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A CONSTRUCTIVE PROOF OF A
NONCOMMUTATIVE FEJER-RIESZ THEOREM

PALAK ARORA

(Communicated by H. J. Woerdeman)

Abstract. In this paper, we present a constructive proof of Popescu’s Fejér-Riesz theorem for
noncommuting polynomials representing nonnegative “multi-Toeplitz” operators.

1. Introduction

The classical Fejér-Riesz theorem states the following: if a trigonometric polyno-
mial

m
w(e) =Y, cje

j=—m

is nonnegative for all real 7, then it is expressible in the form
w(e) = |p(e")?

for some analytic outer polynomial p(z) = oa jz/. (Concretely, a polynomial is
outer if it has no zeroes in the open disk |z| < 1.)

For a proof, refer to Lemma 2.1 in [8]. There is also an operator version where
the coefficients of w are matrices or operators ([10]), see also [2].

The Fejér-Riesz theorem can be reformulated as a statement about Toeplitz oper-
ators: the function w may be interpreted as the symbol of a Toeplitz operator T,,; in
particular if S denotes the unilateral shift on ¢2(N) then T,, is the operator defined by

m m
T, = col + Z CkSk + Z C,kS*k,
k=1 k=1
and then the factorization w = |p|? is equivalent to the factorization of operators
%
T, =T,T,

where T, = ¥ ;S = p(S). The equivalence of the two formulations follows easily
from the fact that S is an isometry.
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It turns out that this operator formulation admits a generalization in the noncom-
mutative setting, to so-called multi-Toeplitz operators, where the single isometry § is
replaced by a row isometry; for example, the d tuple of left shifts, (L;, Lp,...,Ly) or d
tuple of right shifts, (Ry, Ry, ..., Ry). Precise definitions are given in the next section.
Following an idea of Dritschel and Woerdeman [2], this paper develops a construc-
tive proof of Popescu’s Fejér-Riesz theorem in the noncommutative setting. We have a
nonnegative multi-Toeplitz polynomial operator

TQ = QO@I(Z(}-;)"‘ 2 Qv®Lv+ 2 Q:@L:

0<|v|<n 0<|v|<n

We then find a multi-Toeplitz operator factorization of this polynomial which is also
outer,
Tp := T Tr

where Tp = 20<|v|<n F, ® L, [This is a slight rewording of Theorem 1.6 in [9]]. There
are several such results in the same spirit ([6], [4], [7]), depending on which operators
were used to define the positivity condition; for example, in [6], McCullough has con-
sidered two different factorization theorems with positivity defined by testing on either
unitary operators or self-adjoint operators.

2. Preliminaries
We begin by recalling some relevant definitions:

DEFINITION 2.1. Let .7-'; denote the free monoid on d letters. This is the set of
all finite words in the letters 1, 2,..., d, including the empty word. We write |w| for
the length of the word, that is, the total number of letters that appear. We write & for
the empty word; by convention || = 0. The Fock space, (*(F;) is the Hilbert space
with orthonormal basis indexed by ]—'j : we write &, for the basis vector labeled by the
word w € .7-';. When d =1, ]—"j is identified with the natural numbers N.

DEFINITION 2.2. The left shift operator L; is defined as
Li&w=Ejw
for j=1,...,d and extending linearly. Similarly, the left backward shift operator L’;
is defined as '
* &, w=jv
L . =
= {0, otherwise

for j=1,...,d. Thus {L;|j=1,...,d} forms a system of isometries with orthogonal
ranges:
LiL; = &;l. (D

Analogously we can define the right shift operator R; by

Rjéw = &wj
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for j=1,...,d and extending linearly. Similarly, the right backward shift operator R’;
is defined as ’

% év» w=vj

0, otherwise

for j =1,...,d. Note that left shifts and right shifts commute with each other; that is,
LiRj :RjLi for all i7j= 1,...,d.

From the above definition we get that (L;, Ly, ..., Ly) and (R;, Ry, ..., Ry) are
row-isometries (this just means that equation (1) holds).

For any w € |, w=ijip--iy we denote L,, = L; L;,---L;,. So for any w =
itiy--iy and v = jija--- jm in F, LyLy =L} ---L{ L} Lj ---L;, . Thus
Ly, ifv=wx
LyLy=< Ly, ifw=vy.
0, otherwise

DEFINITION 2.3. In the classical setting, 7 is said to be a Toeplitz operator if
S§*TS =T where S is a unilateral shift. An operator 7" is L-multi-Toeplitz if LiTL; =
0;;T where L; is aleft shift operator. Similarly, T is called R-multi-Toeplitzif R;TR; =
0;;T where R; is a right shift operator.

EXAMPLE 1. Any left shift operator L,, is R-multi-Toeplitz. Indeed, since L; and
R; commute with each other, R; commutes with L,, for all w and thus we have

R?LWRJ' = R;-kRjLW
= 5,'jLW.

Similarly, L} is R-multi-Toeplitz for any word v. Therefore for any noncommutative
polynomials f,g, we have that f(L)* + g(L) is R-multi-Toeplitz. Moreover, a multi-
Toeplitz polynomial of the form g(L) is called analytic.

Next let us consider an R-multi-Toeplitz polynomial operator with scalar coeffi-
cients, say,

T:= Y aL+ Y qL. 2

0<v|<n 0<|v|<n

Then corresponding to the Fock space basis {&,},. Fi we get its matrix representation
which is a multi-Toeplitz matrix:
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gueilqiet - 0 || g -+ 0 - 0 - 0 g - 0
Giaeal O - qral-| 0 - g -+ 0 - 0 0 0
Gari|Gaea - 0 || O v 0 o gy - O 0 0
Gaded| O - Gaea|] O o 0 - 0 - qo 0 - g
0 lgir - O |-~ qgg - 0 - 0 -~ 0 g0 -~ 0
0 0 - qugal-| 0 ««+ 0 - 0 - gqg 0 - qo

Here we have used lexicographic ordering for ordering the elements of the word
set, ]—'j. Also, it is convenient to view the basis {&,} as partitioned into blocks ac-

cording to the length of the word w, which induces a corresponding block structure in
the above matrix.

Now we do some relabeling of the indexes here and define for d = 1,...,n:

— A *
qr = COZ(qW)wE]—'j;|w|=k and g = row(qw)we]-'j;|w|=k7

and also identifying

g 0
0
q 1= :
L
0 g
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and so on. Thus we get the following compact form of 7', which makes it easier to see
the multi-Toeplitz form of the matrix:

(g0 g1 q-2 q—n 0 0
g g®1lg g1l - G ®l g-n®Iy 0
@2 ¥l qoRLi&1lg - q (- 2)@La @l g (1)@ 1a® Iy q-n®I5?

Gn qn-1QL1 g2 QL QI - qoR; R - R 1y q_1®129n q_2®1§n
0 gn®lg Gn @G- q1®]59" q0®1§§(n+1) q71®129(n+1)-_.

0 0 G L1y --- q2®139" a ®Ifl§(n+1) Clo®1f(n+2) )

We are going to use a Schur complement technique from Dritschel and Woerdeman

[2] in the proof of the main theorem. So let us define the following:

DEFINITION 2.4. If H; and H, are Hilbert spaces and

A B*
MZ(B C) TH1 & Hy — H 1D H;

is a positive semidefinite operator, then there exists a unique contraction G : ran(C) —
7an(A) such that B = A'/2GC'/2. The Schur complement of M supported on 'H; is
defined to be positive semidefinite operator A'/2(1 — GG*)A!/2.

An alternative way to define the Schur complement of M supported on 7, is via

o ={((32)() ()

that is, S : H; — H; is the largest positive semidefinite operator which may be sub-
tracted from A in M such that the resulting operator matrix remains positive semidefi-

nite.

REMARK. Consider any positive semidefinite operator matrix, M, say

A B*
M=<B C) TH1 B Hy — Hi D Hsy

and let Sy, be the Schur complement of M supported on H;. Then for the positive
semidefinite matrix M ® I;, the Schur complement supported on H; ® C? is Spe; =
Su®1y.

We conclude this section with some notation: if Q is an operator from H to H

for some Hilbert space H, then we understand Q ®1,; to be an operator from H ® c
to H®C?. We will write H; := H ® (C?)® for i > 0.

In addition, we make use of the following notation from [2]: Typically, we will

index rows and columns of an n x n matrix with 0, ...,n—1. For A C {0,...,n—
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1} and an n x n matrix M, we write S(M;A), or S(A) when there is no chance of
confusion, for the Schur complement supported on the rows and columns labeled by
elements of A. Itis usual to view S(A) as an m x m matrix, where m = cardA, however
it is often useful to take S(A) as an n x n matrix by padding the rest of the entries in
this n x n matrix with zeros. For notational convenience we have used S(m) for the
Schur complement supported on rows and columns labeled by {0, ...,m}.

3. Main Theorem

Theorem 3.1 and Corollary 3.2 below are multi-Toeplitz versions of Proposition
3.1 and Corollary 3.2 from [2].

THEOREM 3.1. Consider the positive semidefinite multi-Toeplitz operator matrix

QO Q—] Q72 ......
Ql QO@Id Q—1®Id ......
To= 10,00 QR QI - -

actingon Ho®H1 ©Hy D ---. Then
1. The Schur complements of Ty satisfy the reccurrence relation:

A B } *)

S(m) = [B Sm—1)®1I,
for appropriate choice of A : Hy — Hy and B* : H; & Hy & --- — Hp.

2. Suppose in addition that Q; = 0 for j = m+ 1 (for some fixed positive integer
m). Then the recursion formula (*), will hold with A = Qo and B = col(Q;)" ;.

REMARK. Given

QO Q—l Q_2 ......
01 00l O 1Ly -
To= 10, 01 QL QoRI;QLy -+ +-- ,

we observe that Ty can be identified with

T — Qo row(0-;)j=1
0 COZ(QJ‘)];l TQ ® Iy ’

Proof of Theorem 3.1. Let us write

A B*
S(m) = |:B C] THoHI1 B Hy BB Him — HoPHIEHLB -+ D Hie.
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By definition of Schur complement, we have that

S(m) 0
o [0 0
That is, we have that
A|lB* 0
Qo |r0W(Qf)j>1}
Lz — 1 BIC O} >0. 3
COZ(QJ'),/21| To ® 1q olo o ©)

Then leaving out Oth row and column in (3) we get,

co} >0,

To®1I;— |:O 0

So we have again from the definition of Schur complement that C < S(m—1)®1,.
Now leaving out the rows and columns 1,...,m in (3), we get

Qo—A  row(Q})jzm+1
@(m+1) = 0.
COl(Qj)j>m+1 TQ ®Id

That is,

o Qo VOW(Q;){>mB1 o) =i
@(m+1) |V | =4
COl(Qj)j>m+l TQ ®Id "
Note that when Q; =0 forall j > m+1, then A=0y.
Next consider the following operator matrix:

QO_A X rOW(Q;)j?m-&-l
X' Qi@ oy S =) @1 Qi@ L) | @)

o 1
COl(Qj)J?erl (Qi—j ®Id)i¥;1111+1,j=1 TQ ®I£Q]§(m+ )

The existence of an operator X making this into a positive semidefinite matrix is
a variant of a standard operator matrix completion problem (see Theorem XV1.3.1 in
[3]), so there always exists such an X . So, we fix such an X . (Note that when A= Qo
we have necessarily that X = 0.) Now since (4) is positive semidefinite, we obtain that

A row(Q3)1L, — X _|AB*
col(Q;)1; — X Sm-D ol } < S0m) = [B c}

This implies that A <A and S(m — 1) ®I; < C. From the first part of the proof we also
have A <A and C < S(m—1)®1y, and thus the equalities A=A and C =S(m—1)®1,
follow. Moreover, if Q; =0 for j > m+ 1, we have that A= Qo and X =0, and thus
B=col(Q),. O
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COROLLARY 3.2. Consider the positive semidefinite multi-Toeplitz operator ma-
trix
QO Q—] Q72 ......
Ql QO@Id Q—1®Id ......
To= 10,0 QLI - -

acting on Ho & H1 & Hr & ---. Then for each m > 0, there exist operators Fy, Fi, ...
with
Fp k@ I7%: Hy — FanFy @ C" C H@ C™

for 0 <k < (m—1), so that the Schur complements S(m) of Ty satisfy

FO* Fl* F2* F’; Fo
F(;k®ld F1*®Id F,;,1®Id F] F0®Id )
S(m) = BRI Fp | | B Fiel Rl

FyQIF™ | |Fy Fye1 @1y Fpa @157 - Ry@ I7™

Proof. We will prove this by induction on m.

Base step: S(0) being a positive semidefinite operator, we can write S(0) = F; Fy
where Fy = (5(0))'/2.

Induction hypothesis: Let us assume that the result holds for S(m—1).

By [2], Proposition 3.1, we have that (S(m))um = (S(m—1))m—1m—1 @1y =
FRel!" Vel =FRolm.

From [2] Corollary 2.3, we have that S(m — 1) = S(S(m);m — 1). Thus applying
Lemma 2.1 from [2] to

F
i Rl
®2
p_| BB R®lL kel , R=FReI", (5)

Fout Fyoa @1y Fp 3 @157 -+ F0®159<m—1>

we get, there exist (G, --- G;) so that

F6k®ld F1*®Id Gjn—l Fl F0®Id
S(m) = F(;‘@];@z e GE, K, el F ®I£}®2 7

FRI9"| |G Gut G - RQIZ"
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and ran(G,, --- Gy) C Fanky ® (C4)®™. Comparing with S(m) = [2 S(m Bl)®1]
- d

along with the induction hypothesis, we deduce that S(m — 1) ® I; factors into

Fg@]d F1*®Id F;72®Id G:171 Fhy®l;
FyRIf? - Fp @I G, | |FRel [hol?
. : RelL AL RL?
(m—1) GT . . :

* & . . .
FO ®Id : : : . .
FJ@I:;[ Gu-1 Gpo Gniz - F0®Idm

[ @l Fy®lg - F, ,@l  F, 1 ®l

m

FS @I o Fp 3@If% Fi @157

(m—1) (m—1)

Frel)
oI

Fgol)

[ Fo®1y
Aol FRel?
< | BolL; Rel}? Rel?

Fn 1 @1g Fp 2 ® 1% Fpy 3®I7% - R@I"

and thus, equating the last rows of each of these products, we have

* m * m m—1
F0®I§§ (Gm—l Gpo - Gl):F()@Ij? (Fm—1®ld Fm—2®I§§2"'Fl®I§§( ))
As

ran(Gm—l Gno - Gl)gmﬁb@(cd)@m
and

ran(Fp—1 @1y Fpa®1? En—3®1§3”'F1®1?(m71))QW%@(CC])@W,

it follows that G; = Fj ®I§(m_j) for j=1,---,m—1. By setting F,, := Gy,, we have
our result. [

THEOREM 3.3. Let (Ly, Ly, ..., Ly) be the left d-shift, let H be a Hilbert space,
and let {Qy}\w<n be operators Q. : H — H such that the operator Ty : H@(*(F ) —

H® (*(F]) given by

0<|v|<n 0<|v|<n

is positive semidefinite. Then there exist operators Fy,...,Fy,: H — H, |w| < n, such

that for Tr := Yo<|vj<n v ® Ly we have To = Ty T .
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Proof. Note that this operator Tp is an R-multi-Toeplitz operator. Let us consider
the matrix representation Ty in the basis f§ = {¢;® §"};,, where {e;}; is some fixed
orthonormal basis for H and v € ]—'j . It is a multi-Toeplitz operator matrix, just like
the one corresponding to the polynomial (2), but with operator entries Q; instead. Then
as done before, after relabeling the indexes, we get the multi-Toeplitz matrix:

(00 0.1 0 e (O 0 0
01 Qo®ly Q1 ®lg - Q0 (, 1)®l 0 w®Iy 0
QO 1®ly Qo®®lg - Q (- 2)®Id®ld O ()@l ®ly Q0 ®IF?

10=10, 0y 101y Qua@ly®ly - Q&I Iy Q@I 0 L,@I"
0 0@l O @RIy  QOI" QL 0 &t

0 0 0Ll - QoL 0101 QeI

(n+1) n+1) -,

(n+1)

In this case, we have that Q; =0 for |j| >n+1.

*

AB .
B C} (that is, supported on first
n+1 rows and columns of Ty ). Then from Theorem 3.1 we get that

A= Qg and B=col(Q;)i_,

Now consider the Schur complement, S(n) =

Comparing the first row of S(n) above with the first row of the product in Corollary 3.2
factorization we get that:

Qo= Y, FFj;
Jj=0

0 =Y F(F;®L)for 1 <j<n.
k=j
(These F; for i =0, ... ,n are the ones provided by Corollary 3.2.) From the
multi-Toeplitz structure and self-adjointness of the matrix Tp, the above equations give
us the following factorization:

Ty = T; Ty
where
F
F el
F, Rl F0®I§’2
=\ FFaol ol Kol

0 Fel; F ®]592 RO R ®Ij§(n+1)
0 0 Fn®1§2 BRI F ®Ija(n+1) FO®Ija(n+2)
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In this compact representation of Tr, recall F; = col(F,)},|—;- Thus the operator
corresponding to the above matrix is,

Tr= Y F®L,.

0<|v|<n
The theorem is proved. [

The last step is to prove that the above factorization is outer. Let us first define
what an outer function is:

DEFINITION 3.1. Let F be analytic; thatis, F(§) = Y F&,, where n is some
VE]-';r
[v|<n

positive integer, F,, € B(H) for each w € 7, and suppose that T : H® (*(F,}) —
H® (*(F]) is defined as

Tr= ) F®L,.

0<v|<n

We say F is outer if there exists a closed subspace, M C H such that
ran(Tr) = M@ (F)).

This above definition is equivalent to Popescu’s definition in [9]. Let us also re-
mark that in the case of scalar coefficients, F is outer if and only if F(&) has no zeroes
in the row ball. This means that whenever (Xj,...,X,) are any n X n matrices with
| XX;X;|| <1, then the matrix F(X) is nonsingular. See [5] and [1].

PROPOSITION 3.4. Under the same hypothesis as in Theorem 3.3, the F obtained
from this theorem is outer.

Proof. The proof is a multi-Toeplitz version of (i)-(iv) from Theorem 3.3 in [2].
From our Corollary 3.2, we get that

S(T¢Tr;0) = S(Tp;0) = S(S(n);0) = Fy Fo.
Then applying Lemma 2.1 from [2] we get that, ran(col(Fj);>1) C ran(Tr @ I;). If

h € H, then col(Fjh) j>1 € Fan(Tp ®I;). Thus there exists a sequence of vectors (g, ),
so that lim,...(Tr ® I;)gn = col(F;h)j>1 . But then

i F 0 ) h )_ Foh
n—eo \COL(F)) 51 (Tr®13) ) \—ga) — \ 0 }°

Thus Foh € FanTy . Hence Fan(Fy) @ (*(F,) C ranTr .
Also ran(col(Fj)j>1) C ran(Tr ® I;) implies that

ran(Fj) Cran(Fj_ 1 ®@1; Fj @12 F30IL3 - Rel).
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This gives us ran(Fj) C ran(Fy ®Ifj) for each j > 1. Recall that F; = col(Fy),—;
and so we get that for all w € 7, ran(F,,) C Fan(Fy). Therefore, Fan(Fy) @ (*(F;) =
7anTp . Finally, from the Definition 3.1 of an outer function, it follows that F is
outer. [J

Analogously, we have similar results for polynomial operators in right shifts.
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