MULTIPLICATIVE GENERALIZED LIE *n*-DERIVATIONS ON COMPLETELY DISTRIBUTIVE COMMUTATIVE SUBSPACE LATTICE ALGEBRAS

Fei Ma^* and Min Yin

(Communicated by C.-K. Ng)

Abstract. Let $Alg\mathcal{L}$ be a completely distributive commutative subspace lattice algebra and let $\delta : Alg\mathcal{L} \to Alg\mathcal{L}$ be a nonlinear map. It is shown that δ is a multiplicative generalized Lie *n*-derivation on $Alg\mathcal{L}$ with an associated multiplicative generalized Lie *n*-derivation *d* if and only if $\delta(A) = \psi(A) + \xi(A)$ holds for every $A \in Alg\mathcal{L}$, where $\psi : Alg\mathcal{L} \to Alg\mathcal{L}$ is an additive generalized derivation and $\xi : Alg\mathcal{L} \to Z(Alg\mathcal{L})$ is a central-valued map vanishing on each (n-1)-th commutator $p_n(A_1, A_2, \dots, A_n)$.

1. Introduction

Let \mathcal{R} be an associative commutative unital ring and \mathcal{A} be an algebra over \mathcal{R} . Recall that an \mathcal{R} -linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is called a *Jordan derivation* if $\delta(A^2) = \delta(A)A + A\delta(A)$ holds for all $A \in \mathcal{A}$; δ is called a *Lie derivation* if $\delta([A,B]) = [\delta(A),B] + [A,\delta(B)]$ holds for all $A, B \in \mathcal{A}$, where [A,B] = AB - BA is the usual Lie product; δ is called a *Lie triple derivation* if $\delta([[A,B],C]) = [[\delta(A),B],C] + [[A,\delta(B)],C] + [[A,B],\delta(C)]$ holds for all $A, B, C \in \mathcal{A}$; δ is called a *generalized Lie derivation* if there exists a derivation *d* such that

 $\delta([A,B]) = \delta(A)B - \delta(B)A + Ad(B) - Bd(A) \text{ for all } A, B \in \mathcal{A}.$

If there is no assumption of additivity for δ in the above definitions, then δ is said to be multiplicative (or nonlinear). We say a Lie derivation δ is *standard* if it can be decomposed as $\delta = \psi + \xi$, where ψ is an ordinary derivation and ξ is a linear mapping from \mathcal{A} into the center of \mathcal{A} vanishing on each commutator. Clearly, every (generalized) derivation is a (generalized) Lie derivation as well as a (generalized) Jordan derivation, and every (generalized) Lie (Jordan) derivation is a (generalized) Lie (Jordan) triple derivation. The converse is, in general, not true (see [4, 7, 16]). The standard problem is to find out whether (under some conditions) a Lie derivation is standard.

^{*} Corresponding author.

Mathematics subject classification (2020): 16W25, 47L35.

Keywords and phrases: Multiplicative generalized Lie *n*-derivations, multiplicative Lie *n*-derivations, completely distributive commutative subspace lattice algebras, strong convergence.

The Project Supported by Natural Science Foundation of Shaanxi Province (No. 2023-JC-YB-082), "Qinglan talents" Program of Xianyang Normal University of China (No. XSYQL201801), the Key Cultivation Project of Xianyang Normal University of China (No. XSYK22031).

In 1964, Martindale [18] introduced the notion of Lie derivations and proved that every Lie derivation on a primitive ring is standard. From then on, many mathematicians studied this problem and obtained abundant results(see [5, 19]). Hvala [9] studied generalized Lie derivations of a prime ring and observed that every generalized Lie derivation of a prime ring is standard, and Yu and Zhang [20] extended to consider nonlinear generalized Lie derivations of triangular algebras. With the development of research, many achievements about (nonlinear) Lie n-derivations have been obtained.

For $A, B \in A$, let [A, B] = AB - BA be the usual Lie product. Set $p_1(A) = A$, and for all integers $n \ge 2$,

$$p_n(A_1, A_2, \cdots, A_n) = [p_{n-1}(A_1, A_2, \cdots, A_{n-1}), A_n] = p_{n-1}([A_1, A_2], A_3, \cdots, A_n).$$

In [6, 12], they gave a definition about multiplicative generalized Lie *n*-derivations:

DEFINITION 1.1. [6, 12] Let \mathcal{A} be an associated algebra. A map $\delta : \mathcal{A} \to \mathcal{A}$ (not necessarily linear) is called a *multiplicative generalized Lie n-derivation* if there exists a multiplicative Lie *n*-derivation *d* on \mathcal{A} , such that

$$\delta(p_n(A_1, A_2, \dots, A_n)) = p_n(\delta(A_1), A_2, \dots, A_n) + \sum_{i=2}^n p_n(A_1, \dots, d(A_i), \dots, A_n), \quad (1.1)$$

for all $A_i \in A$, and in this case, *d* is called *an associated multiplicative Lie n-derivation* of δ .

Clearly, (multiplicative generalized) Lie 2-derivations are (multiplicative generalized) Lie derivations, and (multiplicative generalized) Lie 3-derivations are (multiplicative generalized) Lie triple derivations. In this vein, there are indeed some interesting works. The concept of a Lie *n*-derivation was introduced by Abdullaev [1], where the form of Lie *n*-derivations of a certain von Neumann algebra was described. Benkovič and Eremita [2] showed that every multiplicative Lie *n*-derivation (under some conditions) on triangular rings has the standard form. Feng and Qi [6] extended Abdullaev's result to the case of multiplicative generalized Lie *n*-derivations on von Neumann algebra. Recently, Ma, Zhang and Liu [17] have obtained that multiplicative generalized Lie derivations on a reflexive algebra whose lattice is completely distributive and commutative is standard. More details can be seen in [3, 12] and its references.

Inspired by the works mentioned, it is reasonable to consider the multiplicative generalized Lie *n*-derivation of completely distributive commutative subspace lattice algebras in this work.

2. Mathematical preliminaries

Let us introduce the notations and the concepts. Let \mathcal{H} be a Hilbert space over a real or complex field \mathcal{F} . A *subspace lattice* \mathcal{L} of \mathcal{H} is a strongly closed collection of projections on \mathcal{H} , if it is closed under the usual lattice operations \bigvee and \bigwedge , and contains the zero operator 0 and the identity operator *I*. If each pair of projections in \mathcal{L} commute, then \mathcal{L} is called a *commutative subspace lattice*(*CSL*), and the associated subspace lattice algebra $Alg\mathcal{L} = \{T \in B(\mathcal{H}) : T(L) \subseteq L, \forall L \in \mathcal{L}\}$ is called a *CSL* algebra. A totally ordered subspace lattice is called a *nest*. Recall that a subspace lattice is called *completely distributive* if $e = \bigvee \{N \in \mathcal{L} : N_- \not\supseteq e\}$ for every $0 \neq e \in \mathcal{L}$, where $N_- = \bigvee \{P \in \mathcal{L} : P \not\supseteq N\}$, and its associated subspace lattice algebra is called *completely distributive CSL algebra*(shortly written by *CDC* algebra). For standard definitions concerning completely distributive subspace lattice algebra see [10, 13].

In [11], they proved that the collection of finite sums of rank-one operators in a *CDC* algebra is strongly dense. This result will be frequently used in studying *CDC* algebra. Set $\mathcal{U}(\mathcal{L}) = \{e \in \mathcal{L} : e \neq 0, e_- \neq H\}$.

LEMMA 2.1. [11] Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Then the rank one operator $x \otimes y$ belongs to $Alg\mathcal{L}$ if and only if there is an element $E \in \mathcal{U}(L)$ such that $x \in E$ and $y \in E_{-}^{\perp}$. Here $x \otimes y$ is defined as $(x \otimes y)z = (z, y)x$ for $z \in \mathcal{H}$.

Let $Alg\mathcal{L}$ be a CDC algebra. We say $e, e' \in \mathcal{U}(\mathcal{L})$ are connected if there exist finitely many projections $e_1, e_2, \ldots, e_m \in \mathcal{U}(\mathcal{L})$, such that e_i and e_{i+1} are comparable for each $i = 0, 1, \ldots, m$, where $e_0 = e, e_{m+1} = e'$. $\mathcal{C} \subseteq \mathcal{U}(\mathcal{L})$ is called a connected component if each pair in \mathcal{C} is connected and any element in $\mathcal{U}(\mathcal{L}) \setminus \mathcal{C}$ is not connected with any element in \mathcal{C} . Recall that a CDC algebra $Alg\mathcal{L}$ is *irreducible* if and only if the commutant is trivial, i.e. $(Alg\mathcal{L})' = \mathcal{F}I$, which is also equivalent to the condition that $\mathcal{L} \cap \mathcal{L}^{\perp} = \{0, I\}$, where $\mathcal{L}^{\perp} = \{e^{\perp} : e \in \mathcal{L}\}$. Clearly, Nest algebra is irreducible. In [8, 14], it turns out that any CDC algebra can be decomposed into the direct sum of irreducible CDC algebras.

LEMMA 2.2. [8, 14] Let $Alg\mathcal{L}$ be a CDC algebra on a separable Hitbert space \mathcal{H} . Then there are no more than countably many connected components $\{C_n : n \in \Lambda\}$ of $\mathcal{E}(\mathcal{L})$ such that $\mathcal{E}(\mathcal{L}) = \bigcup \{e : e \in C_n, n \in \Lambda\}$. Let $e_m = \lor \{e : e \in C_m, m \in \Lambda\}$. Then $\{e_m, m \in \Lambda\} \subseteq \mathcal{L} \cap \mathcal{L}^{\perp}$ is a subset of pairwise orthogonal projections, and the algebra $Alg\mathcal{L}$ can be written as a direct sum:

$$Alg\mathcal{L} = \sum_{m\in\Lambda} \oplus (Alg\mathcal{L})e_m,$$

where each $(Alg\mathcal{L})e_m$ viewed as a subalgebra of operators acting on the range of e_m is an irreducible CDC algebra. Here, all convergence means strong convergence.

From the definition of e_n , we know that its linear span is a Hilbert space \mathcal{H} , and pairwise orthogonal projections. It follows that the identity and center of $Alg\mathcal{L}$ is $I = \sum_{m \in \Lambda} \oplus e_m$ and $\mathcal{Z}(Alg\mathcal{L}) = \sum_{m \in \Lambda} \oplus \lambda_m e_m$, respectively, where $\lambda_m \in \mathcal{F}$. In [14], they prove that each Jordan isomorphism between irreducible *CDC* algebras is the sum of an isomorphism and an anti-isomorphism.

LEMMA 2.3. [15] Let $Alg\mathcal{L}$ be a non-trivially irreducible completely distributive commutative subspace lattice algebra on a complex Hilbert space \mathcal{H} . Then there exists a non-trivial projection $e \in \mathcal{L}$, such that $e(Alg\mathcal{L})e^{\perp}$ is faithful $Alg\mathcal{L}$ bimodule, i.e., for all $A \in Alg\mathcal{L}$, if $Ae(Alg\mathcal{L})e^{\perp} = \{0\}$, then Ae = 0 and if $e(Alg\mathcal{L})e^{\perp}A = \{0\}$, then $e^{\perp}A = 0$.

Let *I* be the identity operator on \mathcal{H} . If \mathcal{L} is non-trivial, by Lemma 2.3, there exists a non-trivial projection $e \in \mathcal{L}$, such that $e(Alg\mathcal{L})e^{\perp}$ is faithful $Alg\mathcal{L}$ bimodule. Set

 $e_1 = e_1, e_2 = I - e_1$, then e_1, e_2 are projections of $Alg\mathcal{L}$. Moreover, by the definitions of p_n and e_i , we have following results.

LEMMA 2.4. [2] Let $Alg\mathcal{L}$ be a non-trivially irreducible CDC algebra on a complex Hilbert space \mathcal{H} and $e_1 \in Alg\mathcal{L}$ be an associated non-trivial projection, $e_2 = I - e_1$. Then, for all $A \in Alg\mathcal{L}$, and any positive integer $n \ge 2$, we have

$$p_n(A, e_1, \dots, e_1) = (-1)^{n-1} e_1 A e_2$$
 and $p_n(A, e_2, \dots, e_2) = e_1 A e_2$.

LEMMA 2.5. Let $Alg\mathcal{L}$ be a non-trivially irreducible CDC algebra on a complex Hilbert space \mathcal{H} with non-trivial projections e_1, e_2 , and $\delta : Alg\mathcal{L} \to Alg\mathcal{L}$ be a multiplicative generalized Lie n-derivation with an associated multiplicative Lie nderivation d. Then there exists an inner derivation $d' : Alg\mathcal{L} \to Alg\mathcal{L}$ and a multiplicative generalized Lie n-derivation $\delta' : Alg\mathcal{L} \to Alg\mathcal{L}$, such that

$$\delta = d' + \delta'$$
 and $e_1 \delta'(e_2) e_2 = 0$.

Proof. Define maps $d', \delta' : Alg\mathcal{L} \to Alg\mathcal{L}$ by

$$d'(A) = [\delta(e_2), A]$$
 and $\delta'(A) = \delta(A) - d'(A)$

for all $A \in Alg\mathcal{L}$. Clearly, d' is an inner derivation and δ' is a multiplicative generalized Lie *n*-derivation. Moreover, it follows from $\delta'(e_2) = \delta(e_2) - d'(e_2) = \delta(e_2) - [\delta(e_2), e_2]$ that $e_1\delta'(e_2)e_2 = 0$. The proof is completed. \Box

REMARK 2.1. From Lemma 2.4, we can obtain

$$0 = \delta(p_n(e_2, e_2, \dots, e_2)) = p_n(\delta(e_2), e_2, \dots, e_2) + p_n(e_2, d(e_2), \dots, e_2)$$

= $e_1\delta(e_2)e_2 + e_1d(e_2)e_2.$

It follows from Lemma 2.5 that $e_1d(e_2)e_2 = 0$.

Therefore, without loss of generality, we can assume that the multiplicative generalized Lie *n*-derivation δ and its associated multiplicative Lie *n*-derivation *d* of δ on non-trivially irreducible *CDC* algebra satisfies $e_1\delta(e_2)e_2 = e_1d(e_2)e_2 = 0$. Moreover, assume that all algebras in this paper are (n-1)-torsion free.

3. Multiplicative generalized Lie *n*-derivations on irreducible completely distributive commutative subspace lattice algebras

In this section, we begin with the irreducible case.

THEOREM 3.1. Let $Alg\mathcal{L}$ be an irreducible completely distributive commutative subspace lattice algebra on a complex Hilbert space \mathcal{H} and $\delta : Alg\mathcal{L} \to Alg\mathcal{L}$ be a nonlinear map. Then δ is a multiplicative generalized Lie $n \geq 2$ -derivation if and only if for every $A \in Alg\mathcal{L}$, $\delta(A) = \Psi(A) + \xi(A)$, where $\Psi : Alg\mathcal{L} \to Alg\mathcal{L}$ is an additive generalized derivation and $\xi : Alg\mathcal{L} \to Z(Alg\mathcal{L})$ vanishes on each (n-1)-th commutator $p_n(A_1, A_2, \dots, A_n)$.

Proof. If $\delta(A) = \psi(A) + \xi(A)$, it is easy to check that δ is a multiplicative generalized Lie *n*-derivation. So we only need to show "only if" part.

Two cases arise:

Case 1. If \mathcal{L} is trivial, then $Alg\mathcal{L}$ is a C*-algebra. It follows from the main Theorem of [6] that δ is standard.

Case 2. Assume that \mathcal{L} is non-trivial, then there exists a non-trivial projection $e_1 \in \mathcal{L}$. Set $e_2 = I - e_1$. Then, for every A in $Alg\mathcal{L}$, A can be decomposed as: $A = e_1Ae_1 + e_1Ae_2 + e_2Ae_2$. Set $\mathcal{A}_{ij} = e_i(Alg\mathcal{L})e_j$, then, $Alg\mathcal{L}$ can be decomposed as

$$Alg\mathcal{L} = e_1(Alg\mathcal{L})e_1 \oplus e_1(Alg\mathcal{L})e_2 \oplus e_2(Alg\mathcal{L})e_2 = \mathcal{A}_{11} \oplus \mathcal{A}_{12} \oplus \mathcal{A}_{22}.$$

We divide the proof into several claims.

Claim 1. $\delta(A_{ii}) \subseteq A_{11} + A_{22}$ and $\delta(A_{12}) \subseteq A_{12}$. For every $A_{ii} \in A_{ii}$, note that $[A_{ii}, e_2] = 0$, so we obtain

$$0 = \delta(e_1 A_{ii}e_2) = \delta(p_n(A_{ii}, e_2, \dots, e_2))$$

= $p_{n-1}([\delta(A_{ii}), e_2], \dots, e_2) + p_{n-1}([A_{ii}, d(e_2)], e_2, \dots, e_2)$
+ $\sum_{i=3}^n p_{n-1}([A_{ii}, e_2], \dots, d(e_2), \dots, e_2)$
= $e_1\delta(A_{ii})e_2 + e_1A_{ii}d(e_2)e_2 - e_1d(e_2)A_{ii}e_2$

by using Lemma 2.4 and the fact that $\delta(0) = 0$. Following from $e_1d(e_2)e_2 = 0$ and $e_1\delta(A_{ii})e_2 = 0$, $\delta(A_{ii}) \subseteq A_{11} + A_{22}$.

For every $A_{12} \in A_{12}$, by Lemma 2.4, one has

$$\delta(A_{12}) = \delta(e_1 A_{12} e_2) = \delta(p_n(A_{12}, e_2, \dots, e_2))$$

= $p_n(\delta(A_{12}), e_2, \dots, e_2) + \sum_{i=2}^n p_n(A_{12}, e_2, \dots, d(e_2), \dots, e_2)$
= $e_1 \delta(A_{12}) e_2 + (n-1)[A_{12}, d(e_2)].$

Multiplying above equation left by e_1 and right by e_2 , we obtain $(n-1)e_1[A_{12}, d(e_2)]e_2 = (n-1)[A_{12}, d(e_2)] = 0$. Following from the fact that $Alg\mathcal{L}$ is (n-1)-torsion free, then $[\mathcal{A}_{12}, d(e_2)] = 0$. Consequently, $\delta(A_{12}) = e_1\delta(A_{12})e_2 \in \mathcal{A}_{12}$.

Claim 2. $d(e_1), d(e_2) \in \mathcal{F}I$.

Since the center of each irreducible *CDC* algebra coincides with $\mathcal{F}I$, by using $[\mathcal{A}_{12}, d(e_2)] = 0$ and Lemma 2.3, we can obtain $d(e_2) \in \mathcal{F}I$. Then, for every $A_{12} \in \mathcal{A}_{12}$, since *d* is a multiplicative Lie *n*-derivation, and thus,

$$d(A_{12}) = d((p_{n-1}(A_{12}, e_2, \dots, e_2))) = d((p_n(e_1, A_{12}, e_2, \dots, e_2)))$$

= $e_1[d(e_1), A_{12}]e_2 + e_1[e_1, d(A_{12})]e_2 = e_1[d(e_1), A_{12}]e_2 + e_1d(A_{12})e_2.$

From $d(A_{12}) \in A_{12}$ and $0 = e_1[d(e_1), A_{12}]e_2 = [d(e_1), A_{12}]$, we have $d(e_1) \in \mathcal{F}I$.

Claim 3. For every $A_{ii} \in A_{ii}$, $\delta(A_{ii}) \in A_{ii} + \mathcal{F}e_j$ $(i, j = 1, 2 \text{ and } i \neq j)$. Take any $A_{ij} \in A_{ij}$. If n > 3,

$$p_n(A_{11}, A_{22}, A_{12}, e_1 \cdots, e_1) = p_n(A_{11}, A_{22}, A_{12}, e_2 \cdots, e_2) = 0.$$
(3.1)

Using Claim 2 and noting that d is a multiplicative Lie n-derivation, we have

$$0 = d(p_n(A_{11}, A_{22}, A_{12}, e_2 \cdots, e_2)) = [[d(A_{11}), A_{22}] + [A_{11}, d(A_{22})], A_{12}].$$

Noting that $[d(A_{11}), A_{22}] \in A_{22}$ and $[A_{11}, d(A_{22})] \in A_{11}$, and combining Lemma 2.3, we have

$$[d(A_{11}), A_{22}], [A_{11}, d(A_{22})] \in \mathcal{F}I.$$
(3.2)

Also from Eq. (3.1), by Claim 2 and $[A_{11}, A_{22}] = 0$, one can obtain

$$0 = \delta(p_n(A_{11}, A_{22}, A_{12}, e_1 \cdots, e_1))$$

= $p_{n-1}([\delta(A_{11}), A_{22}], A_{12}, \cdots, e_1) + p_{n-1}([A_{11}, d(A_{22})], A_{12}, \cdots, e_1)$
+ $p_{n-1}([A_{11}, A_{22}], d(A_{12}), \cdots, e_1) + \sum_{i=4}^{n-1} p_{n-1}([A_{11}, A_{22}], A_{12}, \cdots, d(e_1), \cdots, e_1)$
= $p_{n-1}([\delta(A_{11}), A_{22}], A_{12}, e_1, \cdots, e_1) + p_{n-1}([A_{11}, d(A_{22})], A_{12}, e_1, \cdots, e_1)$

It follows from Eq. (3.2) and Lemma 2.4 that when n > 3, we have

$$0 = p_{n-1}([\delta(A_{11}), A_{22}], A_{12}, \cdots, e_1) = (-1)^{n-3} e_1[[\delta(A_{11}), A_{22}], A_{12}] e_2.$$
(3.3)

From Claim 1, we can assume that there exists $B_{ii} \in A_{ii}$ such that $\delta(A_{11}) = B_{11} + B_{22}$. By using this in Eq. (3.3), we get for all $A_{ij} \in A_{ij}$, $A_{12}[\delta(A_{11}), A_{22}] = A_{12}[B_{22}, A_{22}] = 0$, which implies $A_{12}[B_{22}, A_{22}] = 0$. Hence, by Lemma 2.3, we obtain $[B_{22}, A_{22}] = 0$ for all n > 3. It means that $B_{22} \in \mathcal{F}e_2$.

When n = 2, $p_2(A_{11}, A_{22}) = 0$, and when n = 3, $p_3(A_{11}, A_{22}, A_{12}) = 0$, as we have seen in the proof of above, just a special case. And hence, for every $A_{11} \in A_{11}$, $\delta(A_{11}) = B_{11} + B_{22} \in A_{11} + \mathcal{F}e_2$.

Similarly, we have $\delta(A_{22}) \in \mathcal{A}_{22} + \mathcal{F}e_1$.

Next, from Claim 3, we define two maps $\theta : Alg\mathcal{L} \to \mathcal{F}I$ and $F : Alg\mathcal{L} \to Alg\mathcal{L}$, respectively, by

$$\theta(A) = e_2 \delta(e_1 A e_1) e_2 + e_1 \delta(e_2 A e_2) e_1$$
 and $F(A) = \delta(A) - \theta(A)$

for every $A \in Alg\mathcal{L}$. It follows from Claim 2 and 3 that for all $A_{ij} \in \mathcal{A}_{ij}$,

$$F(A_{12}) = \delta(A_{12}) \text{ and } F(A_{ii}) - \delta(A_{ii}) \in \mathcal{F}I.$$
(3.4)

In addition, since d is a multiplicative Lie n-derivation, by a similar argument to that of [19], one can obtain that there exists an additive derivation $f : Alg\mathcal{L} \to Alg\mathcal{L}$ and a central-valued map $\gamma : Alg\mathcal{L} \to \mathcal{F}I$ annihilating each (n-1)th commutator, such

that $d(A) = f(A) + \gamma(A)$. Moreover, by Claim 1 and Claim 3, the following claim is true.

Claim 4. For every $A_{ij} \in A_{ij}$, $F(A_{ij}) \in A_{ij}$.

Claim 5. For every $A_{ij}, B_{ij} \in A_{ij}$, we have (i) $F(A_{11}A_{12}) = F(A_{11})A_{12} + A_{11}f(A_{12})$ and $F(A_{12}A_{22}) = F(A_{12})A_{22} + A_{12}f(A_{22})$; (ii) $F(A_{ii}B_{ii}) = F(A_{ii})B_{ii} + A_{ii}f(B_{ii})$. For every $A_{ii} \in A_{ii}$ since $p_{ii}(A_{ii}, A_{ii}) = A_{ii} + A_{ii} \in A_{ii}$, by Claim 3.

For every $A_{ij} \in A_{ij}$, since $p_n(A_{11}, A_{12}, e_2, e_2, \cdots, e_2) = A_{11}A_{12} \in A_{12}$, by Claim 3, 4 and Lemma 2.4, it yields that

$$F(A_{11}A_{12}) = \delta(A_{11}A_{12}) = \delta(p_n(A_{11}, A_{12}, e_2, e_2 \cdots, e_2))$$

$$= p_{n-1}([\delta(A_{11}), A_{22}], e_2, \cdots, e_2) + p_{n-1}([A_{11}, d(A_{12})], e_2, \cdots, e_2)$$

$$= p_{n-1}([\delta(A_{11}) - \theta(A_{11}), A_{12}], e_2, \cdots, e_2)$$

$$+ p_{n-1}([A_{11}, f(A_{12}) + \gamma(A_{12})], e_2, \cdots, e_2)$$

$$= p_{n-1}([F(A_{11}), A_{12}], e_2, \cdots, e_2) + p_{n-1}([A_{11}, f(A_{12})], e_2, \cdots, e_2)$$

$$= F(A_{11})A_{12} + A_{11}f(A_{12}).$$

Analogously, one can show that for all $A_{ij} \in A_{ij}$, $F(A_{12}A_{22}) = F(A_{12})A_{22} + A_{12}f(A_{22})$. Thus, (i) holds true. It remains to prove (ii). Let $A_{ij}, B_{ij} \in A_{ij}$ (i, j = 1, 2), by (i), we have

$$F(A_{11}B_{11}A_{12}) = F(A_{11}B_{11})A_{12} + A_{11}B_{11}f(A_{12}),$$

and

$$F(A_{11}B_{11}A_{12}) = F(A_{11})B_{11}A_{12} + A_{11}f(B_{11}A_{12})$$

= $F(A_{11})B_{11}A_{12} + A_{11}f(B_{11})A_{12} + A_{11}B_{11}f(A_{12}).$

Now, together with above two equalities, it implies that $(F(A_{11}B_{11}) - F(A_{11})B_{11} - A_{11}f(B_{11}))A_{12} = 0$. By using Lemma 2.3, we obtain $F(A_{11}B_{11}) = F(A_{11})B_{11} + A_{11}f(B_{11})$. Analogously, we can prove that $F(A_{22}B_{22}) = F(A_{22})B_{22} + A_{22}f(B_{22})$.

Claim 6. For any $A_{ij} \in \mathcal{A}_{ij}$, we have

(i) $F(A_{11} + A_{12}) - F(A_{11}) - F(A_{12}) \in \mathcal{F}I$:

(i)
$$F(A_{12} + A_{22}) - F(A_{12}) - F(A_{22}) \in \mathcal{F}I.$$

For every $A_{ij}, B_{ij} \in A_{ij}$, if $n \ge 3$, by the fact that $A_{11}A_{12} = [A_{11} + B_{12}, A_{12}]$, and considering Lemma 2.4, Claim 3 and Eq. (3.4), we have

$$\begin{aligned} F(A_{11}A_{12}) &= \delta(A_{11}A_{12}) = \delta(p_{n-1}([A_{11}+B_{12},A_{12}],e_2,\cdots,e_2)) \\ &= p_n(\delta(A_{11}+B_{12}),A_{12},e_2,\cdots,e_2) + p_n(A_{11}+B_{12},d(A_{12}),e_2,\cdots,e_2) \\ &= p_{n-1}([\delta(A_{11}+B_{12}),A_{12}],e_2,\cdots,e_2) + p_{n-1}([A_{11}+B_{12},d(A_{12}],e_2,\cdots,e_2)) \\ &= e_1[\delta(A_{11}+B_{12}) - \theta(A_{11}+A_{12}),A_{12}]e_2 + e_1[A_{11}+B_{12},f(A_{12}) + \gamma(A_{12})]e_2 \\ &= e_1[F(A_{11}+B_{12}),A_{12}]e_2 + A_{11}f(A_{12}). \end{aligned}$$

On the other hand, by Claim 5 (i) and Eq. (3.4), one can obtain

$$F(A_{11}A_{12}) = F(A_{11})A_{12} + A_{11}f(A_{12}) = [F(A_{11}), A_{12}] + A_{11}f(A_{12}).$$

Comparing the above two equalities gives that for all $A_{12} \in A_{12}$, $e_1[F(A_{11} + B_{12}) - F(A_{11}), A_{12}]e_2 = 0$, and then,

$$e_1(F(A_{11}+B_{12})-F(A_{11}))e_1+e_2(F(A_{11}+B_{12})-F(A_{11}))e_2 \in \mathcal{F}I.$$
(3.5)

Also by Lemma 2.4, Claim 3 and Eq. (3.4), one has

$$F(B_{12}) = \delta(B_{12}) = \delta(p_n(A_{11} + B_{12}, e_2 \cdots, e_2))$$

= $p_n(\delta(A_{11} + B_{12}), e_2, \cdots, e_2) = p_n(F(A_{11} + B_{12}), e_2, \cdots, e_2)$
= $e_1F(A_{11} + B_{12})e_2.$

This implies that $e_1(F(A_{11} + B_{12}) - F(B_{12}))e_2 = 0$. Then, it follows from Eq. (3.5) that $F(A_{11} + A_{12}) - F(A_{11}) - f(A_{12}) \in \mathcal{F}I$. Note that when n = 2, using the fact that $A_{11}A_{12} = [A_{11} + B_{12}, A_{12}]$, as we have seen in the proof of above, just a special case and hence (i) holds true.

Analogously, one can prove that $F(A_{12} + A_{22}) - F(A_{12}) - f(A_{22}) \in \mathcal{F}I$.

Claim 7. For any $A_{ij}, B_{ij} \in A_{ij}$ and $1 \le i \le j = 2$, $F(A_{ij} + B_{ij}) = F(A_{ij}) + F(B_{ij})$. Take any $A_{12}, B_{12} \in A_{12}$. Noting that $A_{12} + B_{12} = p_n(e_1 + A_{12}, B_{12} + e_2, e_2, \dots, e_2)$, by Eq. (3.4) and Claim 6, one can obtain

$$F(A_{12} + B_{12}) = \delta(p_n(e_1 + A_{12}, B_{12} + e_2, e_2, \dots, e_2))$$

$$= p_n(\delta(e_1 + A_{12}), B_{12} + e_2, e_2, \dots, e_2) + p_n(e_1 + A_{12}, d(B_{12} + e_2), e_2, \dots, e_2)$$

$$= p_n(F(e_1 + A_{12}), B_{12} + e_2, e_2, \dots, e_2) + p_n(e_1 + A_{12}, f(B_{12} + e_2), e_2, \dots, e_2)$$

$$= p_n(F(e_1) + F(A_{12}), B_{12} + e_2, e_2, \dots, e_2) + p_n(e_1 + A_{12}, f(B_{12}), e_2, \dots, e_2)$$

$$= e_1[F(e_1) + F(A_{12}), B_{12} + e_2]e_2 + e_1[e_1 + A_{12}, f(B_{12})]e_2$$

$$= F(e_1)B_{12} + F(A_{12}) + f(B_{12}) = F(A_{12}) + F(B_{12}).$$

(3.6)

When n = 2, using the fact $A_{12} + B_{12} = [e_1 + A_{12}, B_{12} + e_2]$, Eq. (3.6) still holds true.

Taking any $A_{11}, B_{11} \in A_{11}$ and any $A_{12} \in A_{12}$, by Eq. (3.6) and Claim 5(i), one has

$$F((A_{11}+B_{11})A_{12}) = F(A_{11}+B_{11})A_{12} + (A_{11}+B_{11})F(A_{12})$$

and

$$F((A_{11}+B_{11})A_{12}) = F(A_{11})A_{12} + F(B_{11})A_{12} + A_{11}F(A_{12}) + B_{11}F(A_{12})$$

Comparing the above relations, one can obtain that for all $A_{12} \in A_{12}$,

$$(F(A_{11}+B_{11})-F(A_{11})-F(B_{11}))A_{12}=0,$$

it follows from Lemma 2.3 that $F(A_{11} + B_{11}) = F(A_{11}) + F(B_{11})$. Similarly, one can obtain $F(A_{22} + B_{22}) = F(A_{22}) + F(B_{22})$.

Claim 8. For any $A_{ij} \in A_{ij}$, we have $F(A_{11} + A_{12} + A_{22}) - F(A_{11}) - F(A_{12}) - F(A_{22}) \in \mathcal{F}I$.

Take any $A_{ij} \in \mathcal{A}_{ij}$. If $n \ge 3$, note that

$$p_n(A_{11} + A_{12} + A_{22}, B_{12}, e_2, \cdots, e_2) = p_n(A_{11} + A_{22}, B_{12}, e_2, \cdots, e_2)$$

= $A_{11}B_{12} - B_{12}A_{22} \in \mathcal{A}_{12},$

then, by Lemma 2.4, Claim 5, 6 and Eq. (3.4), we have

$$F(A_{11}B_{12} - B_{12}A_{22}) = \delta(p_n(A_{11} + A_{12} + A_{22}, B_{12}, e_2, \dots, e_2))$$

= $p_n(\delta(A_{11} + A_{12} + A_{22}), B_{12}, e_2, \dots, e_2) + p_n(A_{11} + A_{12} + A_{22}, d(B_{12}), e_2, \dots, e_2)$
= $p_n(F(A_{11} + A_{12} + A_{22}), B_{12}, e_2, \dots, e_2) + p_n(A_{11} + A_{12} + A_{22}, f(B_{12}), e_2, \dots, e_2)$
= $e_1[F(A_{11} + A_{12} + A_{22}), B_{12}]e_2 + A_{11}f(B_{12}) - f(B_{12})A_{22}.$

and

$$\begin{split} F(A_{11}B_{12} - B_{12}A_{22}) &= \delta(p_n(A_{11} + A_{22}, B_{12}, e_2, \cdots, e_2)) \\ &= \delta(p_n(A_{11}, B_{12}, e_2, \cdots, e_2) + p_n(A_{22}, B_{12}, e_2, \cdots, e_2)) \\ &= p_n(F(A_{11}), B_{12}, e_2, \cdots, e_2) + p_n(F(A_{22}), B_{12}, e_2, \cdots, e_2) \\ &+ p_n(A_{11}, f(B_{12}), e_2, \cdots, e_2) + p_n(A_{22}, f(B_{12}), e_2, \cdots, e_2) \\ &= e_1[F(A_{11}) + F(A_{22}), B_{12}]e_2 + A_{11}f(B_{12}) - f(B_{12})A_{22}. \end{split}$$

Comparing the above relations, one can obtain that for all $B_{12} \in A_{12}$,

$$e_1[F(A_{11}+A_{12}+A_{22})-F(A_{11})-F(A_{22}),B_{12}]e_2=0.$$
(3.7)

When n = 2, using the fact $[A_{11} + A_{12} + A_{22}, B_{12}] = [A_{11} + A_{22}, B_{12}]$, one can obtain that Eq. (3.7) still holds true. Then, one has

$$e_1(F(A_{11}+A_{12}+A_{22})-F(A_{11})-F(A_{22}))e_1 + e_2(F(A_{11}+A_{12}+A_{22})-F(A_{11})-F(A_{22}))e_2 \in \mathcal{F}I.$$

Similar argument to that of Claim 6, notice that

$$\begin{aligned} &e_1(F(A_{11}+A_{12}+A_{22})-F(A_{11})-F(A_{22}))e_2 \\ &= p_n(F(A_{11}+A_{12}+A_{22})-F(A_{11})-F(A_{22},e_2,\cdots,e_2) \\ &= p_n(\delta(A_{11}+A_{12}+A_{22}),e_2,\cdots,e_2)-p_n(\delta(A_{11}),e_2,\cdots,e_2)-p_n(\delta(A_{22}),e_2,\cdots,e_2) \\ &= \delta(p_n(A_{11}+A_{12}+A_{22},e_2,\cdots,e_2)-p_n(A_{11},e_2,\cdots,e_2)-p_n(A_{22},e_2,\cdots,e_2)) \\ &= \delta(p_n(A_{12},e_2,\cdots,e_2)=\delta(A_{12})=F(A_{12}). \end{aligned}$$

Thus, the claim is true.

Now, from Claim 8, we define two maps: $h: Alg\mathcal{L} \to \mathcal{F}I$ and $\psi: Alg\mathcal{L} \to Alg\mathcal{L}$ respectively, by

$$h(A) = F(A_{11} + A_{12} + A_{22}) - F(A_{11}) - F(A_{12}) - F(A_{22}) \text{ and } \psi(A) = F(A) - h(A)$$
(3.8)

for all $A = A_{11} + A_{12} + A_{22} \in Alg\mathcal{L}$. It is easy to see that for all $A_{ij} \in \mathcal{A}_{ij}$, $h(A_{ij}) = 0$. Hence from Claim 7, we get that for all $A_{ij} \in \mathcal{A}_{ij}$,

$$\psi(A_{11} + A_{12} + A_{22}) = \psi(A_{11}) + \psi(A_{12}) + \psi(A_{22}).$$
(3.9)

Thus, for all $A \in Alg\mathcal{L}$, one has

$$\delta(A) = F(A) + \theta(A) = \psi(A) + h(A) + \theta(A) = \psi(A) + \xi(A), \quad (3.10)$$

where $\xi \equiv h + \theta$ is a central-valued map on an irreducible completely distributive commutative subspace lattice algebra $Alg\mathcal{L}$.

Claim 9. ψ is an additive generalized derivation with associated derivation f.

Take any $A = A_{11} + A_{12} + A_{22}$, $B = B_{11} + B_{12} + B_{22} \in Alg\mathcal{L}(A_{ij}, B_{ij} \in \mathcal{A}_{ij})$. By Claim 7 and Eqs. (3.8), (3.9), one obtains

$$\begin{split} \psi(A+B) &= \psi(A_{11}+A_{12}+A_{22}+B_{11}+B_{12}+B_{22}) \\ &= \psi(A_{11}+B_{11}) + \psi(A_{12}+B_{12}) + \psi(A_{22}+B_{22}) \\ &= \psi(A_{11}) + \psi(B_{11}) + \psi(A_{12}) + \psi(B_{12}) + \psi(A_{22}) + \psi(B_{22}) \\ &= \psi(A_{11}+A_{12}+A_{22}) + \psi(B_{11}+B_{12}+B_{22}) = \psi(A) + \psi(B). \end{split}$$

From Claims 4 and 5, Eqs. (3.4), (3.8) and (3.9), we have

$$\begin{split} \psi(AB) &= \psi(A_{11}B_{11} + A_{11}B_{12} + A_{12}B_{22} + A_{22}B_{22}) \\ &= \psi(A_{11}B_{11}) + \psi(A_{11}B_{12}) + \psi(A_{12}B_{22}) + \psi(A_{22}B_{22}) \\ &= F(A_{11}B_{11}) + F(A_{11}B_{12}) + F(A_{12}B_{22}) + F(A_{22}B_{22}) \\ &= F(A_{11})B_{11} + A_{11}f(B_{11}) + F(A_{11})B_{12} + A_{11}f(B_{12}) \\ &+ F(A_{12})B_{22} + A_{12}f(B_{22}) + F(A_{22})B_{22} + A_{22}f(B_{22}) \\ &= (\psi(A_{11}) + \psi(A_{12}) + \psi(A_{22}))(B_{11} + B_{12} + B_{22}) \\ &+ (A_{11} + A_{12} + A_{22})(f(B_{11}) + f(B_{12}) + f(B_{22})) \\ &= \psi(A)B + Af(B). \end{split}$$

This shows that G is an additive generalized derivation with associated derivation f. At last, following from Eq. (3.10), we only need prove that ξ sends each (n-1)-th commutator $p_n(A_1, A_2, \dots, A_n)$ to zero.

Claim 10.
$$\xi(p_n(A_1, A_2, \dots, A_n)) = 0$$
 holds for all $A_i \in Alg\mathcal{L}$.

Take any $A_i \in Alg\mathcal{L}$. By the above all claims, one has

$$\begin{split} \xi(p_n(A_1,A_2,\cdots,A_n)) &= \delta(p_n(A_1,A_2,\cdots,A_n)) - \psi(p_n(A_1,A_2,\cdots,A_n)) \\ &= p_{n-1}([\delta(A_1),A_2],\cdots,A_n) + \sum_{i=2}^n p_n(A_1,\cdots,d(A_i),\cdots,A_n) \\ &- p_{n-1}([\psi(A_1),A_2],\cdots,A_n) - \sum_{i=2}^n p_n(A_1,\cdots,f(A_i),\cdots,A_n) \\ &= p_{n-1}([F(A_1),A_2],\cdots,A_n) + \sum_{i=2}^n p_n(A_1,\cdots,f(A_i),\cdots,A_n) \\ &- p_{n-1}([\psi(A_1),A_2],\cdots,A_n) - \sum_{i=2}^n p_n(A_1,\cdots,f(A_i),\cdots,A_n) \\ &= p_{n-1}([F(A_1)-\psi(A_1),A_2],\cdots,A_n) = 0 \end{split}$$

The proof is completed. \Box

4. Main results

In this section, we study multiplicative generalized Lie n-derivations on completely distributive commutative subspace lattice algebras. The main result reads as follows.

THEOREM 4.1. Let $Alg\mathcal{L}$ be an associated completely distributive commutative subspace lattice algebra on a complex Hilbert space \mathcal{H} and $\delta : Alg\mathcal{L} \to Alg\mathcal{L}$ be a nonlinear map. Then δ is a multiplicative generalized Lie $n \geq 2$ -derivation if and only if for every $A \in Alg\mathcal{L}$, $\delta(A) = \psi(A) + \xi(A)$, where $\psi : Alg\mathcal{L} \to Alg\mathcal{L}$ is an additive generalized derivation and $\xi : Alg\mathcal{L} \to Z(Alg\mathcal{L})$ vanishes on each (n-1)th commutator $p_n(A_1, A_2, \dots, A_n)$.

Proof. From the proof of Theorem 3.1, we know that only need to check the case that \mathcal{L} is non-trivial.

Let $e_m = \bigvee \{e : e \in C_m, m \in \Lambda\}$ be the projections of \mathcal{L} as in Lemma 2.2. Following from Lemma 2.2, $Alg\mathcal{L} = \sum_{m \in \Lambda} \bigoplus (Alg\mathcal{L})e_m$ is the irreducible decomposition of $Alg\mathcal{L}$. Fixing an index *m*, we know that e_m is also a Hilbert space and

$$(Alg\mathcal{L})e_m = e_m(Alg\mathcal{L})e_m = Alg(e_m\mathcal{L}).$$

Then for each *m*, $Alg(e_m\mathcal{L})$ is an irreducible *CDC* algebra on a Hilbert space e_m . Let δ be a multiplicative generalized Lie $n \geq 2$ -derivation on $Alg\mathcal{L}$. It follows from Theorem 3.1 that one can define two maps $\delta_m, d_m : Alg(e_m\mathcal{L}) \rightarrow Alg(e_m\mathcal{L})$ by

$$\delta(A) = \delta_m(A) = \psi_m(A) + \xi_m(A) \text{ and } d(A) = d_m(A) = f_m(A) + \gamma_m(A).$$
(4.1)

for all $A \in Alg(e_m\mathcal{L})$, where $\psi_m : Alg(e_m\mathcal{L}) \to Alg(e_m\mathcal{L})$ is an additive generalized derivation with associated derivation f_m , and $\xi_m : Alg(e_m\mathcal{L}) \to Z(Alg(e_m\mathcal{L}))$ is a central-valued map annihilating all (n-1)-th commutators $p_n(A_1, A_2, \dots, A_n)$.

In [14], it turns out that for a *CDC* algebra, the algebra generated by all rank-one operators in $Alg\mathcal{L}$ is ultraweakly dense. Choosing a set $E \in \mathcal{U}(L)$, for any $x \in E$ and $y \in E_{-}^{\perp}$, by Lemma 2.1, one can obtain that $x \otimes y \in Alg\mathcal{L}$ is a rank-one operator. For every $u \otimes v \in Alg(e_m\mathcal{L})$ and $A \in Alg(e_m\mathcal{L})$, it follows from Theorem 3.1 that

$$\psi_m((u \otimes v)A(x \otimes y)) = \psi_m(u \otimes v)A(x \otimes y) + (u \otimes v)f_m(A)(x \otimes y) + (u \otimes v)Af_m(x \otimes y).$$
(4.2)

Assuming that $\{A_k\}$ strongly converges to A, where $\{A_k\}, A \in Alg(e_m\mathcal{L})$, it follows from (4.2) that

$$(u \otimes v) f_m(A_k)(x \otimes y)$$

= $\psi_m((u \otimes v)A_k(x \otimes y)) - \psi_m(u \otimes v)A_k(x \otimes y) - (u \otimes v)A_kf_m(x \otimes y)$
 $\rightarrow \psi_m((u \otimes v)A(x \otimes y)) - \psi_m(u \otimes v)A(x \otimes y) - (u \otimes v)Af_m(x \otimes y)$
= $(u \otimes v)f_m(A)(x \otimes y).$

This shows that f_m is strongly convergent, and then ψ_m is strongly convergent.

For $A^1, A^2, \dots, A^n \in Alg\mathcal{L}$, we assume that $\{A_k^i\}$ strongly converges to A^i , respectively. Since $Alg\mathcal{L} = \sum_{m \in \Lambda} \bigoplus (Alg\mathcal{L})e_m$, and $\{e_m\}$ are pairwise orthogonal projections, then for every e_m , $\{A_k^ie_m\}$ strongly converges to A^ie_m , respectively, and

$$A_k^i A_k^j = (\sum_{m \in \Lambda} \oplus A_k^i e_m) (\sum_{i \in \Lambda} \oplus A_k^j e_m) = \sum_{m \in \Lambda} \oplus A_k^i A_k^j e_m$$

Then, for every x in Hilbert space \mathcal{H} , it follows from the proof of Theorem 3.1 and Eq. (4.1) that

$$\begin{split} &\delta(p_n(A_k^1, A_k^2, \cdots, A_k^n))x\\ &= \delta(p_n(\sum_{m\in\Lambda} \oplus A_k^1 e_m, \sum_{m\in\Lambda} \oplus A_k^2 e_m, \cdots, \sum_{m\in\Lambda} \oplus A_k^n e_m))x\\ &= (p_n(\delta(\sum_{m\in\Lambda} \oplus A_k^1 e_m), \sum_{m\in\Lambda} \oplus A_k^2 e_m, \cdots, \sum_{m\in\Lambda} \oplus A_k^n e_m))\\ &+ \sum_{i=2}^n p_n(\sum_{m\in\Lambda} \oplus A_k^1 e_m, \cdots, d(\sum_{m\in\Lambda} \oplus A_k^i e_m), \cdots, \sum_{m\in\Lambda} \oplus A_k^n e_m))x\\ &= (p_n(\sum_{m\in\Lambda} \oplus \psi_m(A_k^1) e_m, \sum_{m\in\Lambda} \oplus A_k^2 e_m, \cdots, \sum_{m\in\Lambda} \oplus A_k^n e_m))\\ &+ \sum_{i=2}^n p_n(\sum_{m\in\Lambda} \oplus A_k^1 e_m, \cdots, \sum_{m\in\Lambda} \oplus f_m(A_k^i) e_m, \cdots, \sum_{m\in\Lambda} \oplus A_k^n e_m))x\\ &= (\sum_{m\in\Lambda} \oplus (p_n(\psi_m(A_k^1) e_m, A_k^2 e_m, \cdots, A_k^n e_m) + \sum_{i=2}^n p_n(A_k^1 e_m, \cdots, f_m(A_k^i) e_m, \cdots, A_k^n e_m))x\\ &\to \sum_{m\in\Lambda} \oplus (p_n(\psi_m(A^1) e_m, A^2 e_m, \cdots, A^n e_m) + \sum_{i=2}^n p_n(A^1 e_m, \cdots, f_m(A^i) e_m, \cdots, A^n e_m))x\\ &= \sum_{m\in\Lambda} \oplus \delta_m(p_n(A^1 e_m, A^2 e_m, \cdots, A^n e_m))x = \delta(p_n(A^1, A^2, \cdots, A^n))x. \end{split}$$

It means that δ is strongly convergent on *CDC* algebra $Alg\mathcal{L}$. Thus, for every $A \in Alg\mathcal{L}$, we obtain that

$$\delta(A) = \sum_{m \in \Lambda} \oplus \delta_m(Ae_m) = \sum_{m \in \Lambda} \oplus (\psi_m(Ae_m) + \xi_m(Ae_m)).$$

Write $\psi(A) = \sum_{m \in \Lambda} \oplus \psi_m(Ae_m)$ and $\xi(A) = \sum_{m \in \Lambda} \oplus \xi_m(Ae_m)$, then we have $\delta = \psi + \xi$. The proof is completed. \Box

5. Conclusions

In this paper, we use decomposition of algebraic structure and the properties of completely distributive commutative subspace lattice algebras to study the multiplicative generalized Lie n-derivation on certain CSL algebra. We proved that every multiplicative generalized Lie n-derivation on completely distributive commutative subspace lattice algebras is standard. Moreover, the purpose of this modification is to answer the classic problem of preserving mappings of some certain CSL algebra.

REFERENCES

- [1] I. Z. ABDULLAEV, n-Lie derivations on von Neumann algebras, Uzbek. Mat. Zh., 1992, 5-6: 3-9.
- [2] D. BENKOVIČ, D. EREMITA, Multiplicative Lie n-derivations of triangular rings, Linear Algebra Appl., 2012, 436: 4223–4240.
- [3] D. BENKOVIČ, Generalized Lie n-derivations of triangular algebras, Comm. Algebra, 2019, 47 (12): 5294–5302
- [4] D. BENKOVIČ, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 2005, 397, 235–244.
- [5] W. S. CHEUNG, *Lie derivation of triangular algebras*, Linear and Multilinear Algebra. 2003, 51: 299–310.
- [6] X. FENG, X. F. QI, Nonlinear Generalized Lie n-Derivations on von Neumann Algebras, Bull. Iran. Math. Soc., 2019, 45 (2): 569–581.
- [7] H. GHAHRAMANI, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 2013, 9 (4): 635–645.
- [8] F. GILFEATHER, R. L. MOORE, Isomorphisms of certain CSL algebras, J. Funct. Anal, 2010, 67 (2): 264–291.
- [9] B. HVALA, Generalized Lie derivations in prime rings, Taiwanese J. Math., 2007, 11: 1425–1430.
- [10] M. S. LAMBROU, Complete distributivity lattices, Fundamenta Math., 1983, 119 (3): 227-240.
- [11] C. LAURIE, W. LONGSTAFF, A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc., 1983, 89 (2): 293–297.
- [12] W. H. LIN, Nonlinear generalized Lie n-derivations on triangular algebras, Commun. Algebra. 2018, 46 (6): 2368–2383.
- [13] W. E. LONGSTAFF, Operators of rank one in reflexive algebras, Canadian Journal of Mathematics, 1976, 28: 9–23.
- [14] F. Y. LU, Derivations of CDC algebras, J. Math. Anal. Appl., 2006, 323 (1): 179–189.
- [15] F. Y. LU, Lie derivations of certain CSL algebras, Israel J. Math., 2006, 155 (1): 149–156.
- [16] F. MA, G. X. JI, Generalized Jordan derivation on trigular matrix algebra, Linear and Multilinear Algebra, 2007, 55: 355–363.
- [17] F. MA, J. H. ZHANG, H. Z. LIU, Nonlinear generalized Lie derivations on Completely Distributive Commutative Subspace Lattice Algebras, J. Acta. Snus., 2022, doi:10.13471/j.cnki.acta.snus.2020A029.

- [18] W. S. MARTINDALE III, Lie derivations of primitive rings, Michigan Math. J. 1964; 11: 183-187.
- [19] Y. WANG, Y. WANG, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl., 2013, 438: 2599–2616.
- [20] W. Y. YU, J. H. ZHANG, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl., 2010, 432: 2953–2960.

(Received July 11, 2022)

Fei Ma School of Mathematics and Statistics Xianyang Normal University Xianyang 712000, Shaanxi, China e-mail: mafei6337@sina.com

Min Yin School of Mathematics and Statistics Xianyang Normal University Xianyang 712000, Shaanxi, China