 +A22)( f (B11)+ f (B12)+ f (B22))
= ψ(A)B+A f (B).

This shows that G is an additive generalized derivation with associated derivation
f . At last, following from Eq. (3.10), we only need prove that ξ sends each (n−1)-th
commutator pn(A1,A2, · · · ,An) to zero.

Claim 10. ξ (pn(A1,A2, · · · ,An)) = 0 holds for all Ai ∈ AlgL.
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Take any Ai ∈ AlgL. By the above all claims, one has

ξ (pn(A1,A2, · · · ,An)) = δ (pn(A1,A2, · · · ,An))−ψ(pn(A1,A2, · · · ,An))

= pn−1([δ (A1),A2], · · · ,An)+
n

∑
i=2

pn(A1, · · · ,d(Ai), · · · ,An)

−pn−1([ψ(A1),A2], · · · ,An)−
n

∑
i=2

pn(A1, · · · , f (Ai), · · · ,An)

= pn−1([F(A1),A2], · · · ,An)+
n

∑
i=2

pn(A1, · · · , f (Ai), · · · ,An)

−pn−1([ψ(A1),A2], · · · ,An)−
n

∑
i=2

pn(A1, · · · , f (Ai), · · · ,An)

= pn−1([F(A1)−ψ(A1),A2], · · · ,An) = 0

The proof is completed. �

4. Main results

In this section, we study multiplicative generalized Lie n -derivations on com-
pletely distributive commutative subspace lattice algebras. The main result reads as
follows.

THEOREM 4.1. Let AlgL be an associated completely distributive commutative
subspace lattice algebra on a complex Hilbert space H and δ : AlgL → AlgL be a
nonlinear map. Then δ is a multiplicative generalized Lie n(� 2)-derivation if and
only if for every A ∈ AlgL, δ (A) = ψ(A) + ξ (A) , where ψ : AlgL → AlgL is an
additive generalized derivation and ξ : AlgL→ Z(AlgL) vanishes on each (n− 1) th
commutator pn(A1,A2, · · · ,An).

Proof. From the proof of Theorem 3.1, we know that only need to check the case
that L is non-trivial.

Let em =∨{e : e∈Cm,m∈Λ} be the projections of L as in Lemma 2.2. Following
from Lemma 2.2, AlgL= ∑m∈Λ⊕(AlgL)em is the irreducible decomposition of AlgL .
Fixing an index m , we know that em is also a Hilbert space and

(AlgL)em = em(AlgL)em = Alg(emL).

Then for each m, Alg(emL) is an irreducible CDC algebra on a Hilbert space em .
Let δ be a multiplicative generalized Lie n(� 2)-derivation on AlgL . It follows from
Theorem 3.1 that one can define two maps δm,dm : Alg(emL) → Alg(emL) by

δ (A) = δm(A) = ψm(A)+ ξm(A) and d(A) = dm(A) = fm(A)+ γm(A). (4.1)

for all A ∈ Alg(emL), where ψm : Alg(emL) → Alg(emL) is an additive generalized
derivationwith associated derivation fm, and ξm : Alg(emL)→ Z(Alg(emL)) is a central-
valued map annihilating all (n−1)-th commutators pn(A1,A2, · · · ,An) .
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In [14], it turns out that for a CDC algebra, the algebra generated by all rank-one
operators in AlgL is ultraweakly dense. Choosing a set E ∈ U(L) , for any x ∈ E and
y ∈ E⊥− , by Lemma 2.1, one can obtain that x⊗ y ∈ AlgL is a rank-one operator. For
every u⊗ v∈ Alg(emL) and A ∈ Alg(emL) , it follows from Theorem 3.1 that

ψm((u⊗ v)A(x⊗ y)) = ψm(u⊗ v)A(x⊗ y)+ (u⊗ v) fm(A)(x⊗ y)+ (u⊗ v)A fm(x⊗ y).
(4.2)

Assuming that {Ak} strongly converges to A, where {Ak},A ∈ Alg(emL), it fol-
lows from (4.2) that

(u⊗ v) fm(Ak)(x⊗ y)
= ψm((u⊗ v)Ak(x⊗ y))−ψm(u⊗ v)Ak(x⊗ y)− (u⊗ v)Ak fm(x⊗ y)
→ ψm((u⊗ v)A(x⊗ y))−ψm(u⊗ v)A(x⊗ y)− (u⊗ v)A fm(x⊗ y)
= (u⊗ v) fm(A)(x⊗ y).

This shows that fm is strongly convergent, and then ψm is strongly convergent.
For A1,A2, · · · ,An ∈ AlgL , we assume that {Ai

k} strongly converges to Ai , respec-
tively. Since AlgL= ∑m∈Λ⊕(AlgL)em, and {em} are pairwise orthogonal projections,
then for every em, {Ai

kem} strongly converges to Aiem , respectively, and

Ai
kA

j
k = ( ∑

m∈Λ
⊕Ai

kem)(∑
i∈Λ

⊕Aj
kem) = ∑

m∈Λ
⊕Ai

kA
j
kem.

Then, for every x in Hilbert space H , it follows from the proof of Theorem 3.1
and Eq. (4.1) that

δ (pn(A1
k ,A

2
k , · · · ,An

k))x
= δ (pn( ∑

m∈Λ
⊕A1

kem, ∑
m∈Λ

⊕A2
kem, · · · , ∑

m∈Λ
⊕An

kem))x

= (pn(δ ( ∑
m∈Λ

⊕A1
kem), ∑

m∈Λ
⊕A2

kem, · · · , ∑
m∈Λ

⊕An
kem)

+
n

∑
i=2

pn( ∑
m∈Λ

⊕A1
kem, · · · ,d( ∑

m∈Λ
⊕Ai

kem), · · · , ∑
m∈Λ

⊕An
kem))x

= (pn( ∑
m∈Λ

⊕ψm(A1
k)em, ∑

m∈Λ
⊕A2

kem, · · · , ∑
m∈Λ

⊕An
kem)

+
n

∑
i=2

pn( ∑
m∈Λ

⊕A1
kem, · · · , ∑

m∈Λ
⊕ fm(Ai

k)em, · · · , ∑
m∈Λ

⊕An
kem))x

= ( ∑
m∈Λ

⊕(pn(ψm(A1
k)em,A2

kem, · · · ,An
kem)+

n

∑
i=2

pn(A1
kem, · · · , fm(Ai

k)em, · · · ,An
kem))x

→ ∑
m∈Λ

⊕(pn(ψm(A1)em,A2em, · · · ,Anem)+
n

∑
i=2

pn(A1em, · · · , fm(Ai)em, · · · ,Anem))x

= ∑
m∈Λ

⊕(pn(δm(A1)em,A2em, · · · ,Anem)+
n

∑
i=2

pn(A1em, · · · ,dm(Ai)em, · · · ,Anem))x

= ∑
m∈Λ

⊕δm(pn(A1em,A2em, · · · ,Anem))x = δ (pn(A1,A2, · · · ,An))x.
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It means that δ is strongly convergent on CDC algebra AlgL . Thus, for every
A ∈ AlgL, we obtain that

δ (A) = ∑
m∈Λ

⊕δm(Aem) = ∑
m∈Λ

⊕(ψm(Aem)+ ξm(Aem)).

Write ψ(A) = ∑m∈Λ⊕ψm(Aem) and ξ (A) = ∑m∈Λ⊕ξm(Aem) , then we have δ = ψ +
ξ . The proof is completed. �

5. Conclusions

In this paper, we use decomposition of algebraic structure and the properties of
completely distributive commutative subspace lattice algebras to study the multiplica-
tive generalized Lie n -derivation on certain CSL algebra. We proved that every multi-
plicative generalized Lie n -derivation on completely distributive commutative subspace
lattice algebras is standard. Moreover, the purpose of this modification is to answer the
classic problem of preserving mappings of some certain CSL algebra.
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