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THE ROOTS OF ELEMENTS OF Aut(SH,)

AMIN MIRZAPOUR AND RASOUL ESKANDARI

(Communicated by J. Ball)

Abstract. We study the roots of automorphisms on the Siegel upper half plane of complex di-
mension three. We use the normal form of any element of Sp(2,IR) under the conjugation in
Sp(2,R) to show that some of automorphisms have roots and that some of them do not have. As
an application, we generalize the Siegel unit disk of the same dimension.

1. Introduction and preliminaries

The square matrix A is said to be (square) root if there exists a matrix B such
that B> = A. The study of this issue of solving matrix equations has been of inter-
est to many mathematicians [6, 1, 3]. In this article, we investigate the rootabliyt of
automorphisms on the Siegel unit disk. We denote by GL(n,R) the set of all n X n
invertible matrices on the field R. Let Sym(n,R) be the space of n x n symetric ma-
trices. Let SD,, = {Z € Sym(n,R) : ||Z||2 < 1} be the Siegel n-disk. Also we consider
SD, = {Z € Sym(n,R) : ||Z||» < 1} and ISD, = {Z € Sym(n,R) : ||Z|| = 1}, the
Shilov boundary of SD,. Moreover, we set USym(n) = U, N Sym(n,R), the set of
n X n unitary symmetric matrices. Let SH,, = {Z € Sym(n,R) : ImZ > 0} be the Siegel
upper half plane and let CI(SH,,) denote the compactification of SH,,, which is diffeo-
morphic to SD,, ; for details, see [7].

The symplectic group Sp(n,R) is defined as

Sp(n,R) = {M € GL(2n,R) : MT J,M = J,},

in which

o I,
Jp= <_In 0) € SL(2n,R),

where SL(2n,RR) is the set of all matrices such as A € R¥"*?" with detA = 1. It is seen

. AB
thatif M = (CD),then

T _ pT
MeSp(n,R)<:>M‘1:<D B ),

—CT AT
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which is equivalent that ATC and BT D are symmetric and A”D — CTB = I,. Recall

that M = <é g) € Sp(n,R) acts on SH,, as follows:

M(Z) = (AZ+B)(CZ+D)™' (Z€SH,).

We call these maps generalized Miibius transformations on SH,,, where the action M
and —M coincide. It is easy to see that Sp(n,R) is a group and that {£h,} is a
normal subgroup. Furthermore, PSp(n,R) = Sp(n,R)/{£h,} is equal to the group of
biholomorphisms of SH,. The action of M € Sp(n,R) can be extended to CI(SH,,).
The following theorem explains the normal forms of conjugacy in SL(2,R) =Sp(1,R);
see [0, 7].

THEOREM 1.1. [7, Theorem 3.2] Let X € SL(2,R) with X # +£L,. Then X is
conjugate to one and only one of the following normal forms in SL(2,R):

/o 0
(1) (0 a), where |of| > 1,

10
(2) i(iH),
(3) (ibz) where a> +b? = 1.

Also X € SL(2,R) is called hyperbolic, parabolic, and elliptic if X is conjugate

to one of the forms in (1),(2), and (3), respectively. Let A = (ccl Z) , and let B =

(2 i) € R?*2_ Then define A® B by

a0bO0
0eOf
c0dO
0g0h

AOB:=

In [6], it is shown that
0:SL(2,R)" — Sp(n,R), O(M;x--XxM,)=M ®---OM,
is an isomorphism from SL(2,IR)" onto a subgroup of Sp(n,R).

REMARK 1.2. It follows from [7, Theorem 3.3] that each M € Sp(2,R) is conju-
gated to one of the following matrices:

type 1. (49), where A = <%‘g> and B = <°‘(;l ﬁ91>’

type2. (49),where A= (%9) and B= (“(;l _aa:f),
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type3. (A9). where A= (9 },), B=(2}),and C= (}2) with |a| <1
and 6 = 0,41,

typed. (49), where A= (10) . B=(},01) and C = (§§) with & # %1
and 6 =0,41,

type5. (49),where A= (}9) and C= (052> with oo = £1, 6,8, =0,=+1,

type 6. A® B, where A = ({1 1) and B = <‘3 a0> with a2 +c? =1, § =
0,+1, and if 6 # 0, then ap = +1,

type 7. A®B, where A = (fll bl) and B = <“§2 b;) with a? +b3 = a3+ b} =

ag a
L.

2. Main results
Let H be the upper half plane in R?. Then we set
PSL(2,R) :=SL(2,R)/{£+L} = PSp(1,R) = Aut(H).

In this section, we examine the roots of some elements of PSp(2,R). First, we give the
concept of root-approximable in a topological group.

DEFINITION 2.1. Let G be a topological group with unit e. An element x in G
is called root-approximable if there exists a sequence (x,) in G such that

i 22" =x, n=0,1,2,...,
>i1) lim, e x, =e.
The topological group G is root-approximable if each x € G is root-approximable.

In the next theorem, we show that Aut(H) is root-approximable. Let y = a™!xa

and let y, = a~'x,a. Then limy, = lim(a~'x,a) = a~'limx,a = a 'ea = e and y>' =

(a'x,0)*" =a'x2"a=a"'xa=y, so we have the following lemma.
LEMMA 2.2. If x € G is root-approximable and a € G, then so is a~'xa.

THEOREM 2.3. The group Aut(H) is root-approximable.

Proof. Let M € Aut(H). Making use of Theorem 1.1 and Lemma 2.2, it suffices
to consider the following cases:

(1) [A]:{i(é/a?x)}, where o > 1,
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e ={=(4 1)}
cosO sin0
ON { ( sm@cos@)}
If M is equal to [A], [B] or [C], then
A =L (V0 g )
Va
BV —
“=(a )
1/2n L[ cos 2n sin 2n
—sin = n coszn '

By setting M, as [A]'/?", [B]Y/?", or [C]'/*", we obtain M, — [h] = {£L} and
M¥ =M, n=0,1,2,.... O

COROLLARY 2.4. Aut(D) is root-approximable, where D is the unit ball in C.

Note that
Aut(SH,) = PSp(2,R) = Sp(2,R) /{£L}.

For root-approximability and roots, according to Lemma 2.2, it is sufficient to examine
only the canonical form, which is stated in the first section. To get the main result, we
need the following lemmas.

LEMMA 2.5. If A and B in R**? have roots, then M = A® B € R¥** has a root.

Proof. Let A and B have roots. That is, there exist A; and B, are in R>*? such
that A =A? and B=B?. Hence M =A®B=A?®B}= (A1 ®B)?. O

LEMMA 2.6. Let M =X ®Y bein Sp(2,R) where X = (a: Zi) and Y = (fi fé)
Then X and Y belong to SL(2,R).

Proof. Since M = L 3(X ©Y)h 3 where b3 is aroot of Iy (12273 =1),

1000
L._|ooto
23710100
0001

Itis seen that M7 = L3(XT & YT)L 3, therefore (XT ©YT)Hh(X©Y)=J, and XT ©
YT =DL53(XT@YT)L 5. Then we have

bi(XT @Y hshh3(X©Y)hs = Js,
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Thus (XT & YT)I2,3J2I2,3 (X 2] Y) =h3hbhz. In adition, bLshhs=J1®Jy, where
Ji=(508).-So XTayh) (/o) (X®Y)=J &J;. Hence

xXTnx=y'ny=y.

Asaresult, X,Y € SL(2,R). O

LEMMA 2.7. Let M be a symplectic matrix in Sp(2,R) and there exist two ma-
trices A and B belong to SL(2,R) such that I, sMD 3 = A& B. Then M has a root in
S5p(2,R) if and only if A and B have roots in SL(2,R).

Proof. Assume that A and B have root. If N = L 3ML 3 = A® B, then N'/? =
A2 B'/? | therefore M'/? = (L3NL3)' /> =1 3N1/212 3. Therefore we have

MV M2 = L3 (NY) T 1 3Jal 3N 210 5

(AT e BV &h)(A2 @ BY)h
_1273((A1/2)TJ A1/2®(Bl/2)TJIBl/2)1273
=hLi(i ®J1)hs=h.

=Dh;

Therefore M'/? € Sp(2,R). Now we assume that M has a root in Sp(2,R), then
1 1 1 Rt
M2 = (1273A & B[273) 2 = 1273 (A & B) 21273) = 1273 (A2 @ B2 )1273.

Hence, by Lemma 2.6, A'/2 and B'/? belong to SL(2,R). [

Employing the Remark 1.2, we get the following theorems.

THEOREM 2.8. Let M be conjugated with type 1. Then M has a root unless

off <0,la|#1 and |B|#1.

Proof. Let
a0 0 0
~{op 0 0
M= 00a! 0
00 0 B!
In this case, M = A@ B, where A = (0[5) and Bz(o‘oll3 1). If aff >0, then

either A and B or —A and —B have roots. Utilizing Lemma 2.5, we deduce that [M]
has a root. For aff <0, we first assume |a| =1 or || =1. Then I, 3ML3 =C&D,
where C is diagonal with positive entries and D is —I, (otherwise, we consider —C

and —D). It is seen that —/, has a root and <(1) _Ol> is a root of —I,. It follows from
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Lemma 2.5 that [M] has aroot. Second, if || # 1 and || # 1, then we show that [M]
does not have any root. In fact, if

(5a4) o

3 i) - ()

0p
- <X2+YZ XY—l—YT)

ZX+TZ ZY +T? 2.1

It can be assumed that o > 0 and that 3 < 0. Hence
2 - o 0 2 ﬂ 0 _ _
X +YZ—<O a_l)’ ZY +T _<O g-1) XY=-YT, ZX=-TZ.

Hence we get
XYZ=-YTZ=YZX.

This yields that X3 +XYZ = X® + YZX , and thusx(“ 91) - (0‘ 0 )X Similarily

0
T(g ,3(11> = (ﬁ ;L)T, therefore X = (%1 g) and T = (%2) IfY =(3132) and
Z=(32), then
+ 21 + 0z 2+ )z
X2 4YZ = iz +yzs vty ) 22)
Y321 +y423 X5 +y3220 +yaz4
x1 +11 X1+12)
XY+YT = 2.3
+ < xz-i—tl )C2+t2))’ (2.3)
)C1—|-t1 x1—|—t2)
ZX+TZ = 2.4
* ( (2 +11) za( x2+t2)) @4
ZY + T2 — 1+ ziyi 2203 ,Gv2 v ) 2.5)
B3Y1+24y3 1ty +23y2+24y4

Assuming different modes on y; and y,, such as whether they are zero or not, we
get four cases.

Case 1. If y; =y, =0 then by (2.5) and (2.1), we have zpy3 # 0 and z4y4 # 0.
Hence zpy4 # 0. On the other hand, by employing (2.5), we have zpy4 = 0, which is a
contradiction.

Case 2. If y; =0 and y, # 0, then by (2.1), (2.2) and (2.3), t, = —x1, y224 = 0.
Hence z4 = 0. Again, by making use of (2.3) and (2.5), we arrive at x% +y2z3 = ¢, and
¥ +2z3y2 = B! This is a contradiction.

Case 3. If y| # 0 and y; =0 then by (2.1), (2.2) and (2.3), t; = —x1, y1z2 = 0.
Thus zo =0, hence x1 +y1z1 = o and x1 +y1z1 = B is contradict.

Case 4. If y; #0, y, #0, then (2.1) and (2.3) ensure that 1} =1, = —x;. If x; =xp,
by employing (2.1), (2.2) and (2.5) we have y,z3 —y3zp = o« — B >0 and yyz3 — y320 =
B~'—a~! <0, which is a contradiction. Now x| # x,. Then by (2.4), z3 =24 =0,
therefore by (2.1) and (2.5), give t22 = B‘l < 0 which is a contradiction. [
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THEOREM 2.9. Let M be conjugated with one of the type 2, type 6 or type 7.
Then M has a root in Aut(SH,).

Proof. type 2. Let

a0 0 0
la 0 0
M=% 000" —a
00 0 o

Then, without loss of generality, assume o > 0. Hence [M]'/? = {+A @ B}, where
0 v Ty
A= ( v ) and B = (‘/E 2”‘1‘/E> . Moreover [M]'/? € PSp(2,R).

e Vo 0 =
type 6. Let
a 0 —c; O
M= 601‘6231 8 . d+d=1, §=0,+1,
06 0 a'
and let

AO

N=DhL3MbL3= (0 B

>:A®B,

. a 0
where A = (€059 ~sind) and B = ( 5 1 ) . An application of Theorem 2.3 gives us that
ay

sin® cos6
Vay 0
A always has roots. If a; > 0, then B/2 = ( 3 1) . If a; <0, then —A and
JazrJay b V2

—B have roots. From Lemma 2.7 we conclude that for each ay # 0, [M] has a root in
PSp(2,R).

type 7. Let @} + b3 = a3+ b3 =1, and let

aq 0 b] 0
o 0 ay 0 b2 o aq b1 ay b2
M= —b; 0 a; O _12’3 (—bl al) @ (—bz a2>12’3
0 —b2 0 an
;o\ 2 T
— a; b ay by
=h3 (_b,l a/1> ® (_b,z a’2> b3 (By Theorem 2.3)
I I 2
— ay b ay by
[ () o (Sed) )
d 0 b0\’
| 0 4 0V
= -5, 0 40|
0 —b) 0 d

where a|>+b/* = d}® +b,> = 1. Hence M has a root belonging to Sp(2,R). [
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THEOREM 2.10. Let M be conjugated with type 3. Then
(i) If -1 <a< 1 and 6 =0,%1, then M has a root.
(ii) If a= —1 and 6 = +1, then M has no root.

0100
—12a 0 0
0 6 2al
0 0-10
(i). Let —1 <a< 1 andlet 6 =0,£1. If we set

1 1
. (1 1 ) B <2a—|—11) and
2@+ 1) \~12a+1 2@+1)\ -1 1

va+16 (1 2a—|—3)
V2[1+(2a+1)(2a+3)\1 1 )’

Proof. Let M =

then A2 = (0 L) and B2 = (24 }), CA+BC = (J3). Hence M = (A9)” with
(49) isin Sp(2,R).

(ii). Let a=—1 and let 6 = £1. Then we show that M does not have any root.

— (—01 —12) 0 (XY 2_ X24YZ XY+YT
M= ( (83) (:%(1)) “\zT) \zZX+TZ ZY+T? | (2.6)
t

It follows from (2.6) that XYZ =YTZ and

If

X (_01 _12) =X(X’4YZ)=X3+XYZ=X*-YTZ, (2.7)

again by (2.6) we have

(0 ! )X:(X2+YZ)X:X3+YZX (2.8)

—1-2
R 068\
=X +Y<<OO> TZ)

:X3+Y<8 g) —YTZ.

By employing (2.7) and (2.8), we get

0 1 0 1 06

(4 ) xx (5 1) - (33). 09

T_21X _21T— 06Y 2.10
—-10)% \=10)" " \oo)" (2.10)

similarly
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¥ = (M2 Y = Y12 T= 10 '
X3 X1 V3 y4 1314

In light of (2.9) and (2.10), we get

Let

[ x1+2x0 x _(0y ([ n [5)
X_< —X2 X1)’ Y_<00 » T'= —ht+2t )" (2.11)
In this case we have
Oyt t2u))  (—hyy(ti420)) _yy yr oo, (2.12)
0 —xyy 0 0

Then (2.12) gives t,y =xpy = y(t1 +x1) =0. If y # 0 then x, =1, =0, 1; = —x;, thus
X=(39),T=(52%) IfZz=(32), then by (2.6) we have

X
2 2 2
(& L) =x24vz= (5 9)+ (%) = =2
which is impossible. Therefore y =0 and then ¥ = O,

( 0 1 ) _x2_ ((X1+ZX2)2—X§ 2x2(x1+x2)>,

-1 -2 —2x2(x1 +x2) x% —x%

then 0 = (x; +2x;)2 —x% = (x1 +x2)(x1 +3x2), and x1 +x # 0, therefore x; = —3x;
and hence —2 = —x3 +x7 = 8x3, which is a contradiction. [J

THEOREM 2.11. Let M be conjugated with type 4. Then
(i). If & >0, then M has a root.

(ii). If a <0, then M has no root.

Proof. Let
100 O
M= gg?g a££l, §==I.
0001/c
. 2 10 10
(i). If >0, then M= (29)", where A = (0ﬁ>7B: <0ﬁ) and

C= (g‘)).Hence
00

CB
(ii). Let =1 #a < 0,let 6 = £1, and let

M2 = <A0>ESHAR)

co

N = 12’3M12.’3 = <0 D

)=cen,
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where C=(19) and D= (g 8) .If N= (% ¥)", then by a same computation in type
(

)
3wegetX:(xlO)andT:( ) Ify= ; )andZ:(%Z),thenweget

X2 X1
2
+yi1z1 +y223 Y122 + Y224 10
X24yz=( " ) = 2.13
<2x1x2 + 321 + Y423 X3+ Y322 + Yaza o1 @.13)
yi(xi+1) y2(x1 +12)
XY +YT = -0, 2.14
<x2y1+y3(x1+l1)x1y2+y4(x1+t2) ( )
z1(x1 +11) +x022 22(x1 +11)
ZX +TZ = -0, 2.15
<Z3(x1 + 1) +x224 z4(x) +12) (2.15)
2
Zy T2 — (T Tayi Ty 221)’24-22)’4 ): o 91 ' (2.16)
BY1+zay3 1 +23y2 +24y4 0«

If z; and 7z, are zero or nonzero, we calculated like type 1, we get four cases.

Case 1. If z1 = 20 =0, then by (2.16), ’12 = o < 0, which it is a contradiction.

Case 2. 1f z; =0 and 75 # 0, then by (2.16), x, = 0. Hence by (2.13), ysz3 =
0 # 0 thus y4 # 0 and zoy4 = 0, so note that y4 = 0, this is a contradiction.

Case 3. If z1 # 0 and z; = 0, then by (2.15) and (2.16), t; = —x1, y221 =0,
x%+ylzl +y2z3 =1 and x%+ylzl = a. Therefore y,z3 = 1— o > 0, hence y, #0
thus z; = 0. It is a contradiction.

Case 4. If z; # 0 and 75 # 0, then by (2.15), t; = —x; and x, =0. If z3 #0,
then #, = x;. Therefore, (2.13) and (2.16) entail that y,z3 —y3z0 =1 — o > 0 and
y223 —y322 = 0.~ — 1 < 0. In this case, we get a contradiction. If z3 = 0, then (2.13)
and (2.16) imply z4y3 = 0 and y3z; = 6 # 0. Thus y3 # 0 and z4 = 0O therefore
2 = a~! <0, this is a contradiction. [J

THEOREM 2.12. Let M be conjugated with type 5. Then M has a root unless
o=—1 and 6,6, #0.

Proof. Let

1000
0 000
M=|5 010 |@=%18.86=0%L

060
Put

A O
N21273M1273= <OB> =ADB,

whereA:< ) B= (52 a) If o« =+1 and 6,0, =0, then make use of the proof

of Theorem 2.3 (by setting n = 1) to get either A and B or —A and —B have roots.
Note that in the case o = —1 and 6, = 6, = 0, we have

2
01
Bz_b:(lO)



THE ROOTS OF ELEMENTS OF AUT(SH,) 163

An application of Lemma 2.7 yields that [M] has a root in PSp(2,R). For o =1 and
010, # 0, we get

1 000
=15 010
0601
then
1000
N=DhL3MbL3= (?)1(1) (1) 8 - (511 (1)>® (612 O)
0061

- [(511/2 (1)) N (621/2 (1))}2 |

It follows from Lemma 2.7 that M has a root. Moreover, for &« = —1 and 6,6, # 0,
we show that M is not has a root. In this case, if N =5, 3M1 3, then

10
N (511> 0

o (4)

(2.17)

Xy
zZT
10
(&1) 0 _N_<XY>2_<X2+YZXY+YT)
10 -0 - 2 )
0 <52_1> zZT ZX+TZ ZY +T
By the same computation in type 3, we haveX(lgll ?) = (511(1)>X and T(:izl 91) =

(321 PI)T so X = (2)91) and T = (i;ff) If Y= (3}3%) and Z = (% 2) then by
(2.17), we get

M yizi+yz =1 B4yzi+yz =-1
Yiz2 + Y224 =0 Y221+ Y422 =0 2.18)
2x1x+y3z1 +yazz =01 |20+ i +yiu =6 -
x%+y322 +y4z4 =1 t12+y213 +yvaza =—1,
also
X1y2 = =yl X122 =122
X1)1 = —yit1 — ol X121 +x222 =121 (2.19)
Xoy1+X1y3 = —y3ti —yatr | X123 + X024 = —1r21 — 1123 '
Xoy2 +X1y4 = —yal X124 =0 —1124-

If y; #0 thenby (2.19) x; = —¢; thus (2.18) gives y,z3 —y3z22 =2 and ypz3 —y320 = —2
which is a contradiction. If y; = 0, by (2.19) we get x;y4 = —yat1. If y4 #0, by (2.18)
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2 =0, thus (2.18) gives x} +y1z1 =13 +y121 = | and x} +y121 =17 +y121 = —1 hence
we get a contradiction. If y4 = 0, then by (2.18) we have tl2 = —1 which is imposible.
Therefore N and hence M has no root. []

The above theorems give the following result:

THEOREM 2.13. Some elements of Aut(SH,) have a root in Aut(SH,). Thus it
has root-approximable subsets.

Making use of Lemmas 2.5, 2.7, and the proof of Theorem 2.8, we get the follow-
ing corollaries.

COROLLARY 2.14. Let M be a conjugation of (OA 1), where A = diag(a,B)
such that either o, € R, off >0, or af <0 with oo ==+1 or f =+1. Then M is
a root-approximable subset in PSp(2,R).

COROLLARY 2.15. Supposethat G={X®Y:X,Y € SL(2,R) and X,Y have roots}.
Then G is a root-approximable subset of Sp(2,R).

In the following remark, we are generalizing a previous result, about getting roots
of matrices in Sp(n,R) from roots in SL(2,R).

REMARK 2.16. Let Aj,As,...,A, bein SL(2,R). Since U(A| ®A2D---®A,)UT
=A10A O -OA, €Sp(n,R), where

T
U=(er,e3,...,e2-1,€2,€4,...,€0)

is an orthogonal matrix. If A1,A,,...,A, haverootsin SL(2,R), then A; ©A,®---OA,
is a root-approximable in Sp(n,R). Because if, by use of the following representation

n n
DAI=A104,0...04,, and(PA; =A1 G A, G ... DA,
i=1 i=1

we have . .
Oai=u(@a)u’
i=1 i=1
then
n n n
(D)2 =U(@a)2u" =u@paur,
i=1 i=1 i=1
hence

(OA) AT O A2 = U @A), U@ AN 2yT
i=1 i=1

i=1

:Ué 1/2 @J @Alﬂ

i=1

:U(GHB[(Ail/z)TJAI/z EBh =Jp.

i=1
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Hence, it is a root-approximable element in Sp(n,R). It follows from Theorem 2.3

that A or —A has a root in SL(2,R) for all A € SL(2,R). If either A;,As,...,A, or

—A1,—Ay,...,—A, haverootsin SL(2,R), then A} ®A, ®---®A, isroot-approximable
in PSp(n,R).

REMARK 2.17. We examine the automorphisms on SD,. Define a map @ :
SH, — SD, by Z + (Z —il)(Z +il)~'. Hence, it follows from [6] that ® is a bi-
holomorphic from SH,, onto SD,, with

®':SD, — SH, by Z+ i(I+2)(I—2Z)""

Then all biholomorphisms on SD,, are given by the generalized Mobius transformation.
That is,

Aut(SD,) = {®oWod® ; ¥ € Aut(SH,)}.
In the case where n =2, [®]M[®'] has the following form: [®] = (1 1), [®] =
i(1 1), where I=L.1f M= (%) € Sp(2,R), then

tome 1 =i(3) (€5) (1)
_( C-D+i(A-B) C+D+i(A+B)
(—C+D+i(A—B) —C—D+i(A+B))

Theorem 2.4 ensures that all automorphisms on SD, have roots except those of the
following forms:

1)
—a ' +io 0 o ' +io 0
s 0 B~ 1+ip 0 B~'+ip
' | a'+ia 0 —o ' +ia 0
0 B~ '+iB 0 B~ '+iB
(o +ia o +ia —B~'+iB B~'+iB
"\ o tia —a ' +ia B~'+if —B'+iB
where off <0, o # +1, and B # +1.
2)
2 8—14i -2 S+1+i
~ 1—i  =2i —1—-i =2i
Ma=| 5 s414i 2 614 Whereo==EL
—1—i =2i 1—i  =2i
3)
O—1-+i 0 O+1+i 0
s 0 -—al'+ia 0 o' +ia
3T =8+ 1+i 0 —85—1+i 0 '
0 o' +ia 0 —a '+ia

where —1 # o <0, and 6 = +1.
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[1]
[2]
[3]
[4]
[5]
[6]
[7]
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& —1+i 0 S +1+i 0
T 0 SH+1—i 0 &H—1—i
AT -8+ 1+ 0 —& —1+i 0 '
0 —&—1—i 0 —&+1—i
where 61,0, = +1.
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