
Operators
and

Matrices

Volume 17, Number 1 (2023), 153–166 doi:10.7153/oam-2023-17-12

THE ROOTS OF ELEMENTS OF Aut(SH2)
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Abstract. We study the roots of automorphisms on the Siegel upper half plane of complex di-
mension three. We use the normal form of any element of Sp(2,R) under the conjugation in
Sp(2,R) to show that some of automorphisms have roots and that some of them do not have. As
an application, we generalize the Siegel unit disk of the same dimension.

1. Introduction and preliminaries

The square matrix A is said to be (square) root if there exists a matrix B such
that B2 = A . The study of this issue of solving matrix equations has been of inter-
est to many mathematicians [6, 1, 3]. In this article, we investigate the rootabliyt of
automorphisms on the Siegel unit disk. We denote by GL(n,R) the set of all n× n
invertible matrices on the field R . Let Sym(n,R) be the space of n× n symetric ma-
trices. Let SDn = {Z ∈ Sym(n,R) : ‖Z‖2 < 1} be the Siegel n -disk. Also we consider
SDn = {Z ∈ Sym(n,R) : ‖Z‖2 � 1} and ∂SDn = {Z ∈ Sym(n,R) : ‖Z‖2 = 1} , the
Shilov boundary of SDn . Moreover, we set USym(n) = Un ∩ Sym(n,R) , the set of
n×n unitary symmetric matrices. Let SHn = {Z ∈ Sym(n,R) : ImZ > 0} be the Siegel
upper half plane and let Cl(SHn ) denote the compactification of SHn , which is diffeo-
morphic to SDn ; for details, see [7].

The symplectic group Sp(n,R) is defined as

Sp(n,R) = {M ∈ GL(2n,R) : MT JnM = Jn},

in which

Jn =
(

O In
−In O

)
∈ SL(2n,R),

where SL(2n,R) is the set of all matrices such as A ∈ R2n×2n with detA = 1. It is seen

that if M =
(

A B
C D

)
, then

M ∈ Sp(n,R) ⇐⇒ M−1 =
(

DT −BT

−CT AT

)
,
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which is equivalent that ATC and BT D are symmetric and AT D−CTB = In . Recall

that M =
(

A B
C D

)
∈ Sp(n,R) acts on SHn as follows:

M(Z) := (AZ +B)(CZ +D)−1 (Z ∈ SHn).

We call these maps generalized Mübius transformations on SHn , where the action M
and −M coincide. It is easy to see that Sp(n,R) is a group and that {±I2n} is a
normal subgroup. Furthermore, PSp(n,R) = Sp(n,R)/{±I2n} is equal to the group of
biholomorphisms of SHn . The action of M ∈ Sp(n,R) can be extended to Cl(SHn) .
The following theorem explains the normal forms of conjugacy in SL(2,R) = Sp(1,R) ;
see [6, 7].

THEOREM 1.1. [7, Theorem 3.2] Let X ∈ SL(2,R) with X �= ±I2 . Then X is
conjugate to one and only one of the following normal forms in SL(2,R):

(1)

(
1/α 0
0 α

)
, where |α| > 1,

(2) ±
(

1 0
±1 1

)
,

(3)

(
a b
−b a

)
, where a2 +b2 = 1.

Also X ∈ SL(2,R) is called hyperbolic, parabolic, and elliptic if X is conjugate

to one of the forms in (1),(2) , and (3) , respectively. Let A =
(

a b
c d

)
, and let B =(

e f
g h

)
∈ R

2×2 . Then define A�B by

A�B :=

⎛
⎜⎜⎝

a 0 b 0
0 e 0 f
c 0 d 0
0 g 0 h

⎞
⎟⎟⎠ .

In [6], it is shown that

θ : SL(2,R)n → Sp(n,R) , θ (M1 ×·· ·×Mn) = M1 �·· ·�Mn

is an isomorphism from SL(2,R)n onto a subgroup of Sp(n,R) .

REMARK 1.2. It follows from [7, Theorem 3.3] that each M ∈ Sp(2,R) is conju-
gated to one of the following matrices:

type 1.
(

A O
O B

)
, where A =

(
α 0
0 β

)
and B =

(
α−1 0

0 β−1

)
,

type 2.
(

A O
O B

)
, where A =

(α 0
1 α

)
and B =

(
α−1 −α−2

0 α−1

)
,



THE ROOTS OF ELEMENTS OF Aut(SH2) 155

type 3.
(

A O
C B

)
, where A =

(
0 1
−1 2a

)
, B =

(
2a 1
−1 0

)
, and C =

(
0 δ
0 0

)
with |a| � 1

and δ = 0,±1,

type 4.
(

A O
C B

)
, where A =

(
1 0
0 α

)
, B =

(
1 0
0 α−1

)
, and C =

(
δ 0
0 0

)
with α �= ±1

and δ = 0,±1,

type 5.
(

A O
C A

)
, where A =

(
1 0
0 α

)
and C =

(
δ1 0
0 δ2

)
with α =±1, δ1,δ2 = 0,±1,

type 6. A� B , where A =
(a1 −c1

c1 a1

)
and B =

(
a2 0
δ a2

)
with a2

1 + c2
1 = 1, δ =

0,±1, and if δ �= 0, then a2 = ±1,

type 7. A�B , where A =
(

a1 b1
−b1 a1

)
and B =

(
a2 b2
−b2 a2

)
with a2

1 +b2
1 = a2

2 +b2
2 =

1.

2. Main results

Let H be the upper half plane in R2 . Then we set

PSL(2,R) := SL(2,R)/{±I2} = PSp(1,R) = Aut(H).

In this section, we examine the roots of some elements of PSp(2,R) . First, we give the
concept of root-approximable in a topological group.

DEFINITION 2.1. Let G be a topological group with unit e . An element x in G
is called root-approximable if there exists a sequence (xn) in G such that

(i) x2n

n = x, n = 0,1,2, . . . ,

(ii) limn→∞ xn = e.

The topological group G is root-approximable if each x ∈ G is root-approximable.

In the next theorem, we show that Aut(H) is root-approximable. Let y = a−1xa
and let yn = a−1xna . Then limyn = lim(a−1xna) = a−1 limxna = a−1ea = e and y2n

n =
(a−1xna)2n

= a−1x2n

n a = a−1xa = y , so we have the following lemma.

LEMMA 2.2. If x ∈ G is root-approximable and a ∈ G, then so is a−1xa.

THEOREM 2.3. The group Aut(H) is root-approximable.

Proof. Let M ∈ Aut(H) . Making use of Theorem 1.1 and Lemma 2.2, it suffices
to consider the following cases:

(1) [A] =
{
±

(
1/α 0
0 α

)}
, where α > 1,
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(2) [B] =
{
±

(
1 0
±1 1

)}
,

(3) [C] =
{
±

(
cosθ sinθ
−sinθ cosθ

)}
.

If M is equal to [A], [B] or [C] , then

[A]1/2n
=

{
±

(
1/ 2n√α 0

0 2n√α

)}
,

[B]1/2n
=

{
±

(
1 0

±1/2n 1

)}
,

[C]1/2n
=

{
±

(
cos θ

2n sin θ
2n

−sin θ
2n cos θ

2n

)}
.

By setting Mn as [A]1/2n
, [B]1/2n

, or [C]1/2n
, we obtain Mn −→ [I2] = {±I2} and

M2n

n = M, n = 0,1,2, . . . . �

COROLLARY 2.4. Aut(D) is root-approximable, where D is the unit ball in C .

Note that
Aut(SH2) = PSp(2,R) = Sp(2,R)/{±I4}.

For root-approximability and roots, according to Lemma 2.2, it is sufficient to examine
only the canonical form, which is stated in the first section. To get the main result, we
need the following lemmas.

LEMMA 2.5. If A and B in R2×2 have roots, then M = A⊕B∈ R4×4 has a root.

Proof. Let A and B have roots. That is, there exist A1 and B1 are in R2×2 such
that A = A2

1 and B = B2
1 . Hence M = A⊕B = A2

1⊕B2
1 = (A1 ⊕B1)2 . �

LEMMA 2.6. Let M = X�Y be in Sp(2,R) where X =
(

a1 b1
c1 d1

)
and Y =

(
a2 b2
c2 d2

)
.

Then X and Y belong to SL(2,R) .

Proof. Since M = I2,3(X ⊕Y )I2,3 where I2,3 is a root of I4 ( I2
2,3 = I4 ),

I2,3 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

It is seen that MT = I2,3(XT ⊕YT )I2,3 , therefore (XT �YT )J2(X �Y ) = J2 and XT �
YT = I2,3(XT ⊕YT )I2,3 . Then we have

I2,3(XT ⊕YT )I2,3J2I2,3(X ⊕Y )I2,3 = J2,



THE ROOTS OF ELEMENTS OF Aut(SH2) 157

Thus (XT ⊕YT )I2,3J2I2,3(X ⊕Y ) = I2,3J2I2,3 . In adition, I2,3J2I2,3 = J1 ⊕ J1 , where
J1 =

(
0 1
−1 0

)
. So (XT ⊕YT )(J1 ⊕ J1)(X ⊕Y ) = J1⊕ J1 . Hence

XT J1X = YT J1Y = J1.

As a result, X ,Y ∈ SL(2,R) . �

LEMMA 2.7. Let M be a symplectic matrix in Sp(2,R) and there exist two ma-
trices A and B belong to SL(2,R) such that I2,3MI2,3 = A⊕B. Then M has a root in
Sp(2,R) if and only if A and B have roots in SL(2,R) .

Proof. Assume that A and B have root. If N = I2,3MI2,3 = A⊕B , then N1/2 =
A1/2⊕B1/2 , therefore M1/2 = (I2,3NI2,3)1/2 = I2,3N1/2I2,3 . Therefore we have

(M1/2)T J2M
1/2 = I2,3(N1/2)T I2,3J2I2,3N

1/2I2,3

= I2,3((A1/2)T ⊕ (B1/2)T )(J1 ⊕ J1)(A1/2⊕B1/2)I2,3

= I2,3((A1/2)T J1A
1/2⊕ (B1/2)T J1B

1/2)I2,3

= I2,3(J1 ⊕ J1)I2,3 = J2.

Therefore M1/2 ∈ Sp(2,R) . Now we assume that M has a root in Sp(2,R) , then

M
1
2 = (I2,3A⊕BI2,3)

1
2 = I2,3(A⊕B)

1
2 I2,3) = I2,3(A

1
2 ⊕B

1
2 )I2,3.

Hence, by Lemma 2.6, A1/2 and B1/2 belong to SL(2,R) . �

Employing the Remark 1.2, we get the following theorems.

THEOREM 2.8. Let M be conjugated with type 1. Then M has a root unless

αβ < 0, |α| �= 1 and |β | �= 1 .

Proof. Let

M =

⎛
⎜⎜⎝

α 0 0 0
0 β 0 0
0 0 α−1 0
0 0 0 β−1

⎞
⎟⎟⎠ .

In this case, M = A⊕ B , where A =
(

α 0
0 β

)
and B =

(
α−1 0
0 β−1

)
. If αβ > 0, then

either A and B or −A and −B have roots. Utilizing Lemma 2.5, we deduce that [M]
has a root. For αβ < 0, we first assume |α| = 1 or |β | = 1. Then I2,3MI2,3 = C⊕D ,
where C is diagonal with positive entries and D is −I2 (otherwise, we consider −C

and −D). It is seen that −I2 has a root and

(
0 −1
1 0

)
is a root of −I2 . It follows from
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Lemma 2.5 that [M] has a root. Second, if |α| �= 1 and |β | �= 1, then we show that [M]
does not have any root. In fact, if⎛

⎝
(

α 0
0 α−1

)
O

O
(

β 0
0 β−1

)
⎞
⎠ = I2,3MI2,3 =

(
X Y
Z T

)2

=
(

X2 +YZ XY +YT
ZX +TZ ZY +T 2

)
. (2.1)

It can be assumed that α > 0 and that β < 0. Hence

X2 +YZ =
(

α 0
0 α−1

)
, ZY +T 2 =

(
β 0
0 β−1

)
, XY = −YT, ZX = −TZ .

Hence we get
XYZ = −YTZ = YZX .

This yields that X3 +XYZ = X3 +YZX , and thus X
(

α 0
0 α−1

)
=

(
α 0
0 α−1

)
X . Similarily

T
(

β 0
0 β−1

)
=

(
β 0
0 β−1

)
T, therefore X =

(
x1 0
0 x2

)
and T =

(
t1 0
0 t2

)
. If Y = ( y1 y2

y3 y4 ) and

Z = ( z1 z2
z3 z4 ) , then

X2 +YZ =
(

x2
1 + y1z1 + y2z3 y1z2 + y2z4

y3z1 + y4z3 x2
2 + y3z2 + y4z4

)
, (2.2)

XY +YT =
(

y1(x1 + t1) y2(x1 + t2)
y3(x2 + t1) y4(x2 + t2)

)
, (2.3)

ZX +TZ =
(

z1(x1 + t1) z2(x1 + t2)
z3(x2 + t1) z4(x2 + t2)

)
, (2.4)

ZY +T 2 =
(

t21 + z1y1 + z2y3 z1y2 + z2y4

z3y1 + z4y3 t22 + z3y2 + z4y4

)
. (2.5)

Assuming different modes on y1 and y2 , such as whether they are zero or not, we
get four cases.

Case 1. If y1 = y2 = 0 then by (2.5) and (2.1), we have z2y3 �= 0 and z4y4 �= 0.
Hence z2y4 �= 0. On the other hand, by employing (2.5), we have z2y4 = 0, which is a
contradiction.

Case 2. If y1 = 0 and y2 �= 0, then by (2.1), (2.2) and (2.3), t2 = −x1, y2z4 = 0.
Hence z4 = 0. Again, by making use of (2.3) and (2.5), we arrive at x2

1 +y2z3 = α , and
x2
1 + z3y2 = β−1 . This is a contradiction.

Case 3. If y1 �= 0 and y2 = 0 then by (2.1), (2.2) and (2.3), t1 = −x1, y1z2 = 0.
Thus z2 = 0, hence x2

1 + y1z1 = α and x2
1 + y1z1 = β is contradict.

Case 4. If y1 �= 0, y2 �= 0, then (2.1) and (2.3) ensure that t1 = t2 =−x1 . If x1 = x2 ,
by employing (2.1), (2.2) and (2.5) we have y2z3−y3z2 = α −β > 0 and y2z3−y3z2 =
β−1 −α−1 < 0, which is a contradiction. Now x1 �= x2 . Then by (2.4), z3 = z4 = 0,
therefore by (2.1) and (2.5), give t22 = β−1 < 0 which is a contradiction. �
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THEOREM 2.9. Let M be conjugated with one of the type 2, type 6 or type 7.
Then M has a root in Aut(SH2) .

Proof. type 2. Let

[M] =

⎧⎪⎪⎨
⎪⎪⎩±

⎛
⎜⎜⎝

α 0 0 0
1 α 0 0
0 0 α−1 −α−2

0 0 0 α−1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

Then, without loss of generality, assume α > 0. Hence [M]1/2 = {±A⊕B} , where

A =
( √

α 0
1

2
√

α
√

α

)
and B =

( 1√
α

−1
2α

√
α

0 1√
α

)
. Moreover [M]1/2 ∈ PSp(2,R) .

type 6. Let

M =

⎛
⎜⎜⎝

a1 0 −c1 0
0 a2 0 0
c1 0 a1 0
0 δ 0 a−1

2

⎞
⎟⎟⎠ , a2

1 + c2
1 = 1, δ = 0,±1,

and let

N = I2,3MI2,3 =
(

A O
O B

)
= A⊕B,

where A =
(

cosθ − sinθ
sinθ cosθ

)
and B =

( a2 0
δ 1

a2

)
. An application of Theorem 2.3 gives us that

A always has roots. If a2 > 0, then B1/2 =
( √

a2 0
δ

√
a2+

√
a−1
2

1√
a2

)
. If a2 < 0, then −A and

−B have roots. From Lemma 2.7 we conclude that for each a2 �= 0, [M] has a root in
PSp(2,R) .

type 7. Let a2
1 +b2

1 = a2
2 +b2

2 = 1, and let

M =

⎛
⎜⎜⎝

a1 0 b1 0
0 a2 0 b2

−b1 0 a1 0
0 −b2 0 a2

⎞
⎟⎟⎠ = I2,3

(
a1 b1

−b1 a1

)
⊕

(
a2 b2

−b2 a2

)
I2,3

= I2,3

(
a′1 b′1
−b′1 a′1

)2

⊕
(

a′2 b′2
−b′2 a′2

)2

I2,3 (By Theorem 2.3)

=
[
I2,3

(
a′1 b′1
−b′1 a′1

)
⊕

(
a′2 b′2
−b′2 a′2

)
I2,3

]2

=

⎛
⎜⎜⎝

a′1 0 b′1 0
0 a′2 0 b′2

−b′1 0 a′1 0
0 −b′2 0 a′2

⎞
⎟⎟⎠

2

,

where a′1
2 +b′1

2 = a′2
2 +b′2

2 = 1. Hence M has a root belonging to Sp(2,R) . �
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THEOREM 2.10. Let M be conjugated with type 3. Then

(i) If −1 < a � 1 and δ = 0,±1 , then M has a root.

(ii) If a = −1 and δ = ±1 , then M has no root.

Proof. Let M =

⎛
⎜⎜⎝

0 1 0 0
−1 2a 0 0
0 δ 2a 1
0 0 −1 0

⎞
⎟⎟⎠ .

(i). Let −1 < a � 1 and let δ = 0,±1. If we set

A =
1√

2(a+1)

(
1 1
−1 2a+1

)
, B =

1√
2(a+1)

(
2a+1 1
−1 1

)
and

C =
√

a+1δ√
2[1+(2a+1)(2a+3)]

(
1 2a+3
1 1

)
,

then A2 =
(

0 1
−1 2a

)
and B2 =

(
2a 1
−1 0

)
, CA + BC =

(
0 δ
0 0

)
. Hence M =

(
A O
C B

)2 with(
A O
C B

)
is in Sp(2,R) .

(ii). Let a = −1 and let δ = ±1. Then we show that M does not have any root.
If

M =
((

0 1
−1 −2

)
O(

0 δ
0 0

) (−2 1
−1 0

))
=

(
X Y
Z T

)2

=
(

X2 +YZ XY +YT
ZX +TZ ZY +T 2

)
. (2.6)

It follows from (2.6) that XYZ = YTZ and

X

(
0 1
−1 −2

)
= X(X2 +YZ) = X3 +XYZ = X3−YTZ, (2.7)

again by (2.6) we have(
0 1
−1 −2

)
X = (X2 +YZ)X = X3 +YZX (2.8)

= X3 +Y

((
0 δ
0 0

)
−TZ

)

= X3 +Y

(
0 δ
0 0

)
−YTZ.

By employing (2.7) and (2.8), we get(
0 1
−1 −2

)
X −X

(
0 1
−1 −2

)
= Y

(
0 δ
0 0

)
, (2.9)

similarly

T

(−2 1
−1 0

)
X −

(−2 1
−1 0

)
T =

(
0 δ
0 0

)
Y. (2.10)
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Let

X =
(

x4 x2

x3 x1

)
, Y =

(
y1 y2

y3 y4

)
, T =

(
t1 t2
t3 t4

)
.

In light of (2.9) and (2.10), we get

X =
(

x1 +2x2 x2

−x2 x1

)
, Y =

(
0 y
0 0

)
, T =

(
t1 t2
−t2 t1 +2t2

)
. (2.11)

In this case we have(
0 y(x1 +2x2)
0 −x2y

)
+

(−t2y y(t1 +2t2)
0 0

)
= XY +YT = O. (2.12)

Then (2.12) gives t2y = x2y = y(t1 +x1) = 0. If y �= 0 then x2 = t2 = 0, t1 =−x1 , thus
X =

(
x 0
0 x

)
, T =

(−x 0
0 −x

)
. If Z = ( z1 z2

z3 z4 ) , then by (2.6) we have

(
0 1
−1 −2

)
= X2 +YZ =

(
x2 0
0 x2

)
+

( yz3 yz4
0 0

) ⇒ x2 = −2

which is impossible. Therefore y = 0 and then Y = O ,(
0 1
−1 −2

)
= X2 =

(
(x1 +2x2)2 − x2

2 2x2(x1 + x2)
−2x2(x1 + x2) x2

1 − x2
2

)
,

then 0 = (x1 +2x2)2− x2
2 = (x1 + x2)(x1 +3x2) , and x1 + x2 �= 0, therefore x1 = −3x2

and hence −2 = −x2
2 + x2

1 = 8x2
2 , which is a contradiction. �

THEOREM 2.11. Let M be conjugated with type 4. Then

(i). If α > 0 , then M has a root.

(ii). If α < 0 , then M has no root.

Proof. Let

M =

⎛
⎜⎜⎝

1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

⎞
⎟⎟⎠ α �= ±1, δ = ±1.

(i). If α > 0, then M =
(

A O
C B

)2
, where A =

(
1 0
0
√

α

)
, B =

(
1 0
0 1√

α

)
and

C =
(

δ
2 0
0 0

)
. Hence

M1/2 =
(

A O
C B

)
∈ SP(2,R).

(ii). Let −1 �= α < 0, let δ = ±1, and let

N = I2,3MI2,3 =
(

C O
O D

)
= C⊕D,
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where C =
(

1 0
δ 1

)
and D =

(
α 0
0 1

α

)
. If N = (X Y

Z T )2 , then by a same computation in type

3 we get X =
(

x1 0
x2 x1

)
and T =

(
t1 0
0 t2

)
. If Y = ( y1 y2

y3 y4 ) and Z = ( z1 z2
z3 z4 ) , then we get

X2 +YZ =
(

x2
1 + y1z1 + y2z3 y1z2 + y2z4

2x1x2 + y3z1 + y4z3 x2
1 + y3z2 + y4z4

)
=

(
1 0
δ 1

)
, (2.13)

XY +YT =
(

y1(x1 + t1) y2(x1 + t2)
x2y1 + y3(x1 + t1) x1y2 + y4(x1 + t2)

)
= O, (2.14)

ZX +TZ =
(

z1(x1 + t1)+ x2z2 z2(x1 + t1)
z3(x1 + t2)+ x2z4 z4(x1 + t2)

)
= O, (2.15)

ZY +T 2 =
(

t21 + z1y1 + z2y3 z1y2 + z2y4

z3y1 + z4y3 t22 + z3y2 + z4y4

)
=

(
α 0
0 α−1

)
. (2.16)

If z1 and z2 are zero or nonzero, we calculated like type 1, we get four cases.
Case 1. If z1 = z2 = 0, then by (2.16), t21 = α < 0, which it is a contradiction.
Case 2. If z1 = 0 and z2 �= 0, then by (2.16), x2 = 0. Hence by (2.13), y4z3 =

δ �= 0 thus y4 �= 0 and z2y4 = 0, so note that y4 = 0, this is a contradiction.
Case 3. If z1 �= 0 and z2 = 0, then by (2.15) and (2.16), t1 = −x1 , y2z1 = 0,

x2
1 + y1z1 + y2z3 = 1 and x2

1 + y1z1 = α . Therefore y2z3 = 1−α > 0, hence y2 �= 0
thus z1 = 0. It is a contradiction.

Case 4. If z1 �= 0 and z2 �= 0, then by (2.15), t1 = −x1 and x2 = 0. If z3 �= 0,
then t2 = x1 . Therefore, (2.13) and (2.16) entail that y2z3 − y3z2 = 1−α > 0 and
y2z3 − y3z2 = α−1 −1 < 0. In this case, we get a contradiction. If z3 = 0, then (2.13)
and (2.16) imply z4y3 = 0 and y3z1 = δ �= 0. Thus y3 �= 0 and z4 = 0 therefore
t22 = α−1 < 0, this is a contradiction. �

THEOREM 2.12. Let M be conjugated with type 5. Then M has a root unless

α = −1 and δ1δ2 �= 0 .

Proof. Let

M =

⎛
⎜⎜⎝

1 0 0 0
0 α 0 0
δ1 0 1 0
0 δ2 0 α

⎞
⎟⎟⎠ α = ±1, δ1,δ2 = 0,±1.

Put

N = I2,3MI2,3 =
(

A O
O B

)
= A⊕B,

where A =
(

1 0
δ1 1

)
, B =

(
α 0
δ2 α

)
. If α = ±1 and δ1δ2 = 0, then make use of the proof

of Theorem 2.3 (by setting n = 1) to get either A and B or −A and −B have roots.
Note that in the case α = −1 and δ1 = δ2 = 0, we have

B = −I2 =
(

0 −1
1 0

)2

.
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An application of Lemma 2.7 yields that [M] has a root in PSp(2,R) . For α = 1 and
δ1δ2 �= 0, we get

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
δ1 0 1 0
0 δ2 0 1

⎞
⎟⎟⎠

then

N = I2,3MI2,3 =

⎛
⎜⎜⎝

1 0 0 0
δ1 1 0 0
0 0 1 0
0 0 δ2 1

⎞
⎟⎟⎠ =

(
1 0
δ1 1

)
⊕

(
1 0
δ2 1

)

=
[(

1 0
δ1/2 1

)
⊕

(
1 0

δ2/2 1

)]2

.

It follows from Lemma 2.7 that M has a root. Moreover, for α = −1 and δ1δ2 �= 0,
we show that M is not has a root. In this case, if N = I2,3MI2,3 , then

N =

⎛
⎝

(
1 0
δ1 1

)
O

O
(
−1 0
δ2 −1

)
⎞
⎠ .

If N = (X Y
Z T )2 , then⎛
⎝

(
1 0
δ1 1

)
O

O
(
−1 0
δ2 −1

)
⎞
⎠ = N =

(
X Y
Z T

)2

=
(

X2 +YZ XY +YT
ZX +TZ ZY +T 2

)
. (2.17)

By the same computation in type 3, we have X
(

1 0
δ1 1

)
=

(
1 0
δ1 1

)
X and T

(
−1 0
δ2 −1

)
=(

−1 0
δ2 −1

)
T so X =

(
x1 0
x2 x1

)
and T =

(
t1 0
t2 t1

)
. If Y = ( y1 y2

y3 y4 ) and Z = ( z1 z2
z3 z4 ) then by

(2.17), we get⎧⎪⎪⎨
⎪⎪⎩

x2
1 + y1z1 + y2z3 = 1
y1z2 + y2z4 = 0

2x1x2 + y3z1 + y4z3 = δ1

x2
1 + y3z2 + y4z4 = 1

,

⎧⎪⎪⎨
⎪⎪⎩

t21 + y1z1 + y3z2 = −1
y2z1 + y4z2 = 0

2t1t2 + y1z3 + y3z4 = δ2

t21 + y2z3 + y4z4 = −1,

(2.18)

also ⎧⎪⎪⎨
⎪⎪⎩

x1y2 = −y2t1
x1y1 = −y1t1− y2t2

x2y1 + x1y3 = −y3t1− y4t2
x2y2 + x1y4 = −y4t1

,

⎧⎪⎪⎨
⎪⎪⎩

x1z2 = −t1z2

x1z1 + x2z2 = −t1z1

x1z3 + x2z4 = −t2z1 − t1z3

x1z4 = t2z2 − t1z4.

(2.19)

If y2 �= 0 then by (2.19) x1 =−t1 thus (2.18) gives y2z3−y3z2 = 2 and y2z3−y3z2 =−2
which is a contradiction. If y2 = 0, by (2.19) we get x1y4 = −y4t1 . If y4 �= 0, by (2.18)
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z2 = 0, thus (2.18) gives x2
1+y1z1 = t21 +y1z1 = 1 and x2

1 +y1z1 = t21 +y1z1 =−1 hence
we get a contradiction. If y4 = 0, then by (2.18) we have t21 = −1 which is imposible.
Therefore N and hence M has no root. �

The above theorems give the following result:

THEOREM 2.13. Some elements of Aut(SH2) have a root in Aut(SH2) . Thus it
has root-approximable subsets.

Making use of Lemmas 2.5, 2.7, and the proof of Theorem 2.8, we get the follow-
ing corollaries.

COROLLARY 2.14. Let M be a conjugation of
( A O

O A−T

)
, where A = diag(α,β )

such that either α,β ∈ R, αβ > 0 , or αβ < 0 with α = ±1 or β = ±1 . Then M is
a root-approximable subset in PSp(2,R) .

COROLLARY 2.15. Suppose that G = {X�Y : X ,Y ∈SL(2,R) and X ,Y have roots} .
Then G is a root-approximable subset of Sp(2,R) .

In the following remark, we are generalizing a previous result, about getting roots
of matrices in Sp(n,R) from roots in SL(2,R) .

REMARK 2.16. Let A1,A2, . . . ,An be in SL(2,R) . Since U(A1⊕A2⊕·· ·⊕An)UT

= A1�A2�·· ·�An ∈ Sp(n,R) , where

U = (e1,e3, . . . ,e2n−1,e2,e4, . . . ,e2n)T

is an orthogonalmatrix. If A1,A2, . . . ,An have roots in SL(2,R) , then A1�A2�·· ·�An

is a root-approximable in Sp(n,R) . Because if, by use of the following representation
n⊙

i=1

Ai = A1 �A2� . . .�An, and
n⊕

i=1

Ai = A1⊕A2⊕ . . .⊕An,

we have
n⊙

i=1

Ai = U(
n⊕

i=1

Ai)UT ,

then

(
n⊙

i=1

Ai)1/2 = U(
n⊕

i=1

Ai)1/2UT = U(
n⊕

i=1

A1/2
i )UT ,

hence

[(
n⊙

i=1

Ai)1/2]T Jn(
n⊙

i=1

Ai)1/2 = U(
n⊕

i=1

(A1/2
i )T )UTJnU

n⊕
i=1

(Ai)1/2UT

= U(
n⊕

i=1

(A1/2
i )T )(

n⊕
i=1

J1)(
n⊕

i=1

A1/2
i )UT

= U(
n⊕

i=1

[(A1/2
i )T J1A

1/2
i ])UT = U(

n⊕
i=1

J1)UT = Jn.
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Hence, it is a root-approximable element in Sp(n,R) . It follows from Theorem 2.3
that A or −A has a root in SL(2,R) for all A ∈ SL(2,R) . If either A1,A2, . . . ,An or
−A1,−A2, . . . ,−An have roots in SL(2,R) , then A1�A2�·· ·�An is root-approximable
in PSp(n,R) .

REMARK 2.17. We examine the automorphisms on SDn . Define a map Φ :
SHn → SDn by Z → (Z − iI)(Z + iI)−1 . Hence, it follows from [6] that Φ is a bi-
holomorphic from SHn onto SDn with

Φ−1 : SDn −→ SHn by Z → i(I +Z)(I−Z)−1.

Then all biholomorphisms on SDn are given by the generalized Möbius transformation.
That is,

Aut(SDn) = {Φ◦Ψ◦Φ−1; Ψ ∈ Aut(SHn)}.
In the case where n = 2, [Φ]M[Φ−1] has the following form: [Φ] =

(
I −iI
I iI

)
, [Φ] =

i
(

I I−I I

)
, where I = I2 . If M =

(
A B
C D

) ∈ Sp(2,R) , then

M̃ = [Φ]M[Φ−1] = i

(
I −iI
I iI

)(
A B
C D

)(
I I
−I I

)

=
(

C−D+ i(A−B) C+D+ i(A+B)
−C+D+ i(A−B) −C−D+ i(A+B)

)
.

Theorem 2.4 ensures that all automorphisms on SD2 have roots except those of the
following forms:

1)

M̃1 =

⎛
⎜⎜⎝

−α−1 + iα 0 α−1 + iα 0
0 −β−1 + iβ 0 β−1 + iβ

α−1 + iα 0 −α−1 + iα 0
0 β−1 + iβ 0 −β−1 + iβ

⎞
⎟⎟⎠

=
(−α−1 + iα α−1 + iα

α−1 + iα −α−1 + iα

)
�

(−β−1 + iβ β−1 + iβ
β−1 + iβ −β−1 + iβ

)
,

where αβ < 0, α �= ±1, and β �= ±1.

2)

M̃2 =

⎛
⎜⎜⎝

2 δ −1+ i −2 δ +1+ i
1− i −2i −1− i −2i
−2 −δ +1+ i 2 −δ −1+ i

−1− i −2i 1− i −2i

⎞
⎟⎟⎠ , where δ = ±1,

3)

M̃3 =

⎛
⎜⎜⎝

δ −1+ i 0 δ +1+ i 0
0 −α−1 + iα 0 α−1 + iα

−δ +1+ i 0 −δ −1+ i 0
0 α−1 + iα 0 −α−1 + iα

⎞
⎟⎟⎠ ,

where −1 �= α < 0, and δ = ±1.
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4)

M̃4 =

⎛
⎜⎜⎝

δ1−1+ i 0 δ1 +1+ i 0
0 δ2 +1− i 0 δ2−1− i

−δ1 +1+ i 0 −δ1−1+ i 0
0 −δ2−1− i 0 −δ2 +1− i

⎞
⎟⎟⎠ ,

where δ1,δ2 = ±1.
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