THE ROOTS OF ELEMENTS OF Aut $\left(\mathrm{SH}_{2}\right)$

Amin Mirzapour and Rasoul Eskandari

(Communicated by J. Ball)

Abstract

We study the roots of automorphisms on the Siegel upper half plane of complex dimension three. We use the normal form of any element of $\operatorname{Sp}(2, \mathbb{R})$ under the conjugation in $\operatorname{Sp}(2, \mathbb{R})$ to show that some of automorphisms have roots and that some of them do not have. As an application, we generalize the Siegel unit disk of the same dimension.

1. Introduction and preliminaries

The square matrix A is said to be (square) root if there exists a matrix B such that $B^{2}=A$. The study of this issue of solving matrix equations has been of interest to many mathematicians $[6,1,3]$. In this article, we investigate the rootabliyt of automorphisms on the Siegel unit disk. We denote by $\operatorname{GL}(n, \mathbb{R})$ the set of all $n \times n$ invertible matrices on the field \mathbb{R}. Let $\operatorname{Sym}(n, \mathbb{R})$ be the space of $n \times n$ symetric matrices. Let $\mathrm{SD}_{n}=\left\{Z \in \operatorname{Sym}(n, \mathbb{R}):\|Z\|_{2}<1\right\}$ be the Siegel n-disk. Also we consider $\overline{\operatorname{SD}}_{n}=\left\{Z \in \operatorname{Sym}(n, \mathbb{R}):\|Z\|_{2} \leqslant 1\right\}$ and $\partial \operatorname{SD}_{n}=\left\{Z \in \operatorname{Sym}(n, \mathbb{R}):\|Z\|_{2}=1\right\}$, the Shilov boundary of SD_{n}. Moreover, we set $\operatorname{USym}(n)=\mathrm{U}_{n} \cap \operatorname{Sym}(n, \mathbb{R})$, the set of $n \times n$ unitary symmetric matrices. Let $\mathrm{SH}_{n}=\{Z \in \operatorname{Sym}(n, \mathbb{R}): \operatorname{Im} Z>0\}$ be the Siegel upper half plane and let $\mathrm{Cl}\left(\mathrm{SH}_{n}\right)$ denote the compactification of SH_{n}, which is diffeomorphic to $\overline{\mathrm{SD}}_{n}$; for details, see [7].

The symplectic group $\operatorname{Sp}(n, \mathbb{R})$ is defined as

$$
\mathrm{Sp}(n, \mathbb{R})=\left\{M \in \mathrm{GL}(2 n, \mathbb{R}): M^{T} J_{n} M=J_{n}\right\}
$$

in which

$$
J_{n}=\left(\begin{array}{ll}
O & I_{n} \\
-I_{n} & O
\end{array}\right) \in \mathrm{SL}(2 n, \mathbb{R})
$$

where $\operatorname{SL}(2 n, \mathbb{R})$ is the set of all matrices such as $A \in \mathbb{R}^{2 n \times 2 n}$ with $\operatorname{det} A=1$. It is seen that if $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, then

$$
M \in \operatorname{Sp}(n, \mathbb{R}) \Longleftrightarrow M^{-1}=\left(\begin{array}{ll}
D^{T} & -B^{T} \\
-C^{T} & A^{T}
\end{array}\right)
$$

[^0]which is equivalent that $A^{T} C$ and $B^{T} D$ are symmetric and $A^{T} D-C^{T} B=I_{n}$. Recall that $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(n, \mathbb{R})$ acts on SH_{n} as follows:

$$
M(Z):=(A Z+B)(C Z+D)^{-1} \quad\left(Z \in \mathrm{SH}_{n}\right)
$$

We call these maps generalized Mübius transformations on SH_{n}, where the action M and $-M$ coincide. It is easy to see that $\operatorname{Sp}(n, \mathbb{R})$ is a group and that $\left\{ \pm I_{2 n}\right\}$ is a normal subgroup. Furthermore, $\operatorname{PSp}(n, \mathbb{R})=\operatorname{Sp}(n, \mathbb{R}) /\left\{ \pm I_{2 n}\right\}$ is equal to the group of biholomorphisms of SH_{n}. The action of $M \in \mathrm{Sp}(n, \mathbb{R})$ can be extended to $\mathrm{Cl}\left(\mathrm{SH}_{n}\right)$. The following theorem explains the normal forms of conjugacy in $\operatorname{SL}(2, \mathbb{R})=\operatorname{Sp}(1, \mathbb{R})$; see $[6,7]$.

Theorem 1.1. [7, Theorem 3.2] Let $X \in S L(2, \mathbb{R})$ with $X \neq \pm I_{2}$. Then X is conjugate to one and only one of the following normal forms in $S L(2, \mathbb{R})$:
(1) $\left(\begin{array}{lr}1 / \alpha & 0 \\ 0 & \alpha\end{array}\right), \quad$ where $|\alpha|>1$,
(2) $\pm\left(\begin{array}{ll}1 & 0 \\ \pm 1 & 1\end{array}\right)$,
(3) $\left(\begin{array}{ll}a & b \\ -b & a\end{array}\right), \quad$ where $a^{2}+b^{2}=1$.

Also $X \in \operatorname{SL}(2, \mathbb{R})$ is called hyperbolic, parabolic, and elliptic if X is conjugate to one of the forms in $(1),(2)$, and (3), respectively. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and let $B=$ $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \in \mathbb{R}^{2 \times 2}$. Then define $A \odot B$ by

$$
A \odot B:=\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & e & 0 & f \\
c & 0 & d & 0 \\
0 & g & 0 & h
\end{array}\right)
$$

In [6], it is shown that

$$
\theta: \operatorname{SL}(2, \mathbb{R})^{n} \rightarrow \operatorname{Sp}(n, \mathbb{R}), \quad \theta\left(M_{1} \times \cdots \times M_{n}\right)=M_{1} \odot \cdots \odot M_{n}
$$

is an isomorphism from $\operatorname{SL}(2, \mathbb{R})^{n}$ onto a subgroup of $\operatorname{Sp}(n, \mathbb{R})$.
REMARK 1.2. It follows from [7, Theorem 3.3] that each $M \in \operatorname{Sp}(2, \mathbb{R})$ is conjugated to one of the following matrices:
type 1. $\left(\begin{array}{ll}A & O \\ O & B\end{array}\right)$, where $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & \beta^{-1}\end{array}\right)$,
type 2. $\left(\begin{array}{ll}A & O \\ O & B\end{array}\right)$, where $A=\left(\begin{array}{cc}\alpha & 0 \\ 1 & \alpha\end{array}\right)$ and $B=\left(\begin{array}{cc}\alpha^{-1} & -\alpha^{-2} \\ 0 & \alpha^{-1}\end{array}\right)$,
type 3. $\left(\begin{array}{ll}A & O \\ C & B\end{array}\right)$, where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 2 a\end{array}\right), B=\left(\begin{array}{cc}2 a & 1 \\ -1 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & \delta \\ 0 & 0\end{array}\right)$ with $|a| \leqslant 1$ and $\delta=0, \pm 1$,
type 4. $\left(\begin{array}{ll}A & O \\ C & B\end{array}\right)$, where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right), B=\left(\begin{array}{cc}1 & 0 \\ 0 & \alpha^{-1}\end{array}\right)$, and $C=\left(\begin{array}{ll}\delta & 0 \\ 0 & 0\end{array}\right)$ with $\alpha \neq \pm 1$ and $\delta=0, \pm 1$,
type 5. $\left(\begin{array}{ll}A & O \\ C & A\end{array}\right)$, where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right)$ and $C=\left(\begin{array}{cc}\delta_{1} & 0 \\ 0 & \delta_{2}\end{array}\right)$ with $\alpha= \pm 1, \delta_{1}, \delta_{2}=0, \pm 1$, type 6. $A \odot B$, where $A=\left(\begin{array}{cc}a_{1} & -c_{1} \\ c_{1} & a_{1}\end{array}\right)$ and $B=\left(\begin{array}{cc}a_{2} & 0 \\ \delta & a_{2}\end{array}\right)$ with $a_{1}^{2}+c_{1}^{2}=1, \delta=$ $0, \pm 1$, and if $\delta \neq 0$, then $a_{2}= \pm 1$,
type 7. $A \odot B$, where $A=\left(\begin{array}{cc}a_{1} & b_{1} \\ -b_{1} & a_{1}\end{array}\right)$ and $B=\left(\begin{array}{cc}a_{2} & b_{2} \\ -b_{2} & a_{2}\end{array}\right)$ with $a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+b_{2}^{2}=$ 1.

2. Main results

Let H be the upper half plane in \mathbb{R}^{2}. Then we set

$$
\operatorname{PSL}(2, \mathbb{R}):=\operatorname{SL}(2, \mathbb{R}) /\left\{ \pm I_{2}\right\}=\operatorname{PSp}(1, \mathbb{R})=\operatorname{Aut}(H)
$$

In this section, we examine the roots of some elements of $\operatorname{PSp}(2, \mathbb{R})$. First, we give the concept of root-approximable in a topological group.

DEFINITION 2.1. Let G be a topological group with unit e. An element x in G is called root-approximable if there exists a sequence $\left(x_{n}\right)$ in G such that
(i) $x_{n}^{2^{n}}=x, \quad n=0,1,2, \ldots$,
(ii) $\lim _{n \rightarrow \infty} x_{n}=e$.

The topological group G is root-approximable if each $x \in G$ is root-approximable.
In the next theorem, we show that $\operatorname{Aut}(H)$ is root-approximable. Let $y=a^{-1} x a$ and let $y_{n}=a^{-1} x_{n} a$. Then $\lim y_{n}=\lim \left(a^{-1} x_{n} a\right)=a^{-1} \lim x_{n} a=a^{-1} e a=e$ and $y_{n}^{2^{n}}=$ $\left(a^{-1} x_{n} a\right)^{2^{n}}=a^{-1} x_{n}^{2^{n}} a=a^{-1} x a=y$, so we have the following lemma.

LEMMA 2.2. If $x \in G$ is root-approximable and $a \in G$, then so is $a^{-1} x a$.
THEOREM 2.3. The group $\operatorname{Aut}(H)$ is root-approximable.

Proof. Let $M \in \operatorname{Aut}(H)$. Making use of Theorem 1.1 and Lemma 2.2, it suffices to consider the following cases:

$$
[A]=\left\{ \pm\left(\begin{array}{ll}
1 / \alpha & 0 \tag{1}\\
0 & \alpha
\end{array}\right)\right\}, \text { where } \alpha>1
$$

(2) $[B]=\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ \pm 1 & 1\end{array}\right)\right\}$,
(3) $[C]=\left\{ \pm\left(\begin{array}{lc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\right\}$.

If M is equal to $[A],[B]$ or $[C]$, then

$$
\begin{aligned}
& {[A]^{1 / 2^{n}}=\left\{ \pm\left(\begin{array}{cc}
1 / \sqrt[2^{n}]{\alpha} & 0 \\
0 & \sqrt[2^{n}]{\alpha}
\end{array}\right)\right\},} \\
& {[B]^{1 / 2^{n}}=\left\{ \pm\left(\begin{array}{cc}
1 & 0 \\
\pm 1 / 2^{n} & 1
\end{array}\right)\right\}} \\
& {[C]^{1 / 2^{n}}=\left\{ \pm\left(\begin{array}{cc}
\cos \frac{\theta}{2^{n}} & \sin \frac{\theta}{2^{n}} \\
-\sin \frac{\theta}{2^{n}} & \cos \frac{\theta}{2^{n}}
\end{array}\right)\right\}}
\end{aligned}
$$

By setting M_{n} as $[A]^{1 / 2^{n}},[B]^{1 / 2^{n}}$, or $[C]^{1 / 2^{n}}$, we obtain $M_{n} \longrightarrow\left[I_{2}\right]=\left\{ \pm I_{2}\right\}$ and $M_{n}^{2^{n}}=M, n=0,1,2, \ldots$.

Corollary 2.4. $\operatorname{Aut}(\mathrm{D})$ is root-approximable, where D is the unit ball in \mathbb{C}.
Note that

$$
\operatorname{Aut}\left(\mathrm{SH}_{2}\right)=\operatorname{PSp}(2, \mathbb{R})=\operatorname{Sp}(2, \mathbb{R}) /\left\{ \pm I_{4}\right\}
$$

For root-approximability and roots, according to Lemma 2.2, it is sufficient to examine only the canonical form, which is stated in the first section. To get the main result, we need the following lemmas.

Lemma 2.5. If A and B in $\mathbb{R}^{2 \times 2}$ have roots, then $M=A \oplus B \in R^{4 \times 4}$ has a root.
Proof. Let A and B have roots. That is, there exist A_{1} and B_{1} are in $\mathbb{R}^{2 \times 2}$ such that $A=A_{1}^{2}$ and $B=B_{1}^{2}$. Hence $M=A \oplus B=A_{1}^{2} \oplus B_{1}^{2}=\left(A_{1} \oplus B_{1}\right)^{2}$.

Lemma 2.6. Let $M=X \odot Y$ be in $S p(2, \mathbb{R})$ where $X=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $Y=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$. Then X and Y belong to $S L(2, \mathbb{R})$.

Proof. Since $M=I_{2,3}(X \oplus Y) I_{2,3}$ where $I_{2,3}$ is a root of $I_{4}\left(I_{2,3}^{2}=I_{4}\right)$,

$$
I_{2,3}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It is seen that $M^{T}=I_{2,3}\left(X^{T} \oplus Y^{T}\right) I_{2,3}$, therefore $\left(X^{T} \odot Y^{T}\right) J_{2}(X \odot Y)=J_{2}$ and $X^{T} \odot$ $Y^{T}=I_{2,3}\left(X^{T} \oplus Y^{T}\right) I_{2,3}$. Then we have

$$
I_{2,3}\left(X^{T} \oplus Y^{T}\right) I_{2,3} J_{2} I_{2,3}(X \oplus Y) I_{2,3}=J_{2}
$$

Thus $\left(X^{T} \oplus Y^{T}\right) I_{2,3} J_{2} I_{2,3}(X \oplus Y)=I_{2,3} J_{2} I_{2,3}$. In adition, $I_{2,3} J_{2} I_{2,3}=J_{1} \oplus J_{1}$, where $J_{1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. So $\left(X^{T} \oplus Y^{T}\right)\left(J_{1} \oplus J_{1}\right)(X \oplus Y)=J_{1} \oplus J_{1}$. Hence

$$
X^{T} J_{1} X=Y^{T} J_{1} Y=J_{1}
$$

As a result, $X, Y \in \mathrm{SL}(2, \mathbb{R})$.

Lemma 2.7. Let M be a symplectic matrix in $\operatorname{Sp}(2, \mathbb{R})$ and there exist two matrices A and B belong to $S L(2, \mathbb{R})$ such that $I_{2,3} M I_{2,3}=A \oplus B$. Then M has a root in $S p(2, \mathbb{R})$ if and only if A and B have roots in $S L(2, \mathbb{R})$.

Proof. Assume that A and B have root. If $N=I_{2,3} M I_{2,3}=A \oplus B$, then $N^{1 / 2}=$ $A^{1 / 2} \oplus B^{1 / 2}$, therefore $M^{1 / 2}=\left(I_{2,3} N I_{2,3}\right)^{1 / 2}=I_{2,3} N^{1 / 2} I_{2,3}$. Therefore we have

$$
\begin{aligned}
\left(M^{1 / 2}\right)^{T} J_{2} M^{1 / 2} & =I_{2,3}\left(N^{1 / 2}\right)^{T} I_{2,3} J_{2} I_{2,3} N^{1 / 2} I_{2,3} \\
& =I_{2,3}\left(\left(A^{1 / 2}\right)^{T} \oplus\left(B^{1 / 2}\right)^{T}\right)\left(J_{1} \oplus J_{1}\right)\left(A^{1 / 2} \oplus B^{1 / 2}\right) I_{2,3} \\
& =I_{2,3}\left(\left(A^{1 / 2}\right)^{T} J_{1} A^{1 / 2} \oplus\left(B^{1 / 2}\right)^{T} J_{1} B^{1 / 2}\right) I_{2,3} \\
& =I_{2,3}\left(J_{1} \oplus J_{1}\right) I_{2,3}=J_{2} .
\end{aligned}
$$

Therefore $M^{1 / 2} \in \operatorname{Sp}(2, \mathbb{R})$. Now we assume that M has a root in $\operatorname{Sp}(2, \mathbb{R})$, then

$$
\left.M^{\frac{1}{2}}=\left(I_{2,3} A \oplus B I_{2,3}\right)^{\frac{1}{2}}=I_{2,3}(A \oplus B)^{\frac{1}{2}} I_{2,3}\right)=I_{2,3}\left(A^{\frac{1}{2}} \oplus B^{\frac{1}{2}}\right) I_{2,3} .
$$

Hence, by Lemma 2.6, $A^{1 / 2}$ and $B^{1 / 2}$ belong to $\operatorname{SL}(2, \mathbb{R})$.
Employing the Remark 1.2, we get the following theorems.

THEOREM 2.8. Let M be conjugated with type 1. Then M has a root unless

$$
\alpha \beta<0,|\alpha| \neq 1 \quad \text { and } \quad|\beta| \neq 1
$$

Proof. Let

$$
M=\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & \alpha^{-1} & 0 \\
0 & 0 & 0 & \beta^{-1}
\end{array}\right)
$$

In this case, $M=A \oplus B$, where $A=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & \beta^{-1}\end{array}\right)$. If $\alpha \beta>0$, then either A and B or $-A$ and $-B$ have roots. Utilizing Lemma 2.5, we deduce that $[M]$ has a root. For $\alpha \beta<0$, we first assume $|\alpha|=1$ or $|\beta|=1$. Then $I_{2,3} M I_{2,3}=C \oplus D$, where C is diagonal with positive entries and D is $-I_{2}$ (otherwise, we consider $-C$ and $-D)$. It is seen that $-I_{2}$ has a root and $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is a root of $-I_{2}$. It follows from

Lemma 2.5 that $[M]$ has a root. Second, if $|\alpha| \neq 1$ and $|\beta| \neq 1$, then we show that $[M]$ does not have any root. In fact, if

$$
\begin{align*}
\left(\begin{array}{cc}
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right) & O \\
O & \left(\begin{array}{cc}
\beta & 0 \\
0 & \beta^{-1}
\end{array}\right)
\end{array}\right) & =I_{2,3} M I_{2,3}=\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{2} \\
& =\left(\begin{array}{c}
X^{2}+Y Z X Y+Y T \\
Z X+T Z \\
Z Y+T^{2}
\end{array}\right) \tag{2.1}
\end{align*}
$$

It can be assumed that $\alpha>0$ and that $\beta<0$. Hence

$$
X^{2}+Y Z=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \quad Z Y+T^{2}=\left(\begin{array}{cc}
\beta & 0 \\
0 & \beta^{-1}
\end{array}\right), \quad X Y=-Y T, \quad Z X=-T Z
$$

Hence we get

$$
X Y Z=-Y T Z=Y Z X
$$

This yields that $X^{3}+X Y Z=X^{3}+Y Z X$, and thus $X\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right) X$. Similarily $T\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right)=\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right) T$, therefore $X=\left(\begin{array}{cc}x_{1} & 0 \\ 0 & x_{2}\end{array}\right)$ and $T=\left(\begin{array}{cc}t_{1} & 0 \\ 0 & t_{2}\end{array}\right)$. If $Y=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)$ and $Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$, then

$$
\begin{align*}
X^{2}+Y Z & =\left(\begin{array}{cc}
x_{1}^{2}+y_{1} z_{1}+y_{2} z_{3} & y_{1} z_{2}+y_{2} z_{4} \\
y_{3} z_{1}+y_{4} z_{3} & x_{2}^{2}+y_{3} z_{2}+y_{4} z_{4}
\end{array}\right), \tag{2.2}\\
X Y+Y T & =\left(\begin{array}{cc}
y_{1}\left(x_{1}+t_{1}\right) y_{2}\left(x_{1}+t_{2}\right) \\
y_{3}\left(x_{2}+t_{1}\right) & y_{4}\left(x_{2}+t_{2}\right)
\end{array}\right), \tag{2.3}\\
Z X+T Z & =\left(\begin{array}{c}
z_{1}\left(x_{1}+t_{1}\right) \\
z_{2}\left(x_{1}+t_{2}\right) \\
z_{3}\left(x_{2}+t_{1}\right) \\
z_{4}\left(x_{2}+t_{2}\right)
\end{array}\right), \tag{2.4}\\
Z Y+T^{2} & =\left(\begin{array}{cc}
t_{1}^{2}+z_{1} y_{1}+z_{2} y_{3} & z_{1} y_{2}+z_{2} y_{4} \\
z_{3} y_{1}+z_{4} y_{3} & t_{2}^{2}+z_{3} y_{2}+z_{4} y_{4}
\end{array}\right) . \tag{2.5}
\end{align*}
$$

Assuming different modes on y_{1} and y_{2}, such as whether they are zero or not, we get four cases.

Case 1. If $y_{1}=y_{2}=0$ then by (2.5) and (2.1), we have $z_{2} y_{3} \neq 0$ and $z_{4} y_{4} \neq 0$. Hence $z_{2} y_{4} \neq 0$. On the other hand, by employing (2.5), we have $z_{2} y_{4}=0$, which is a contradiction.

Case 2. If $y_{1}=0$ and $y_{2} \neq 0$, then by (2.1), (2.2) and (2.3), $t_{2}=-x_{1}, y_{2} z_{4}=0$. Hence $z_{4}=0$. Again, by making use of (2.3) and (2.5), we arrive at $x_{1}^{2}+y_{2} z_{3}=\alpha$, and $x_{1}^{2}+z_{3} y_{2}=\beta^{-1}$. This is a contradiction.

Case 3. If $y_{1} \neq 0$ and $y_{2}=0$ then by (2.1), (2.2) and (2.3), $t_{1}=-x_{1}, y_{1} z_{2}=0$. Thus $z_{2}=0$, hence $x_{1}^{2}+y_{1} z_{1}=\alpha$ and $x_{1}^{2}+y_{1} z_{1}=\beta$ is contradict.

Case 4. If $y_{1} \neq 0, y_{2} \neq 0$, then (2.1) and (2.3) ensure that $t_{1}=t_{2}=-x_{1}$. If $x_{1}=x_{2}$, by employing (2.1), (2.2) and (2.5) we have $y_{2} z_{3}-y_{3} z_{2}=\alpha-\beta>0$ and $y_{2} z_{3}-y_{3} z_{2}=$ $\beta^{-1}-\alpha^{-1}<0$, which is a contradiction. Now $x_{1} \neq x_{2}$. Then by $(2.4), z_{3}=z_{4}=0$, therefore by (2.1) and (2.5), give $t_{2}^{2}=\beta^{-1}<0$ which is a contradiction.

THEOREM 2.9. Let M be conjugated with one of the type 2, type 6 or type 7 . Then M has a root in $\operatorname{Aut}\left(\mathrm{SH}_{2}\right)$.

Proof. type 2. Let

$$
[M]=\left\{ \pm\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 \\
0 & 0 & \alpha^{-1} & -\alpha^{-2} \\
0 & 0 & 0 & \alpha^{-1}
\end{array}\right)\right\}
$$

Then, without loss of generality, assume $\alpha>0$. Hence $[M]^{1 / 2}=\{ \pm A \oplus B\}$, where $A=\left(\begin{array}{cc}\sqrt{\alpha} & 0 \\ \frac{1}{2 \sqrt{\alpha}} & \sqrt{\alpha}\end{array}\right)$ and $B=\left(\begin{array}{cc}\frac{1}{\sqrt{\alpha}} & \frac{-1}{2 \sqrt{\alpha}} \\ 0 & \frac{1}{\sqrt{\alpha}}\end{array}\right)$. Moreover $[M]^{1 / 2} \in \operatorname{PSp}(2, \mathbb{R})$.
type 6. Let

$$
M=\left(\begin{array}{cccc}
a_{1} & 0 & -c_{1} & 0 \\
0 & a_{2} & 0 & 0 \\
c_{1} & 0 & a_{1} & 0 \\
0 & \delta & 0 & a_{2}^{-1}
\end{array}\right), \quad a_{1}^{2}+c_{1}^{2}=1, \quad \delta=0, \pm 1
$$

and let

$$
N=I_{2,3} M I_{2,3}=\left(\begin{array}{cc}
A & O \\
O & B
\end{array}\right)=A \oplus B
$$

where $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ and $B=\left(\begin{array}{cc}a_{2} & 0 \\ \delta & \frac{1}{a_{2}}\end{array}\right)$. An application of Theorem 2.3 gives us that A always has roots. If $a_{2}>0$, then $B^{1 / 2}=\left(\begin{array}{cc}\sqrt{a_{2}} & 0 \\ \sqrt{a_{2}}+\sqrt{a_{2}^{-1}} & \frac{1}{\sqrt{a_{2}}}\end{array}\right)$. If $a_{2}<0$, then $-A$ and $-B$ have roots. From Lemma 2.7 we conclude that for each $a_{2} \neq 0,[M]$ has a root in $\operatorname{PSp}(2, \mathbb{R})$.
type 7. Let $a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+b_{2}^{2}=1$, and let

$$
\begin{align*}
& M=\left(\begin{array}{cccc}
a_{1} & 0 & b_{1} & 0 \\
0 & a_{2} & 0 & b_{2} \\
-b_{1} & 0 & a_{1} & 0 \\
0 & -b_{2} & 0 & a_{2}
\end{array}\right)=I_{2,3}\left(\begin{array}{cc}
a_{1} & b_{1} \\
-b_{1} & a_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
a_{2} & b_{2} \\
-b_{2} & a_{2}
\end{array}\right) I_{2,3} \\
& =I_{2,3}\left(\begin{array}{cc}
a_{1}^{\prime} & b_{1}^{\prime} \\
-b_{1}^{\prime} & a_{1}^{\prime}
\end{array}\right)^{2} \oplus\left(\begin{array}{cc}
a_{2}^{\prime} & b_{2}^{\prime} \\
-b_{2}^{\prime} & a_{2}^{\prime}
\end{array}\right)^{2} I_{2,3} \tag{ByTheorem2.3}\\
& =\left[I_{2,3}\left(\begin{array}{cc}
a_{1}^{\prime} & b_{1}^{\prime} \\
-b_{1}^{\prime} & a_{1}^{\prime}
\end{array}\right) \oplus\left(\begin{array}{cc}
a_{2}^{\prime} & b_{2}^{\prime} \\
-b_{2}^{\prime} & a_{2}^{\prime}
\end{array}\right) I_{2,3}\right]^{2} \\
& =\left(\begin{array}{cccc}
a_{1}^{\prime} & 0 & b_{1}^{\prime} & 0 \\
0 & a_{2}^{\prime} & 0 & b_{2}^{\prime} \\
-b_{1}^{\prime} & 0 & a_{1}^{\prime} & 0 \\
0 & -b_{2}^{\prime} & 0 & a_{2}^{\prime}
\end{array}\right)^{2},
\end{align*}
$$

where ${a_{1}^{\prime 2}}^{2}+b_{1}^{\prime 2}=a_{2}^{\prime 2}+b_{2}^{\prime 2}=1$. Hence M has a root belonging to $\operatorname{Sp}(2, \mathbb{R})$.

THEOREM 2.10. Let M be conjugated with type 3. Then
(i) If $-1<a \leqslant 1$ and $\delta=0, \pm 1$, then M has a root.
(ii) If $a=-1$ and $\delta= \pm 1$, then M has no root.

Proof. Let $M=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 2 a & 0 & 0 \\ 0 & \delta & 2 a & 1 \\ 0 & 0 & -1 & 0\end{array}\right)$.
(i). Let $-1<a \leqslant 1$ and let $\delta=0, \pm 1$. If we set

$$
\begin{aligned}
A & =\frac{1}{\sqrt{2(a+1)}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2 a+1
\end{array}\right), \quad B=\frac{1}{\sqrt{2(a+1)}}\left(\begin{array}{cc}
2 a+1 & 1 \\
-1 & 1
\end{array}\right) \text { and } \\
C & =\frac{\sqrt{a+1} \delta}{\sqrt{2}[1+(2 a+1)(2 a+3)]}\left(\begin{array}{cc}
1 & 2 a+3 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

then $A^{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2 a\end{array}\right)$ and $B^{2}=\left(\begin{array}{cc}2 a & 1 \\ -1 & 0\end{array}\right), C A+B C=\left(\begin{array}{ll}0 & \delta \\ 0 & 0\end{array}\right)$. Hence $M=\left(\begin{array}{ll}A & O \\ C & B\end{array}\right)^{2}$ with $\left(\begin{array}{ll}A & O \\ C & B\end{array}\right)$ is in $\operatorname{Sp}(2, \mathbb{R})$.
(ii). Let $a=-1$ and let $\delta= \pm 1$. Then we show that M does not have any root. If

$$
M=\left(\begin{array}{cc}
\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right) & O \tag{2.6}\\
\left(\begin{array}{cc}
0 & \delta \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right)
\end{array}\right)=\left(\begin{array}{ll}
X & Y \\
Z & T
\end{array}\right)^{2}=\left(\begin{array}{c}
X^{2}+Y Z \\
Z X+Y Y+Y T \\
Z X Y+T^{2}
\end{array}\right) .
$$

It follows from (2.6) that $X Y Z=Y T Z$ and

$$
X\left(\begin{array}{cc}
0 & 1 \tag{2.7}\\
-1 & -2
\end{array}\right)=X\left(X^{2}+Y Z\right)=X^{3}+X Y Z=X^{3}-Y T Z
$$

again by (2.6) we have

$$
\begin{align*}
\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right) X & =\left(X^{2}+Y Z\right) X=X^{3}+Y Z X \tag{2.8}\\
& =X^{3}+Y\left(\left(\begin{array}{ll}
0 & \delta \\
0 & 0
\end{array}\right)-T Z\right) \\
& =X^{3}+Y\left(\begin{array}{ll}
0 & \delta \\
0 & 0
\end{array}\right)-Y T Z
\end{align*}
$$

By employing (2.7) and (2.8), we get

$$
\left(\begin{array}{cc}
0 & 1 \tag{2.9}\\
-1 & -2
\end{array}\right) X-X\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right)=Y\left(\begin{array}{ll}
0 & \delta \\
0 & 0
\end{array}\right)
$$

similarly

$$
T\left(\begin{array}{ll}
-2 & 1 \tag{2.10}\\
-1 & 0
\end{array}\right) X-\left(\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right) T=\left(\begin{array}{ll}
0 & \delta \\
0 & 0
\end{array}\right) Y
$$

Let

$$
X=\left(\begin{array}{ll}
x_{4} & x_{2} \\
x_{3} & x_{1}
\end{array}\right), Y=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right), T=\left(\begin{array}{ll}
t_{1} & t_{2} \\
t_{3} & t_{4}
\end{array}\right)
$$

In light of (2.9) and (2.10), we get

$$
X=\left(\begin{array}{cc}
x_{1}+2 x_{2} & x_{2} \tag{2.11}\\
-x_{2} & x_{1}
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & y \\
0 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
t_{1} & t_{2} \\
-t_{2} & t_{1}+2 t_{2}
\end{array}\right)
$$

In this case we have

$$
\left(\begin{array}{ll}
0 & y\left(x_{1}+2 x_{2}\right) \tag{2.12}\\
0 & -x_{2} y
\end{array}\right)+\left(\begin{array}{cc}
-t_{2} y & y\left(t_{1}+2 t_{2}\right) \\
0 & 0
\end{array}\right)=X Y+Y T=O .
$$

Then (2.12) gives $t_{2} y=x_{2} y=y\left(t_{1}+x_{1}\right)=0$. If $y \neq 0$ then $x_{2}=t_{2}=0, t_{1}=-x_{1}$, thus $X=\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right), T=\left(\begin{array}{cc}-x & 0 \\ 0 & -x\end{array}\right)$. If $Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$, then by (2.6) we have

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right)=X^{2}+Y Z=\left(\begin{array}{cc}
x^{2} & 0 \\
0 & x^{2}
\end{array}\right)+\left(\begin{array}{cc}
y z_{3} & y z_{4} \\
0 & 0
\end{array}\right) \Rightarrow x^{2}=-2
$$

which is impossible. Therefore $y=0$ and then $Y=O$,

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right)=X^{2}=\left(\begin{array}{cc}
\left(x_{1}+2 x_{2}\right)^{2}-x_{2}^{2} & 2 x_{2}\left(x_{1}+x_{2}\right) \\
-2 x_{2}\left(x_{1}+x_{2}\right) & x_{1}^{2}-x_{2}^{2}
\end{array}\right)
$$

then $0=\left(x_{1}+2 x_{2}\right)^{2}-x_{2}^{2}=\left(x_{1}+x_{2}\right)\left(x_{1}+3 x_{2}\right)$, and $x_{1}+x_{2} \neq 0$, therefore $x_{1}=-3 x_{2}$ and hence $-2=-x_{2}^{2}+x_{1}^{2}=8 x_{2}^{2}$, which is a contradiction.

THEOREM 2.11. Let M be conjugated with type 4. Then
(i). If $\alpha>0$, then M has a root.
(ii). If $\alpha<0$, then M has no root.

Proof. Let

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 \\
\delta & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / \alpha
\end{array}\right) \alpha \neq \pm 1, \quad \delta= \pm 1
$$

(i). If $\alpha>0$, then $M=\left(\begin{array}{ll}A & O \\ C & B\end{array}\right)^{2}$, where $A=\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{\alpha}\end{array}\right), B=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{\sqrt{\alpha}}\end{array}\right)$ and $C=\left(\begin{array}{cc}\frac{\delta}{2} & 0 \\ 0 & 0\end{array}\right)$. Hence

$$
M^{1 / 2}=\left(\begin{array}{cc}
A & O \\
C & B
\end{array}\right) \in \mathrm{SP}(2, \mathbb{R})
$$

(ii). Let $-1 \neq \alpha<0$, let $\delta= \pm 1$, and let

$$
N=I_{2,3} M I_{2,3}=\left(\begin{array}{ll}
C & O \\
O & D
\end{array}\right)=C \oplus D
$$

where $C=\left(\begin{array}{cc}1 & 0 \\ \delta & 1\end{array}\right)$ and $D=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \frac{1}{\alpha}\end{array}\right)$. If $N=\left(\begin{array}{cc}X & Y \\ Z & T\end{array}\right)^{2}$, then by a same computation in type 3 we get $X=\left(\begin{array}{ll}x_{1} & 0 \\ x_{2} & x_{1}\end{array}\right)$ and $T=\left(\begin{array}{cc}t_{1} & 0 \\ 0 & t_{2}\end{array}\right)$. If $Y=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)$ and $Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$, then we get

$$
\begin{align*}
X^{2}+Y Z & =\left(\begin{array}{cc}
x_{1}^{2}+y_{1} z_{1}+y_{2} z_{3} & y_{1} z_{2}+y_{2} z_{4} \\
2 x_{1} x_{2}+y_{3} z_{1}+y_{4} z_{3} & x_{1}^{2}+y_{3} z_{2}+y_{4} z_{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
\delta & 1
\end{array}\right), \tag{2.13}\\
X Y+Y T & =\left(\begin{array}{cc}
y_{1}\left(x_{1}+t_{1}\right) & y_{2}\left(x_{1}+t_{2}\right) \\
x_{2} y_{1}+y_{3}\left(x_{1}+t_{1}\right) & x_{1} y_{2}+y_{4}\left(x_{1}+t_{2}\right)
\end{array}\right)=O \tag{2.14}\\
Z X+T Z & =\left(\begin{array}{c}
z_{1}\left(x_{1}+t_{1}\right)+x_{2} z_{2} \\
z_{2}\left(x_{1}+t_{1}\right) \\
z_{3}\left(x_{1}+t_{2}\right)+x_{2} z_{4} \\
z_{4}\left(x_{1}+t_{2}\right)
\end{array}\right)=O \tag{2.15}\\
Z Y+T^{2} & =\left(\begin{array}{cc}
t_{1}^{2}+z_{1} y_{1}+z_{2} y_{3} & z_{1} y_{2}+z_{2} y_{4} \\
z_{3} y_{1}+z_{4} y_{3} & t_{2}^{2}+z_{3} y_{2}+z_{4} y_{4}
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right) . \tag{2.16}
\end{align*}
$$

If z_{1} and z_{2} are zero or nonzero, we calculated like type 1 , we get four cases.
Case 1. If $z_{1}=z_{2}=0$, then by $(2.16), t_{1}^{2}=\alpha<0$, which it is a contradiction.
Case 2. If $z_{1}=0$ and $z_{2} \neq 0$, then by (2.16), $x_{2}=0$. Hence by (2.13), $y_{4} z_{3}=$ $\delta \neq 0$ thus $y_{4} \neq 0$ and $z_{2} y_{4}=0$, so note that $y_{4}=0$, this is a contradiction.

Case 3. If $z_{1} \neq 0$ and $z_{2}=0$, then by (2.15) and (2.16), $t_{1}=-x_{1}, y_{2} z_{1}=0$, $x_{1}^{2}+y_{1} z_{1}+y_{2} z_{3}=1$ and $x_{1}^{2}+y_{1} z_{1}=\alpha$. Therefore $y_{2} z_{3}=1-\alpha>0$, hence $y_{2} \neq 0$ thus $z_{1}=0$. It is a contradiction.

Case 4. If $z_{1} \neq 0$ and $z_{2} \neq 0$, then by (2.15), $t_{1}=-x_{1}$ and $x_{2}=0$. If $z_{3} \neq 0$, then $t_{2}=x_{1}$. Therefore, (2.13) and (2.16) entail that $y_{2} z_{3}-y_{3} z_{2}=1-\alpha>0$ and $y_{2} z_{3}-y_{3} z_{2}=\alpha^{-1}-1<0$. In this case, we get a contradiction. If $z_{3}=0$, then (2.13) and (2.16) imply $z_{4} y_{3}=0$ and $y_{3} z_{1}=\delta \neq 0$. Thus $y_{3} \neq 0$ and $z_{4}=0$ therefore $t_{2}^{2}=\alpha^{-1}<0$, this is a contradiction.

THEOREM 2.12. Let M be conjugated with type 5. Then M has a root unless

$$
\alpha=-1 \quad \text { and } \quad \delta_{1} \delta_{2} \neq 0
$$

Proof. Let

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 \\
\delta_{1} & 0 & 1 & 0 \\
0 & \delta_{2} & 0 & \alpha
\end{array}\right) \alpha= \pm 1, \delta_{1}, \delta_{2}=0, \pm 1
$$

Put

$$
N=I_{2,3} M I_{2,3}=\left(\begin{array}{cc}
A & O \\
O & B
\end{array}\right)=A \oplus B
$$

where $A=\left(\begin{array}{cc}1 & 0 \\ \delta_{1} & 1\end{array}\right), B=\left(\begin{array}{cc}\alpha & 0 \\ \delta_{2} & \alpha\end{array}\right)$. If $\alpha= \pm 1$ and $\delta_{1} \delta_{2}=0$, then make use of the proof of Theorem 2.3 (by setting $n=1$) to get either A and B or $-A$ and $-B$ have roots. Note that in the case $\alpha=-1$ and $\delta_{1}=\delta_{2}=0$, we have

$$
B=-I_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{2}
$$

An application of Lemma 2.7 yields that $[M]$ has a root in $\operatorname{PSp}(2, \mathbb{R})$. For $\alpha=1$ and $\delta_{1} \delta_{2} \neq 0$, we get

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\delta_{1} & 0 & 1 & 0 \\
0 & \delta_{2} & 0 & 1
\end{array}\right)
$$

then

$$
\begin{aligned}
N=I_{2,3} M I_{2,3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\delta_{1} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \delta_{2} & 1
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
\delta_{1} & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & 0 \\
\delta_{2} & 1
\end{array}\right) \\
& =\left[\left(\begin{array}{cc}
1 & 0 \\
\delta_{1} / 2 & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & 0 \\
\delta_{2} / 2 & 1
\end{array}\right)\right]^{2} .
\end{aligned}
$$

It follows from Lemma 2.7 that M has a root. Moreover, for $\alpha=-1$ and $\delta_{1} \delta_{2} \neq 0$, we show that M is not has a root. In this case, if $N=I_{2,3} M I_{2,3}$, then

$$
N=\left(\begin{array}{cc}
\left(\begin{array}{cc}
1 & 0 \\
\delta_{1} & 1
\end{array}\right) & O \\
O & \left(\begin{array}{cc}
-1 & 0 \\
\delta_{2} & -1
\end{array}\right)
\end{array}\right) .
$$

If $N=\left(\begin{array}{l}X \\ Z\end{array}{ }_{T}^{Y}\right)^{2}$, then

$$
\left(\begin{array}{cc}
\left(\begin{array}{cc}
1 & 0 \\
\delta_{1} & 1
\end{array}\right) & O \tag{2.17}\\
O & \left(\begin{array}{cc}
-1 & 0 \\
\delta_{2} & -1
\end{array}\right)
\end{array}\right)=N=\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{2}=\left(\begin{array}{c}
X^{2}+Y Z \quad X Y+Y T \\
Z X+T Z \\
Z Y+T^{2}
\end{array}\right)
$$

By the same computation in type 3 , we have $X\left(\begin{array}{cc}1 & 0 \\ \delta_{1} & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ \delta_{1} & 1\end{array}\right) X$ and $T\left(\begin{array}{cc}-1 & 0 \\ \delta_{2} & -1\end{array}\right)=$ $\left(\begin{array}{cc}-1 & 0 \\ \delta_{2} & -1\end{array}\right) T$ so $X=\left(\begin{array}{ll}x_{1} & 0 \\ x_{2} & x_{1}\end{array}\right)$ and $T=\left(\begin{array}{ll}t_{1} & 0 \\ t_{2} & t_{1}\end{array}\right)$. If $Y=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)$ and $Z=\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right)$ then by (2.17), we get

$$
\left\{\begin{array}{cl}
x_{1}^{2}+y_{1} z_{1}+y_{2} z_{3} & =1 \tag{2.18}\\
y_{1} z_{2}+y_{2} z_{4} & =0 \\
2 x_{1} x_{2}+y_{3} z_{1}+y_{4} z_{3} & =\delta_{1} \\
x_{1}^{2}+y_{3} z_{2}+y_{4} z_{4} & =1
\end{array}, \quad\left\{\begin{array}{cc}
t_{1}^{2}+y_{1} z_{1}+y_{3} z_{2} & =-1 \\
y_{2} z_{1}+y_{4} z_{2} & =0 \\
2 t_{1} t_{2}+y_{1} z_{3}+y_{3} z_{4} & =\delta_{2} \\
t_{1}^{2}+y_{2} z_{3}+y_{4} z_{4} & =-1
\end{array}\right.\right.
$$

also

$$
\left\{\begin{array}{cc}
x_{1} y_{2} & =-y_{2} t_{1} \tag{2.19}\\
x_{1} y_{1} & =-y_{1} t_{1}-y_{2} t_{2} \\
x_{2} y_{1}+x_{1} y_{3} & =-y_{3} t_{1}-y_{4} t_{2} \\
x_{2} y_{2}+x_{1} y_{4} & =-y_{4} t_{1}
\end{array},\left\{\begin{array}{cc}
x_{1} z_{2} & =-t_{1} z_{2} \\
x_{1} z_{1}+x_{2} z_{2} & =-t_{1} z_{1} \\
x_{1} z_{3}+x_{2} z_{4} & =-t_{2} z_{1}-t_{1} z_{3} \\
x_{1} z_{4} & =t_{2} z_{2}-t_{1} z_{4}
\end{array}\right.\right.
$$

If $y_{2} \neq 0$ then by (2.19) $x_{1}=-t_{1}$ thus (2.18) gives $y_{2} z_{3}-y_{3} z_{2}=2$ and $y_{2} z_{3}-y_{3} z_{2}=-2$ which is a contradiction. If $y_{2}=0$, by (2.19) we get $x_{1} y_{4}=-y_{4} t_{1}$. If $y_{4} \neq 0$, by (2.18)
$z_{2}=0$, thus (2.18) gives $x_{1}^{2}+y_{1} z_{1}=t_{1}^{2}+y_{1} z_{1}=1$ and $x_{1}^{2}+y_{1} z_{1}=t_{1}^{2}+y_{1} z_{1}=-1$ hence we get a contradiction. If $y_{4}=0$, then by (2.18) we have $t_{1}^{2}=-1$ which is imposible. Therefore N and hence M has no root.

The above theorems give the following result:
THEOREM 2.13. Some elements of $\operatorname{Aut}\left(\mathrm{SH}_{2}\right)$ have a root in $\operatorname{Aut}\left(\mathrm{SH}_{2}\right)$. Thus it has root-approximable subsets.

Making use of Lemmas 2.5, 2.7, and the proof of Theorem 2.8, we get the following corollaries.

Corollary 2.14. Let M be a conjugation of $\left(\begin{array}{cc}A & O \\ O & A^{-T}\end{array}\right)$, where $A=\operatorname{diag}(\alpha, \beta)$ such that either $\alpha, \beta \in \mathbb{R}, \alpha \beta>0$, or $\alpha \beta<0$ with $\alpha= \pm 1$ or $\beta= \pm 1$. Then M is a root-approximable subset in $\operatorname{PSp}(2, \mathbb{R})$.

Corollary 2.15. Suppose that $G=\{X \odot Y: X, Y \in S L(2, \mathbb{R})$ and X, Y have roots $\}$. Then G is a root-approximable subset of $\operatorname{Sp}(2, \mathbb{R})$.

In the following remark, we are generalizing a previous result, about getting roots of matrices in $\operatorname{Sp}(n, \mathbb{R})$ from roots in $\mathrm{SL}(2, \mathbb{R})$.

REMARK 2.16. Let $A_{1}, A_{2}, \ldots, A_{n}$ be in $\operatorname{SL}(2, \mathbb{R})$. Since $U\left(A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}\right) U^{T}$ $=A_{1} \odot A_{2} \odot \cdots \odot A_{n} \in \operatorname{Sp}(n, \mathbb{R})$, where

$$
U=\left(e_{1}, e_{3}, \ldots, e_{2 n-1}, e_{2}, e_{4}, \ldots, e_{2 n}\right)^{T}
$$

is an orthogonal matrix. If $A_{1}, A_{2}, \ldots, A_{n}$ have roots in $\operatorname{SL}(2, \mathbb{R})$, then $A_{1} \odot A_{2} \odot \cdots \odot A_{n}$ is a root-approximable in $\operatorname{Sp}(n, \mathbb{R})$. Because if, by use of the following representation

$$
\bigodot_{i=1}^{n} A_{i}=A_{1} \odot A_{2} \odot \ldots \odot A_{n}, \text { and } \bigoplus_{i=1}^{n} A_{i}=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n},
$$

we have

$$
\bigodot_{i=1}^{n} A_{i}=U\left(\bigoplus_{i=1}^{n} A_{i}\right) U^{T}
$$

then

$$
\left(\bigodot_{i=1}^{n} A_{i}\right)^{1 / 2}=U\left(\bigoplus_{i=1}^{n} A_{i}\right)^{1 / 2} U^{T}=U\left(\bigoplus_{i=1}^{n} A_{i}^{1 / 2}\right) U^{T}
$$

hence

$$
\begin{aligned}
{\left[\left(\bigodot_{i=1}^{n} A_{i}\right)^{1 / 2}\right]^{T} J_{n}\left(\bigodot_{i=1}^{n} A_{i}\right)^{1 / 2} } & =U\left(\bigoplus_{i=1}^{n}\left(A_{i}^{1 / 2}\right)^{T}\right) U^{T} J_{n} U \bigoplus_{i=1}^{n}\left(A_{i}\right)^{1 / 2} U^{T} \\
& =U\left(\bigoplus_{i=1}^{n}\left(A_{i}^{1 / 2}\right)^{T}\right)\left(\bigoplus_{i=1}^{n} J_{1}\right)\left(\bigoplus_{i=1}^{n} A_{i}^{1 / 2}\right) U^{T} \\
& =U\left(\bigoplus_{i=1}^{n}\left[\left(A_{i}^{1 / 2}\right)^{T} J_{1} A_{i}^{1 / 2}\right]\right) U^{T}=U\left(\bigoplus_{i=1}^{n} J_{1}\right) U^{T}=J_{n}
\end{aligned}
$$

Hence, it is a root-approximable element in $\operatorname{Sp}(n, \mathbb{R})$. It follows from Theorem 2.3 that A or $-A$ has a root in $\operatorname{SL}(2, \mathbb{R})$ for all $A \in \operatorname{SL}(2, \mathbb{R})$. If either $A_{1}, A_{2}, \ldots, A_{n}$ or $-A_{1},-A_{2}, \ldots,-A_{n}$ have roots in $\operatorname{SL}(2, \mathbb{R})$, then $A_{1} \odot A_{2} \odot \cdots \odot A_{n}$ is root-approximable in $\operatorname{PSp}(n, \mathbb{R})$.

REMARK 2.17. We examine the automorphisms on SD_{n}. Define a map Φ : $S H_{n} \rightarrow S D_{n}$ by $Z \mapsto(Z-i I)(Z+i I)^{-1}$. Hence, it follows from [6] that Φ is a biholomorphic from SH_{n} onto SD_{n} with

$$
\Phi^{-1}: \mathrm{SD}_{n} \longrightarrow \mathrm{SH}_{n} \text { by } Z \mapsto i(I+Z)(I-Z)^{-1}
$$

Then all biholomorphisms on SD_{n} are given by the generalized Möbius transformation. That is,

$$
\operatorname{Aut}\left(\mathrm{SD}_{\mathrm{n}}\right)=\left\{\Phi \circ \Psi \circ \Phi^{-1} ; \Psi \in \operatorname{Aut}\left(\mathrm{SH}_{\mathrm{n}}\right)\right\}
$$

In the case where $n=2,[\Phi] M\left[\Phi^{-1}\right]$ has the following form: $[\Phi]=\left(\begin{array}{cc}I & -i I \\ I & i I\end{array}\right),[\Phi]=$ $i\left(\begin{array}{cc}I & I \\ -I & I\end{array}\right)$, where $I=I_{2}$. If $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2, \mathbb{R})$, then

$$
\begin{aligned}
\widetilde{M}=[\Phi] M\left[\Phi^{-1}\right] & =i\left(\begin{array}{cc}
I & -i I \\
I & i I
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
I & I \\
-I & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
C-D+i(A-B) & C+D+i(A+B) \\
-C+D+i(A-B)-C-D+i(A+B)
\end{array}\right) .
\end{aligned}
$$

Theorem 2.4 ensures that all automorphisms on SD_{2} have roots except those of the following forms:
1)

$$
\begin{aligned}
\widetilde{M}_{1} & =\left(\begin{array}{cccc}
-\alpha^{-1}+i \alpha & 0 & \alpha^{-1}+i \alpha & 0 \\
0 & -\beta^{-1}+i \beta & 0 & \beta^{-1}+i \beta \\
\alpha^{-1}+i \alpha & 0 & -\alpha^{-1}+i \alpha & 0 \\
0 & \beta^{-1}+i \beta & 0 & -\beta^{-1}+i \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\alpha^{-1}+i \alpha & \alpha^{-1}+i \alpha \\
\alpha^{-1}+i \alpha & -\alpha^{-1}+i \alpha
\end{array}\right) \odot\left(\begin{array}{cc}
-\beta^{-1}+i \beta & \beta^{-1}+i \beta \\
\beta^{-1}+i \beta & -\beta^{-1}+i \beta
\end{array}\right),
\end{aligned}
$$

where $\alpha \beta<0, \alpha \neq \pm 1$, and $\beta \neq \pm 1$.
2)

$$
\tilde{M}_{2}=\left(\begin{array}{cccc}
2 & \delta-1+i & -2 & \delta+1+i \\
1-i & -2 i & -1-i & -2 i \\
-2 & -\delta+1+i & 2 & -\delta-1+i \\
-1-i & -2 i & 1-i & -2 i
\end{array}\right), \text { where } \delta= \pm 1
$$

3)

$$
\widetilde{M}_{3}=\left(\begin{array}{cccc}
\delta-1+i & 0 & \delta+1+i & 0 \\
0 & -\alpha^{-1}+i \alpha & 0 & \alpha^{-1}+i \alpha \\
-\delta+1+i & 0 & -\delta-1+i & 0 \\
0 & \alpha^{-1}+i \alpha & 0 & -\alpha^{-1}+i \alpha
\end{array}\right)
$$

where $-1 \neq \alpha<0$, and $\delta= \pm 1$.
4)

$$
\widetilde{M}_{4}=\left(\begin{array}{cccc}
\delta_{1}-1+i & 0 & \delta_{1}+1+i & 0 \\
0 & \delta_{2}+1-i & 0 & \delta_{2}-1-i \\
-\delta_{1}+1+i & 0 & -\delta_{1}-1+i & 0 \\
0 & -\delta_{2}-1-i & 0 & -\delta_{2}+1-i
\end{array}\right)
$$

where $\delta_{1}, \delta_{2}= \pm 1$.

REFERENCES

[1] D. A. Bini, N. J. Higham, B. Meini, Algorithms for the matrix pth root, Numer. Algorithms, 39 (2005) 349-378.
[2] A. Chademan, F. Mirzapour, Midconvex functions in locally compact groups, Proc. Amer. Math. Soc. 127 (1999), no. 10, 2961-2968.
[3] S. H. Cheng, N. J. Higham, C. S. Kenney, A. J. Laub, Approximating the logarithm of a matrix to specified accuracy, Siam J. Matrix Anal. Appl. 22 (2001), no. 4, 1112-1125.
[4] S. Maghsoudi, F. Mirzapour, Root-Approximability of the group of automorphisms of the unit ball in \mathbb{R}^{n}, Bull. Malays. Math. Sci. Soc. 39 (2016) 1477-1485.
[5] F. Mirzapour, A note on the group of automorphisms of unit disc, Inter. J. of App. Math. 14, (2003), no. 1 51-55.
[6] C. Shmuel Friedland, Pedro J. Freitas, Revisiting the Siegel upper half plane I, Linear Algebra Appl. 376 (2004) 19-44.
[7] C. Pedro J. Freitas, Shmuel Friedland, Revisiting the Siegel upper half plane II, Linear Algebra Appl. 376 (2004) 45-67.
(Received August 2, 2022)
Amin Mirzapour
Department of Electrical and Computer Zanjan branch, Islamic Azad University

Zanjan, Iran
e-mail: aminmirzapour60@gmail.com
Rasoul Eskandari
Department of Mathematics Education
Farhangian University
P.O. Box 14665-889, Tehran, Iran
e-mail: Rasoul.eskandari@cfu.ac.ir eskandarirasoul@yahoo.com

[^0]: Mathematics subject classification (2020): Primary 15A21; Secondary 57S25.
 Keywords and phrases: Siegel upper half plane, automorphism, root.

