

A CONSTRUCTIVE PROOF OF A NONCOMMUTATIVE FEJÉR-RIESZ THEOREM

PALAK ARORA

(Communicated by H. J. Woerdeman)

Abstract. In this paper, we present a constructive proof of Popescu's Fejér-Riesz theorem for noncommuting polynomials representing nonnegative "multi-Toeplitz" operators.

1. Introduction

The classical Fejér-Riesz theorem states the following: if a trigonometric polynomial

$$w(e^{it}) = \sum_{j=-m}^{m} c_j e^{ijt}$$

is nonnegative for all real t, then it is expressible in the form

$$w(e^{it}) = |p(e^{it})|^2$$

for some analytic outer polynomial $p(z) = \sum_{j=0}^{m} a_j z^j$. (Concretely, a polynomial is *outer* if it has no zeroes in the open disk |z| < 1.)

For a proof, refer to Lemma 2.1 in [8]. There is also an operator version where the coefficients of w are matrices or operators ([10]), see also [2].

The Fejér-Riesz theorem can be reformulated as a statement about Toeplitz operators: the function w may be interpreted as the symbol of a *Toeplitz operator* T_w ; in particular if S denotes the unilateral shift on $\ell^2(\mathbb{N})$ then T_w is the operator defined by

$$T_w = c_0 I + \sum_{k=1}^m c_k S^k + \sum_{k=1}^m c_{-k} S^{*k},$$

and then the factorization $w = |p|^2$ is equivalent to the factorization of operators

$$T_w = T_p^* T_p$$

where $T_p = \sum_{k=0}^m a_k S^k = p(S)$. The equivalence of the two formulations follows easily from the fact that S is an isometry.

Mathematics subject classification (2020): 47A57, 47A68, 47A35.

Keywords and phrases: Multi-Toeplitz operator, outer factorization, Schur complements.

It turns out that this operator formulation admits a generalization in the noncommutative setting, to so-called *multi-Toeplitz* operators, where the single isometry S is replaced by a *row isometry*; for example, the d tuple of left shifts, (L_1, L_2, \ldots, L_d) or d tuple of right shifts, (R_1, R_2, \ldots, R_d) . Precise definitions are given in the next section. Following an idea of Dritschel and Woerdeman [2], this paper develops a constructive proof of Popescu's Fejér-Riesz theorem in the noncommutative setting. We have a nonnegative multi-Toeplitz polynomial operator

$$T_Q:=Q_0\mathop{\otimes} I_{\ell^2(\mathcal{F}_d^+)}+\sum_{0<|
u|\leqslant n}Q_
u\mathop{\otimes} L_
u+\sum_{0<|
u|\leqslant n}Q_
u^*\mathop{\otimes} L_
u^*.$$

We then find a multi-Toeplitz operator factorization of this polynomial which is also outer,

$$T_Q := T_F^* T_F$$

where $T_F := \sum_{0 \le |\nu| \le n} F_{\nu} \otimes L_{\nu}$ [This is a slight rewording of Theorem 1.6 in [9]]. There are several such results in the same spirit ([6], [4], [7]), depending on which operators were used to define the positivity condition; for example, in [6], McCullough has considered two different factorization theorems with positivity defined by testing on either unitary operators or self-adjoint operators.

2. Preliminaries

We begin by recalling some relevant definitions:

DEFINITION 2.1. Let \mathcal{F}_d^+ denote the free monoid on d letters. This is the set of all finite words in the letters $1,2,\ldots,d$, including the empty word. We write |w| for the length of the word, that is, the total number of letters that appear. We write \varnothing for the empty word; by convention $|\varnothing|=0$. The $Fock\ space,\ \ell^2(\mathcal{F}_d^+)$ is the Hilbert space with orthonormal basis indexed by \mathcal{F}_d^+ : we write ξ_w for the basis vector labeled by the word $w\in\mathcal{F}_d^+$. When d=1, \mathcal{F}_d^+ is identified with the natural numbers \mathbb{N} .

DEFINITION 2.2. The left shift operator L_j is defined as

$$L_j \xi_w = \xi_{jw}$$

for j = 1, ..., d and extending linearly. Similarly, the *left backward shift operator* L_j^* is defined as

$$L_{j}^{*}\xi_{w} = \begin{cases} \xi_{v}, & w = jv \\ 0, & \text{otherwise} \end{cases}$$

for $j=1,\ldots,d$. Thus $\{L_j|j=1,\ldots,d\}$ forms a system of isometries with orthogonal ranges:

$$L_i^* L_j = \delta_{ij} I. \tag{1}$$

Analogously we can define the *right shift operator* R_j by

$$R_j \xi_w = \xi_{wj}$$

for j = 1, ..., d and extending linearly. Similarly, the *right backward shift operator* R_j^* is defined as

$$R_j^* \xi_w = \begin{cases} \xi_v, & w = vj \\ 0, & \text{otherwise} \end{cases}$$

for j = 1,...,d. Note that left shifts and right shifts commute with each other; that is, $L_i R_j = R_j L_i$ for all i, j = 1,...,d.

From the above definition we get that (L_1, L_2, \dots, L_d) and (R_1, R_2, \dots, R_d) are row-isometries (this just means that equation (1) holds).

For any $w \in \mathcal{F}_d^+$, $w = i_1 i_2 \cdots i_n$ we denote $L_w = L_{i_1} L_{i_2} \cdots L_{i_n}$. So for any $w = i_1 i_2 \cdots i_n$ and $v = j_1 j_2 \cdots j_m$ in \mathcal{F}_d^+ , $L_w^* L_v = L_{i_n}^* \cdots L_{i_2}^* L_{i_1}^* L_{j_1} \cdots L_{j_m}^*$. Thus

$$L_w^* L_v = \begin{cases} L_x, & \text{if } v = wx \\ L_y^*, & \text{if } w = vy \\ 0, & \text{otherwise} \end{cases}.$$

DEFINITION 2.3. In the classical setting, T is said to be a *Toeplitz operator* if $S^*TS = T$ where S is a unilateral shift. An operator T is L-multi-Toeplitz if $L_i^*TL_j = \delta_{ij}T$ where L_j is a left shift operator. Similarly, T is called R-multi-Toeplitz if $R_i^*TR_j = \delta_{ij}T$ where R_j is a right shift operator.

EXAMPLE 1. Any left shift operator L_w is R-multi-Toeplitz. Indeed, since L_i and R_j commute with each other, R_j commutes with L_w for all w and thus we have

$$R_i^* L_w R_j = R_i^* R_j L_w$$
$$= \delta_{ij} L_w.$$

Similarly, L_{ν}^* is R-multi-Toeplitz for any word ν . Therefore for any noncommutative polynomials f,g, we have that $f(L)^* + g(L)$ is R-multi-Toeplitz. Moreover, a multi-Toeplitz polynomial of the form g(L) is called *analytic*.

Next let us consider an *R*-multi-Toeplitz polynomial operator with scalar coefficients, say,

$$T := \sum_{0 \le |\nu| \le n} q_{\nu} L_{\nu} + \sum_{0 < |\nu| \le n} q_{\nu}^* L_{\nu}^*. \tag{2}$$

Then corresponding to the Fock space basis $\{\xi_{\nu}\}_{\nu\in\mathcal{F}_{d}^{+}}$ we get its matrix representation which is a multi-Toeplitz matrix:

q_0	q_1^*		q_d^*				$q_{1d\cdots d}^*$				$q^*_{dd\cdots d}$			0	<u>····</u>]
q_1	q_0	• • •	0		$q_{1\cdots 1}^*$	• • •	0	• • •	$q_{d\cdots d}^*$	• • •	0	q_{111}^*	• • •	0	
:	:	٠.	÷		:	٠.	:	٠٠.	:	٠.	:	:	٠.	:	٠.
q_d	0		q_0		0		$q_{1\cdots 1}^*$		0		$q_{d\cdots d}^*$	0		$q_{dd\cdots d}^*$	<u>. · . </u>
<u>:</u>	:	٠.	:	٠.	:	٠.	:	٠.	٠.	:	٠.	:	٠.	:	·
q_{111}	q_{11}		0		q_0		0		0		0	q_1^*		0	٠.
:	:	٠.	:	:	:	٠.	:		:		:	:	٠.	:	٠.
$q_{1d\cdots d}$	0		$q_{1\cdots 1}$		0		q_0		0		0	0		0	
:		٠.		٠.	:			٠.			:	:	٠.	:	٠.
$q_{d1\cdots 1}$	$q_{d\cdots d}$	• • •	0		0	• • •	0		q_0	• • •	0	0		0	
:	:	٠.	:	٠.	:					٠.	:	:	٠.	:	٠
$q_{dd\cdots d}$	0		$q_{d\cdots d}$		0		0		0		q_0	0		q_d^*	
0	q_{111}	• • •	0		q_1	• • •	0	• • •	0	• • •	0	q_0		0	
:		٠.		٠.	:	٠.		٠.		٠.	÷	:	٠.	:	·
0	0		$q_{dd\cdots d}$		0		0		0		q_d	0		q_0	
:		٠.		٠.		٠.		٠.		٠.			٠.		٠٠.

Here we have used lexicographic ordering for ordering the elements of the word set, \mathcal{F}_d^+ . Also, it is convenient to view the basis $\{\xi_w\}$ as partitioned into blocks according to the length of the word w, which induces a corresponding block structure in the above matrix.

Now we do some relabeling of the indexes here and define for d = 1, ..., n:

$$q_k := col(q_w)_{w \in \mathcal{F}_d^+; |w| = k}$$
 and $q_{-k} := row(q_w^*)_{w \in \mathcal{F}_d^+; |w| = k}$,

and also identifying

$$q_1 \otimes I_d := egin{pmatrix} q_1 & \cdots & 0 \\ dots & \ddots & dots \\ 0 & \cdots & q_1 \\ dots & \ddots & dots \\ dots & \ddots & dots \\ q_d & \cdots & 0 \\ dots & \ddots & dots \\ 0 & \cdots & q_d \end{pmatrix}$$

and so on. Thus we get the following compact form of T, which makes it easier to see the multi-Toeplitz form of the matrix:

$$T = \begin{bmatrix} q_0 & q_{-1} & q_{-2} & \cdots & q_{-n} & 0 & 0 & \cdots \\ q_1 & q_0 \otimes I_d & q_{-1} \otimes I_d & \cdots & q_{-(n-1)} \otimes I_d & q_{-n} \otimes I_d & 0 & \cdots \\ q_2 & q_1 \otimes I_d & q_0 \otimes I_d \otimes I_d & \cdots & q_{-(n-2)} \otimes I_d \otimes I_d q_{-(n-1)} \otimes I_d \otimes I_d & q_{-n} \otimes I_d^{\otimes 2} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q_n & q_{n-1} \otimes I_d & q_{n-2} \otimes I_d \otimes I_d & \cdots & q_0 \otimes I_d \otimes \cdots \otimes I_d & q_{-1} \otimes I_d^{\otimes n} & q_{-2} \otimes I_d^{\otimes n} & \ddots \\ 0 & q_n \otimes I_d & q_{n-1} \otimes I_d \otimes I_d & \cdots & q_1 \otimes I_d^{\otimes n} & q_0 \otimes I_d^{\otimes (n+1)} & q_{-1} \otimes I_d^{\otimes (n+1)} & \ddots \\ 0 & 0 & q_n \otimes I_d \otimes I_d & \cdots & q_2 \otimes I_d^{\otimes n} & q_1 \otimes I_d^{\otimes (n+1)} & q_0 \otimes I_d^{\otimes (n+2)} & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

We are going to use a Schur complement technique from Dritschel and Woerdeman [2] in the proof of the main theorem. So let us define the following:

DEFINITION 2.4. If \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces and

$$\mathit{M} = \begin{pmatrix} A \ B^* \\ B \ C \end{pmatrix} : \mathcal{H}_1 \oplus \mathcal{H}_2 \to \mathcal{H}_1 \oplus \mathcal{H}_2$$

is a positive semidefinite operator, then there exists a unique contraction $G: \overline{ran}(C) \to \overline{ran}(A)$ such that $B = A^{1/2}GC^{1/2}$. The Schur complement of M supported on \mathcal{H}_1 is defined to be positive semidefinite operator $A^{1/2}(1-GG^*)A^{1/2}$.

An alternative way to define the Schur complement of M supported on \mathcal{H}_1 is via

$$\langle Sf, f \rangle = \inf \left\{ \left\langle \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \right\rangle \colon g \in \mathcal{H}_2 \right\};$$

that is, $S: \mathcal{H}_1 \longrightarrow \mathcal{H}_1$ is the largest positive semidefinite operator which may be subtracted from A in M such that the resulting operator matrix remains positive semidefinite.

REMARK. Consider any positive semidefinite operator matrix, M, say

$$M = \begin{pmatrix} A & B^* \\ B & C \end{pmatrix} : \mathcal{H}_1 \oplus \mathcal{H}_2 \rightarrow \mathcal{H}_1 \oplus \mathcal{H}_2$$

and let S_M be the Schur complement of M supported on \mathcal{H}_1 . Then for the positive semidefinite matrix $M \otimes I_d$, the Schur complement supported on $\mathcal{H}_1 \otimes \mathbb{C}^d$ is $S_{M \otimes I_d} = S_M \otimes I_d$.

We conclude this section with some notation: if Q is an operator from \mathcal{H} to \mathcal{H} for some Hilbert space \mathcal{H} , then we understand $Q \otimes I_d$ to be an operator from $\mathcal{H} \otimes \mathbb{C}^d$ to $\mathcal{H} \otimes \mathbb{C}^d$. We will write $\mathcal{H}_i := \mathcal{H} \otimes (\mathbb{C}^d)^{\otimes i}$ for $i \geqslant 0$.

In addition, we make use of the following notation from [2]: Typically, we will index rows and columns of an $n \times n$ matrix with $0, \dots, n-1$. For $\Lambda \subseteq \{0, \dots, n-1\}$

1} and an $n \times n$ matrix M, we write $S(M; \Lambda)$, or $S(\Lambda)$ when there is no chance of confusion, for the Schur complement supported on the rows and columns labeled by elements of Λ . It is usual to view $S(\Lambda)$ as an $m \times m$ matrix, where $m = \operatorname{card} \Lambda$, however it is often useful to take $S(\Lambda)$ as an $n \times n$ matrix by padding the rest of the entries in this $n \times n$ matrix with zeros. For notational convenience we have used S(m) for the Schur complement supported on rows and columns labeled by $\{0, \ldots, m\}$.

3. Main Theorem

Theorem 3.1 and Corollary 3.2 below are multi-Toeplitz versions of Proposition 3.1 and Corollary 3.2 from [2].

THEOREM 3.1. Consider the positive semidefinite multi-Toeplitz operator matrix

$$T_{Q} = \begin{bmatrix} Q_{0} & Q_{-1} & Q_{-2} & \cdots & \cdots \\ Q_{1} & Q_{0} \otimes I_{d} & Q_{-1} \otimes I_{d} & \cdots & \cdots \\ Q_{2} & Q_{1} \otimes I_{d} & Q_{0} \otimes I_{d} \otimes I_{d} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \end{bmatrix}$$

acting on $\mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots$. Then

1. The Schur complements of T_Q satisfy the reccurrence relation:

$$S(m) = \begin{bmatrix} A & B^* \\ B & S(m-1) \otimes I_d \end{bmatrix}$$
 (*)

for appropriate choice of $A: \mathcal{H}_0 \to \mathcal{H}_0$ and $B^*: \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \to \mathcal{H}_0$.

2. Suppose in addition that $Q_j = 0$ for $j \ge m+1$ (for some fixed positive integer m). Then the recursion formula (*), will hold with $A = Q_0$ and $B = col(Q_i)_{i=1}^m$.

REMARK. Given

$$T_{Q} = \begin{bmatrix} Q_{0} & Q_{-1} & Q_{-2} & \cdots & \cdots \\ Q_{1} & Q_{0} \otimes I_{d} & Q_{-1} \otimes I_{d} & \cdots & \cdots \\ Q_{2} & Q_{1} \otimes I_{d} & Q_{0} \otimes I_{d} \otimes I_{d} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \end{bmatrix},$$

we observe that T_Q can be identified with

$$T_{Q} = \begin{bmatrix} Q_{0} & row(Q_{-j})_{j \geq 1} \\ col(Q_{j})_{j \geq 1} & T_{Q} \otimes I_{d} \end{bmatrix}.$$

Proof of Theorem 3.1. Let us write

$$S(m) = \begin{bmatrix} A & B^* \\ B & C \end{bmatrix} : \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_m \rightarrow \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_m.$$

By definition of Schur complement, we have that

$$T_Q - \begin{bmatrix} S(m) & 0 \\ 0 & 0 \end{bmatrix} \geqslant 0.$$

That is, we have that

$$\left[\frac{Q_0 \quad |row(Q_{-j})_{j\geqslant 1}|}{col(Q_j)_{j\geqslant 1}} \frac{|row(Q_{-j})_{j\geqslant 1}|}{T_Q \otimes I_d}\right] - \left[\frac{A \mid B^* \mid 0}{B \mid C \mid 0} \atop 0 \mid 0 \mid 0\right] \geqslant 0.$$
 (3)

Then leaving out 0th row and column in (3) we get,

$$T_Q \otimes I_d - \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix} \geqslant 0.$$

So we have again from the definition of Schur complement that $C \leq S(m-1) \otimes I_d$. Now leaving out the rows and columns $1, \dots, m$ in (3), we get

$$\begin{bmatrix} Q_0 - A & row(Q_j^*)_{j \geqslant m+1} \\ col(Q_j)_{j \geqslant m+1} & T_Q \otimes I_d^{\otimes (m+1)} \end{bmatrix} \geqslant 0.$$

That is,

$$A \leqslant S\left(\begin{bmatrix}Q_0 & row(Q_j^*)_{j\geqslant m+1}\\ col(Q_j)_{j\geqslant m+1} & T_Q \otimes I_d^{\otimes (m+1)}\end{bmatrix}; 0\right) := \tilde{A}.$$

Note that when $Q_j = 0$ for all $j \ge m+1$, then $\tilde{A} = Q_0$. Next consider the following operator matrix:

$$\begin{bmatrix} Q_{0} - \tilde{A} & X & row(Q_{j}^{*})_{j \geqslant m+1} \\ X^{*} & (Q_{i-j} \otimes I_{d})_{i=1,j=1}^{m} - S(m-1) \otimes I_{d} & (Q_{i-j} \otimes I_{d})_{i=1,j=m+1}^{m+1,\infty} \\ col(Q_{j})_{j \geqslant m+1} & (Q_{i-j} \otimes I_{d})_{i=m+1,j=1}^{\infty,m} & T_{Q} \otimes I_{d}^{\otimes (m+1)} \end{bmatrix}.$$
(4)

The existence of an operator X making this into a positive semidefinite matrix is a variant of a standard operator matrix completion problem (see Theorem XVI.3.1 in [3]), so there always exists such an X. So, we fix such an X. (Note that when $\tilde{A} = Q_0$ we have necessarily that X = 0.) Now since (4) is positive semidefinite, we obtain that

$$\begin{bmatrix} \tilde{A} & row(Q_j^*)_{j=1}^m - X \\ col(Q_j)_{j=1}^m - X & S(m-1) \otimes I_d \end{bmatrix} \leqslant S(m) = \begin{bmatrix} A & B^* \\ B & C \end{bmatrix}.$$

This implies that $\tilde{A} \leqslant A$ and $S(m-1) \otimes I_d \leqslant C$. From the first part of the proof we also have $A \leqslant \tilde{A}$ and $C \leqslant S(m-1) \otimes I_d$, and thus the equalities $A = \tilde{A}$ and $C = S(m-1) \otimes I_d$ follow. Moreover, if $Q_j = 0$ for $j \geqslant m+1$, we have that $\tilde{A} = Q_0$ and X = 0, and thus $B = col(Q_i)_{i=1}^m$. \square

COROLLARY 3.2. Consider the positive semidefinite multi-Toeplitz operator matrix

$$T_{Q} = \begin{bmatrix} Q_{0} & Q_{-1} & Q_{-2} & \cdots & \cdots \\ Q_{1} & Q_{0} \otimes I_{d} & Q_{-1} \otimes I_{d} & \cdots & \cdots \\ Q_{2} & Q_{1} \otimes I_{d} & Q_{0} \otimes I_{d} \otimes I_{d} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \end{bmatrix}$$

acting on $\mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots$. Then for each $m \geqslant 0$, there exist operators F_0 , F_1 , ... with

$$F_{m-k} \otimes I_d^{\otimes k} : \mathcal{H}_k \longrightarrow \overline{ran} F_0 \otimes \mathbb{C}^m \subseteq \mathcal{H} \otimes \mathbb{C}^m$$

for $0 \le k \le (m-1)$, so that the Schur complements S(m) of T_Q satisfy

$$S(m) = \begin{bmatrix} F_0^* & F_1^* & F_2^* & \cdots & F_m^* \\ F_0^* \otimes I_d & F_1^* \otimes I_d & \cdots & F_{m-1}^* \otimes I_d \\ & F_0^* \otimes I_d^{\otimes 2} & \cdots & F_{m-2}^* \otimes I_d^{\otimes 2} \\ & & \ddots & \vdots \\ & & & F_0^* \otimes I_d^{\otimes m} \end{bmatrix} \begin{bmatrix} F_0 \\ F_1 & F_0 \otimes I_d \\ F_2 & F_1 \otimes I_d & F_0 \otimes I_d^{\otimes 2} \\ & \vdots & \vdots & \ddots \\ F_m & F_{m-1} \otimes I_d & F_{m-2} \otimes I_d^{\otimes 2} & \cdots & F_0 \otimes I_d^{\otimes m} \end{bmatrix}.$$

Proof. We will prove this by induction on m.

Base step: S(0) being a positive semidefinite operator, we can write $S(0) = F_0^* F_0$ where $F_0 = (S(0))^{1/2}$.

Induction hypothesis: Let us assume that the result holds for S(m-1).

By [2], Proposition 3.1, we have that $(S(m))_{m,m} = (S(m-1))_{m-1,m-1} \otimes I_d = F_0^* F_0 \otimes I_d^{\otimes (m-1)} \otimes I_d = F_0^* F_0 \otimes I_d^{\otimes m}$.

From [2] Corollary 2.3, we have that S(m-1)=S(S(m);m-1). Thus applying Lemma 2.1 from [2] to

$$P = \begin{bmatrix} F_{0} & & & & & & & & \\ F_{1} & F_{0} \otimes I_{d} & & & & & & \\ F_{2} & F_{1} \otimes I_{d} & F_{0} \otimes I_{d}^{\otimes 2} & & & & & \\ \vdots & \vdots & \vdots & \ddots & & & & & \\ F_{m-1} & F_{m-2} \otimes I_{d} & F_{m-3} \otimes I_{d}^{\otimes 2} & \cdots & F_{0} \otimes I_{d}^{\otimes (m-1)} \end{bmatrix}, \quad R = F_{0} \otimes I_{d}^{\otimes m}, \quad (5)$$

we get, there exist $(G_m \cdots G_1)$ so that

$$S(m) = \begin{bmatrix} F_0^* & F_1^* & F_2^* & \cdots & G_m^* \\ F_0^* \otimes I_d & F_1^* \otimes I_d & \cdots & G_{m-1}^* \\ & F_0^* \otimes I_d^{\otimes 2} & \cdots & G_{m-2}^* \\ & & \ddots & \vdots \\ & & & F_0^* \otimes I_d^{\otimes m} \end{bmatrix} \begin{bmatrix} F_0 \\ F_1 & F_0 \otimes I_d \\ F_2 & F_1 \otimes I_d & F_0 \otimes I_d^{\otimes 2} \\ \vdots & \vdots & \vdots & \ddots \\ G_m & G_{m-1} & G_{m-2} & \cdots & F_0 \otimes I_d^{\otimes m} \end{bmatrix},$$

and $ran(G_m \cdots G_1) \subseteq \overline{ran}F_0 \otimes (\mathbb{C}^d)^{\otimes m}$. Comparing with $S(m) = \begin{bmatrix} A & B^* \\ B S(m-1) \otimes I_d \end{bmatrix}$ along with the induction hypothesis, we deduce that $S(m-1) \otimes I_d$ factors into

$$\begin{bmatrix} F_0^* \otimes I_d & F_1^* \otimes I_d & \cdots & F_{m-2}^* \otimes I_d & G_{m-1}^* \\ & F_0^* \otimes I_d^{\otimes 2} & \cdots & F_{m-3}^* \otimes I_d^{\otimes 2} & G_{m-2}^* \\ & & \ddots & \vdots & & \vdots \\ & & F_0^* \otimes I_d^{\otimes (m-1)} & G_1^* \\ & & & & F_0^* \otimes I_d^{\otimes m-1} \end{bmatrix} \begin{bmatrix} F_0 \otimes I_d \\ F_1 \otimes I_d & F_0 \otimes I_d^{\otimes 2} \\ F_2 \otimes I_d & F_1 \otimes I_d^{\otimes 2} & F_0 \otimes I_d^{\otimes 3} \\ & \vdots & \vdots & \vdots & \ddots \\ G_{m-1} & G_{m-2} & G_{m-3} & \cdots & F_0 \otimes I_d^{\otimes m} \end{bmatrix}$$

$$= \begin{bmatrix} F_0^* \otimes I_d & F_1^* \otimes I_d & \cdots & F_{m-2}^* \otimes I_d & F_{m-1}^* \otimes I_d \\ & F_0^* \otimes I_d^{\otimes 2} & \cdots & F_{m-3}^* \otimes I_d^{\otimes 2} & F_{m-2}^* \otimes I_d^{\otimes 2} \\ & & \ddots & \vdots & & \vdots \\ & & & F_0^* \otimes I_d^{\otimes (m-1)} & F_1^* \otimes I_d^{\otimes (m-1)} \\ & & & & & F_0^* \otimes I_d^{\otimes m} \end{bmatrix}$$

$$\times \begin{bmatrix} F_0 \otimes I_d & & & & & & \\ F_1 \otimes I_d & F_0 \otimes I_d^{\otimes 2} & & & & & \\ F_2 \otimes I_d & F_1 \otimes I_d^{\otimes 2} & F_0 \otimes I_d^{\otimes 3} & & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & & & \\ F_{m-1} \otimes I_d & F_{m-2} \otimes I_d^{\otimes 2} & F_{m-3} \otimes I_d^{\otimes 3} & \cdots & F_0 \otimes I_d^{\otimes m} \end{bmatrix},$$

and thus, equating the last rows of each of these products, we have

$$F_0^* \otimes I_d^{\otimes m}(G_{m-1} \quad G_{m-2} \quad \cdots \quad G_1) = F_0^* \otimes I_d^{\otimes m}(F_{m-1} \otimes I_d \quad F_{m-2} \otimes I_d^{\otimes 2} \cdots F_1 \otimes I_d^{\otimes (m-1)}).$$

As

$$ran(G_{m-1} G_{m-2} \cdots G_1) \subseteq \overline{ran}F_0 \otimes (\mathbb{C}^d)^{\otimes m}$$

and

$$ran(F_{m-1} \otimes I_d \quad F_{m-2} \otimes I_d^{\otimes 2} \quad F_{m-3} \otimes I_d^{\otimes 3} \cdots F_1 \otimes I_d^{\otimes (m-1)}) \subseteq \overline{ran}F_0 \otimes (\mathbb{C}^d)^{\otimes m},$$

it follows that $G_j = F_j \otimes I_d^{\otimes (m-j)}$ for $j=1,\cdots,m-1$. By setting $F_m := G_m$, we have our result. \square

THEOREM 3.3. Let $(L_1, L_2, ..., L_d)$ be the left d-shift, let \mathcal{H} be a Hilbert space, and let $\{Q_w\}_{|w| \leqslant n}$ be operators $Q_w : \mathcal{H} \to \mathcal{H}$ such that the operator $T_Q : \mathcal{H} \otimes \ell^2(\mathcal{F}_d^+) \to \mathcal{H} \otimes \ell^2(\mathcal{F}_d^+)$ given by

$$T_Q := Q_0 \otimes I_{\ell^2(\mathcal{F}_d^+)} + \sum_{0 < |v| \leqslant n} Q_v \otimes L_v + \sum_{0 < |v| \leqslant n} Q_v^* \otimes L_v^*$$

is positive semidefinite. Then there exist operators $F_0, ..., F_w : \mathcal{H} \to \mathcal{H}$, $|w| \leq n$, such that for $T_F := \sum_{0 \leq |v| \leq n} F_v \otimes L_v$ we have $T_Q = T_F^* T_F$.

150 P. ARORA

Proof. Note that this operator T_O is an R-multi-Toeplitz operator. Let us consider the matrix representation T_Q in the basis $\beta = \{e_i \otimes \xi^{\nu}\}_{i,\nu}$, where $\{e_i\}_i$ is some fixed orthonormal basis for \mathcal{H} and $v \in \mathcal{F}_d^+$. It is a multi-Toeplitz operator matrix, just like the one corresponding to the polynomial (2), but with operator entries Q_j instead. Then as done before, after relabeling the indexes, we get the multi-Toeplitz matrix:

$$T_{Q} = \begin{bmatrix} Q_{0} & Q_{-1} & Q_{-2} & \cdots & Q_{-n} & 0 & 0 & \cdots \\ Q_{1} & Q_{0} \otimes I_{d} & Q_{-1} \otimes I_{d} & \cdots & Q_{-(n-1)} \otimes I_{d} & Q_{-n} \otimes I_{d} & 0 & \cdots \\ Q_{2} & Q_{1} \otimes I_{d} & Q_{0} \otimes I_{d} \otimes I_{d} & \cdots & Q_{-(n-2)} \otimes I_{d} \otimes I_{d} & Q_{-(n-1)} \otimes I_{d} \otimes I_{d} & Q_{-n} \otimes I_{d}^{\otimes 2} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ Q_{n} & Q_{n-1} \otimes I_{d} & Q_{n-2} \otimes I_{d} \otimes I_{d} & \cdots & Q_{0} \otimes I_{d} \otimes \cdots \otimes I_{d} & Q_{-1} \otimes I_{d}^{\otimes n} & Q_{-2} \otimes I_{d}^{\otimes n} & \ddots \\ 0 & Q_{n} \otimes I_{d} & Q_{n-1} \otimes I_{d} \otimes I_{d} & \cdots & Q_{1} \otimes I_{d}^{\otimes n} & Q_{0} \otimes I_{d}^{\otimes (n+1)} & Q_{-1} \otimes I_{d}^{\otimes (n+1)} & \ddots \\ 0 & 0 & Q_{n} \otimes I_{d} \otimes I_{d} & \cdots & Q_{2} \otimes I_{d}^{\otimes n} & Q_{1} \otimes I_{d}^{\otimes (n+1)} & Q_{0} \otimes I_{d}^{\otimes (n+2)} & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

In this case, we have that $Q_i = 0$ for $|j| \ge n + 1$.

Now consider the Schur complement, $S(n) = \begin{bmatrix} A & B^* \\ B & C \end{bmatrix}$ (that is, supported on first rows and columns of T_0). Then from Theorem 2. n+1 rows and columns of T_O). Then from Theorem 3.1 we get that

$$A = Q_0$$
 and $B = col(Q_i)_{i=1}^n$.

Comparing the first row of S(n) above with the first row of the product in Corollary 3.2 factorization we get that:

$$Q_0 = \sum_{j=0}^n F_j^* F_j;$$

$$Q_{-j} = \sum_{k=0}^n F_k^* (F_{k-j} \otimes I_d^{\otimes j}) \text{ for } 1 \leqslant j \leqslant n.$$

(These F_i for i = 0, ..., n are the ones provided by Corollary 3.2.) From the multi-Toeplitz structure and self-adjointness of the matrix T_O , the above equations give us the following factorization:

$$T_Q = T_F^* T_F$$

where

In this compact representation of T_F , recall $F_i = col(F_v)_{|v|=i}$. Thus the operator corresponding to the above matrix is,

$$T_F = \sum_{0 \leqslant |v| \leqslant n} F_v \otimes L_v.$$

The theorem is proved. \Box

The last step is to prove that the above factorization is outer. Let us first define what an outer function is:

DEFINITION 3.1. Let F be analytic; that is, $F(\xi) = \sum_{\substack{v \in \mathcal{F}_d^+ \\ |v| \le n}} F_v \xi_v$, where n is some

positive integer, $F_w \in B(\mathcal{H})$ for each $w \in \mathcal{F}_d^+$ and suppose that $T_F : \mathcal{H} \otimes \ell^2(\mathcal{F}_d^+) \longrightarrow \mathcal{H} \otimes \ell^2(\mathcal{F}_d^+)$ is defined as

$$T_F = \sum_{0 \leqslant |\nu| \leqslant n} F_{\nu} \otimes L_{\nu}.$$

We say F is *outer* if there exists a closed subspace, $\mathcal{M} \subset \mathcal{H}$ such that

$$\overline{ran}(T_F) = \mathcal{M} \otimes \ell^2(\mathcal{F}_d^+).$$

This above definition is equivalent to Popescu's definition in [9]. Let us also remark that in the case of scalar coefficients, F is outer if and only if $F(\xi)$ has no zeroes in the *row ball*. This means that whenever (X_1,\ldots,X_d) are any $n\times n$ matrices with $\|\sum X_j X_j^*\| < 1$, then the matrix F(X) is nonsingular. See [5] and [1].

PROPOSITION 3.4. Under the same hypothesis as in Theorem 3.3, the F obtained from this theorem is outer.

Proof. The proof is a multi-Toeplitz version of (i)-(iv) from Theorem 3.3 in [2]. From our Corollary 3.2, we get that

$$S(T_F^*T_F;0) = S(T_Q;0) = S(S(n);0) = F_0^*F_0.$$

Then applying Lemma 2.1 from [2] we get that, $ran(col(F_j)_{j\geqslant 1}) \subset \overline{ran}(T_F \otimes I_d)$. If $h \in \mathcal{H}$, then $col(F_jh)_{j\geqslant 1} \in \overline{ran}(T_Q \otimes I_d)$. Thus there exists a sequence of vectors $(g_n)_n$ so that $\lim_{n\to\infty} (T_F \otimes I_d)g_n = col(F_jh)_{j\geqslant 1}$. But then

$$\lim_{n\to\infty} \begin{pmatrix} F_0 & 0 \\ col(F_j)_{j\geqslant 1} & (T_F\otimes I_d) \end{pmatrix} \begin{pmatrix} h \\ -g_n \end{pmatrix} = \begin{pmatrix} F_0h \\ 0 \end{pmatrix}.$$

Thus $F_0h \in \overline{ran}T_F$. Hence $\overline{ran}(F_0) \otimes \ell^2(\mathcal{F}_d^+) \subset \overline{ran}T_F$. Also $ran(col(F_i)_{i\geqslant 1}) \subset \overline{ran}(T_F \otimes I_d)$ implies that

$$ran(F_i) \subset \overline{ran}(F_{i-1} \otimes I_d \quad F_{i-2} \otimes I_d^{\otimes 2} \quad F_{i-3} \otimes I_d^{\otimes 3} \cdots F_0 \otimes I_d^{\otimes j}).$$

This gives us $ran(F_j) \subset \overline{ran}(F_0 \otimes I_d^{\otimes j})$ for each $j \geqslant 1$. Recall that $F_j = col(F_w)_{|w|=j}$ and so we get that for all $w \in \mathcal{F}_d^+$, $ran(F_w) \subset \overline{ran}(F_0)$. Therefore, $\overline{ran}(F_0) \otimes \ell^2(\mathcal{F}_d^+) = \overline{ran}T_F$. Finally, from the Definition 3.1 of an outer function, it follows that F is outer. \square

Analogously, we have similar results for polynomial operators in right shifts.

REFERENCES

- [1] PALAK ARORA, MERIC AUGAT, MICHAEL JURY, AND MEREDITH SARGENT, An optimal approximation problem for free polynomials, 2022.
- [2] MICHAEL A. DRITSCHEL AND HUGO J. WOERDEMAN, Outer factorizations in one and several variables, Trans. Amer. Math. Soc., 357 (11): 4661–4679, 2005.
- [3] CIPRIAN FOIAS AND ARTHUR E. FRAZHO, *The commutant lifting approach to interpolation problems*, volume 44 of Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1990.
- [4] J. WILLIAM HELTON, SCOTT A. MCCULLOUGH, AND MIHAI PUTINAR, A non-commutative Positivstellensatz on isometries, J. Reine Angew. Math., 568: 71–80, 2004.
- [5] MICHAEL T. JURY, ROBERT T. W. MARTIN, AND ELI SHAMOVICH, Non-commutative rational functions in the full Fock space, Trans. Amer. Math. Soc., 374 (9): 6727–6749, 2021.
- [6] SCOTT MCCULLOUGH, Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl., 326 (1–3): 193–203, 2001.
- [7] SCOTT MCCULLOUGH AND MIHAI PUTINAR, Noncommutative sums of squares, Pacific J. Math., 218 (1): 167–171, 2005.
- [8] VERN PAULSEN, Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2002.
- [9] GELU POPESCU, Multi-analytic operators on Fock spaces, Math. Ann., 303 (1): 31-46, 1995.
- [10] MARVIN ROSENBLUM, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl., 23: 139–147, 1968.

(Received July 12, 2022)

Palak Arora Department of Mathematics University of Florida P.O. Box 118105, Gainesville, Fl 32611-8105