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(Communicated by I. M. Spitkovsky)

Abstract. We will investigate the existence of solutions to an infinite system of nonlinear integral
equations in two variables of the Volterra-Hammerstein type. The approach we take in our
research relates to the construction of an appropriate measure of noncompactness in the space of
functions defined, continuous, and bounded on R+ ×R+ with values in the space �∞ endowed
with the standard supremum norm and created by function sequences that are coordinatewise
converging to proper limits at infinity. Our research is illustrated with an example.

1. Introduction

This section is for establishing the notation utilized in the paper. We also provide
concepts that serve as the foundation for our research, as well as certain information
about the theory of measure of noncompactness (MNC) that are pertinent to our con-
cerns.

Integral equations are well-known for their use in the description of a wide range
of real-world occurrences, and they form a significant area of nonlinear functional
analysis. Obviously, the theory of integral equations and the science of differential
equations are intertwined (see [1, 4, 7, 9, 10, 15, 18, 19]). Recently, various effec-
tive attempts have been made to apply the idea of measure of noncompactness to
the study of the existence and behaviour of nonlinear integral equation solutions (see
[5, 6, 12, 17, 15, 18, 19, 20]).

Investigations of infinite systems of integral equations are related with the repre-
sentation of solutions of those systems in the form of function sequences defined on an
interval. The presence of solutions is challenging but not particularly difficult problem
when the interval is bounded. However, the situation becomes more challenging when
we are looking for function sequences being solutions to an infinite system of integral
equations specified on an unbounded interval.

The solutions of infinite systems of integral equations that are defined on R+ =
[0,∞) and R+ ×R+ have only recently been the subject of a few works (see [5, 6,
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12, 14]). When examining such solutions, it is necessary to build the right techniques
that will allow us to use a fixed point theorem that is applicable to the circumstance
under consideration. As it turns out, the technique of appropriate measures of noncom-
pactness constructed in the space of functions defined, continuous, and bounded on the
interval R+ with values in the sequence space, for instance, in the spaces c0, �1 and
�∞ , can be used as the necessary technique. In view of the expected generality of the
results, the sequence space �∞ appears to be the most appropriate for our needs. Such
a direction of investigations was initiated in the papers [5, 6].

With the help of a measure of noncompactness defined in [14], we continue and
extend our investigations in the direction of integral equation solutions to infinite sys-
tems, and we hope to produce the most fascinating and useful findings. In particular,
we demonstrate that, under reasonable assumptions, a solution to a system of integral
equations that is thought to be infinite exists. This solution is represented by a function
sequence (xp(w,s)) defined on the square R

2
+ , where each coordinate xp = (xp(w,s))

tends to a suitable limit at infinity. Additionally, the sequence created by those suitable
limits is a component of the �∞ sequence space.

2. Prelimaneries and background

We will use the standard notation. Namely, by the symbol R we will denote the
set of real numbers while N stands for the set of natural numbers.

The Kuratowski measure of noncompactness for a bounded subset D of a metric
space X is defined as

α(D) = inf

{
δ > 0 : D ⊂ ∪n

i=1Di,diam(Di) � δ , for 1 � i � m < ∞
}

,

where diam(Di) denotes diameter of the set Di .
Another important measure of non-compactness is the Hausdorff measure of non-

compactness, which is defined as φ(D) = inf

{
ε > 0 : D has a finite ε -net in E

}
.

It can be shown that the Hausdorff measure of noncompactness φ is regular and
it is equivalent to the Kuratowski measure α(X) . More precisely, for an arbitrary set
X ∈ ME , the following inequality holds (see [5]):

φ(X) � α(X) � 2φ(X).

Let (X , ||.||) be a Banach space, R+ = [0,∞) , the symbols X and Conv(X) denote
closure of X and convex closure of X respectively. Let ME denote the family of
non-empty bounded subsets of E and NE its subfamily consists of relatively compact
subsets of E . We now define (MNC) axiomatically given by Banas and Goebel [8].

DEFINITION 2.1. [8] Let X be a Banach space. A function φ : MX → [0,+∞) is
said to be measure of non-compactnes in X if it satisfies the following axioms:

1. The family ker φ = {E ∈ MX : φ(E) = 0} is a nonempty and ker φ ⊂ NX .
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2. E1 ⊂ E2 ⇒ φ(E1) � φ(E2) .

3. φ(E) = φ(E) .

4. φ(Conv(E)) = φ(E) .

5. φ(λE1 +(1−λE2) � λ φ(E1)+ (1−λ )φ(E2) for all λ ∈ (0,1) .

6. If (Em) is a sequence of closed sets from MX such that Em+1 ⊂ Em and

lim
m→∞

φ(Em) = 0, then the intersection set E∞ =
∞⋂

m=1
Em is non-empty.

The family ker φ appearing in axiom (i) will be called the kernel of the measure of
noncompactness φ . Let us notice that the set X∞ described in axiom (vi) is a member
of the family ker φ . Indeed, it is a simple consequence of the inclusion X∞ ⊂ Xp

for p = 1,2, . . . and axiom (vi) which implies the inequality φ(X∞) � φ(Xp) for p =
1,2, . . . . Hence we have φ(X∞) = 0. Consequently, φ(X∞) ∈ kerφ . The above simple
observation is quite important in applications.

In what follows let us assume that φ is the measure of noncompactness in E . The
measure φ will be called subadditive if

7. φ(X +Y ) � φ(X)+ φ(Y ) .

8. φ(λX) = |λ |φ(X) , λ ∈ R ,

then φ is said to be homogenuous. The measure φ satisfying both 7 and 8 is called
sublinear.

If the measure of noncompactness φ satisfies the condition

9. φ(X ∪Y ) = max{φ(X),φ(Y )} ,

then we will say that φ has the maximum property. Finally, let us remind [8] that the
measure φ such that kerφ = NE is called full. If φ is sublinear and full measure of
noncompactness with maximum property then φ is said to be regular.

Further on, we are going to describe a measure of noncompactness used in consid-
erations of this paper. Assume that E is an infinite dimensional Banach space and that
φ is a measure of noncompactness defined in E .

Consider the Banach space BC(R+ ×R+,E) which consists of functions that are
defined, continuous and bounded on R+ ×R+ and have values in the space E . We
consider the space BC(R+ ×R+,E) with the supremum norm

||x||∞ = sup
{||x(w,s)||E : w,s ∈ R+×R+

}
,

where the symbol ||.||E denotes the norm of the space E . BC(R+ ×R+,E) is clearly
a Banach space with the above mentioned norm.

Simultaneously, we consider the space Cζ = C([0,ζ ]2,E) , where ζ > 0 is arbi-
trarily fixed. Recall, that the Cζ defines norm as

||x||ζ = sup
{||x(w,s)||E : w,s ∈ [0,ζ ]

}
.
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If we take a function x ∈ BC(R+ ×R+,E) , we can consider the restriction x|[0,ζ ]2
of x

to the square [0,ζ ]2 is an element of the space Cζ .
Let us take an arbitrary and bounded set X , X ⊂ BC(R+×R+,E) for the reminder

of this section. Next, let us define the quantity Ω∞(x,ε) for an arbitrarily fixed function
x ∈ X and for ε > 0 as follows:

Ω∞(x,ε) = sup
{||x(w,s)− x(u,v)||E : (w,s),(u,v) ∈ R

2
+, |w−u| � ε, |s− v|� ε

}
.

(2.1)

Observe that lim
ε→0

Ω∞(x,ε) = 0 if and only if the function x = x(w,s) is uniformly

continuous on the square R
2
+ .

Further, taking into account (2.1), for X ∈ MBC(R+×R+,E) , we define

Ω∞(X ,ε) = sup
{

Ω∞(x,ε) : x ∈ X
}
, (2.2)

Ω∞
0 (X) = lim

ε→0
Ω∞(X ,ε). (2.3)

It is self-evident that Ω∞(X) = 0 if and only if functions from the set X are equicon-
tinuous on R+ ×R+ , or equivalently, functions from X are equiuniformly continuous
on R+×R+ .

Let us have a look at the function φ ∞ defined on the family X ∈ MBC(R+×R+,E)
according to the formula

φ ∞(X) = lim
ζ→∞

φζ (X), (2.4)

where

φζ (X) = sup
{

φ(X(w,s)) : w,s ∈ [0,ζ ]
}
. (2.5)

It is worth noting that the existence of the limit in (2.4) is due to the fact that the function
ζ → φ ζ (X) is nondecreasing and bounded from above on R+ ×R+ . Indeed, because
the set X is a bounded subset in the space BC(R+ ×R+,E) , a constant c > 0 exists
such that

sup
{||x(w,s)| E : w,s ∈ R+×R+

}
� c

for any x∈X . Thus fixing arbitrarily w,s∈R+×R+ we conclude that sup
{||x(w,s)||E :

x∈ X
}

� c . This implies that the measures of noncompactness φ(X(w,s)) are bounded
from above for w,s ∈ R+ ×R+ .

Now, for ζ > 0 let us put

βζ (X) = sup
x∈X

{
sup{||x(w,s)− x(u,v)||E : w,s,u,v � ζ

}
,

β∞(X) = lim
ζ→∞

βζ (X). (2.6)
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Finally, by linking (2.3)–(2.6), we can consider the function φβ defined in the
following way [14]:

φβ (X) = Ω∞
0 (X)+ φ∞(X)+ β∞(X). (2.7)

It can be shown that the function φβ is a measure of noncompactness in the space
BC(R+ ×R+,E) (cf. [14]). The kernel ker φβ of the measure φβ consists of all
nonempty and bounded subsets of the space BC(R+×R+,E) such that functions from
X are uniformly continuous and equicontinuous (equivalently, functions from X are
equicontinuous on R+ ×R+ ) and tend to limits (being elements of E ) at infinity with
the same rate. Apart from this, all cross sections X(w,s) = {x(w,s) : x ∈ X} of the set
X belong to the kernel ker φ of the measure of noncompactness φ in the Banach space
E (cf. [14]). The measure φβ is not full and has the maximum property. If the measure
φ is sublinear in the space E then the measure φβ defined by (2.7) is also sublinear
[14].

Let us mention that in the similar way as above we may define other measures of
noncompactness in the space BC(R+ ×R+,E) (see [14]).

Taking into account our further purposes we will consider as the Banach space E
the sequence space �∞ equipped with the standard supremum norm.

Thus, in what follows we consider the Banach space BC(R+×R+, �∞) consisting
of functions x : R+ ×R+ → �∞ being continuous and bounded on R+ ×R+ . If x ∈
BC(R+×R+, �∞) then we write this function in the form

x(w,s) = (xp(w,s)) = (x1(w,s),x2(w,s), . . .)

for w,s ∈ R+ , where the sequence (xp(w,s)) is an element of the space �∞ for any
fixed w,s . The norm of the function x = x(w,s) = (xp(w,s)) is defined by the equality

||x||∞ = sup
{||x(w,s)||E : w,s ∈ R+×R+

}
= sup

w,s∈R+

{sup{|xp(w,s)| : p = 1,2, . . .}}.

Now, we can express the formula for the measure of noncompactness defined by
(2.7) in the Banach space BC(R+×R+, �∞) , provided the measure of noncompactness
in the space �∞ is defined in the following way [8]

φ1(X) = lim
p→∞

{
sup

x=(xi)∈X

{
sup{|xl| : l � p}

}}
(2.8)

for X ∈ M�∞ . In this case the component φ ∞ defined by (2.4) will be denoted by φ 1
∞ .

Thus, our measure of noncompactness φβ defined by (2.7) will be denoted by φ1
β

and is defined as a particular case of (2.7) by the following formula

φ1
β (X) = Ω∞

0 (X)+ φ1
∞(X)+ β∞(X), (2.9)

where the components on the right hand side of formula (2.7) are defined in the follow-
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ing way (see [14]):

Ω∞
0 (X) = lim

ε→0

{
sup
x∈X

{
sup

{
sup
p∈N

{|xp(w,s)− xp(u,v)| : p = 1,2, . . .} :

w,s,u,v ∈ R+ ×R+, |w−u|� ε, |s− v|� ε}
}}

, (2.10)

φ1
∞(X) = lim

ζ→∞

{
sup

w,s∈[0,ζ ]

{
lim
p→∞

{
sup

x=xi∈X

{
sup{|xl(w,s)| : l � p}

}}}}
, (2.11)

β∞(X) = lim
w,s→∞

{
sup

{
sup{sup

p∈N

|xp(w,s)− yp(w,s)| : x = x(w,s),y = y(w,s) ∈ X}
}}}

.

(2.12)

LEMMA 2.2. [14] The following equality is satisfied

φ ∞(X) = sup{φ(X(w,s)) : w,s ∈ R+×R+},

where φ∞ is defined by formula (2.4) .
The quantity (2.11) can be expressed by the formula

φ−1
∞ (X) = sup

w,s�0

{
lim
p→∞

{
sup

x=xi∈X

{
sup{|xl(w,s)| : l � p}

}}}
.

REMARK 2.3. Let us keep in mind that the kernel ker φ1
β of the measure of non-

compactness φ1
β defined by formula (2.9) can be described as the family of all sets

X ∈ MBC(R+×R+,�∞) such that functions x = x(w,s) = (xp(w,s)) from X are equicon-
tinuous on R+ ×R+ and tend coordinatewise to proper limits at infinity i.e., for any
p ∈ N there exists a number gp ∈ R such that lim

w,s→∞
xp(w,s) = gp . Obviously, the

sequence g = (gp) is an element of the space �∞ . In addition, let us note that the func-
tions of the sequence (xp(w,s)) tends to limits (gp) with the same rate. Additionally,
let us also note that all cross-sections X(w,s) of the set X belong to the kernel ker φ1

defined by (2.8) being the family of some relatively compact subsets of the space �∞ .

We recall a useful fixed point theorem of Darbo type [8, 13] at the end of this
section.

Let us assume that E is a Banach space and φ is a measure of noncompactness
(as defined in Definition 1) in the space E .

THEOREM 2.4. Assume that Q is a nonempty, bounded, closed and convex subset
of a Banach space E and T : Q → Q is a continuous operator such that there exists a
constant k ∈ [0.1) for which φ(T (X)) � kφ(X) for an arbitrary nonempty subset X of
Q. Then there exists atleast one fixed point of the operator T in the set Q.

REMARK 2.5. It can be shown that the set Fix T of all fixed points of the operator
T belongs to the family ker φ .



VOLTERRA-HAMMERSTEIN INTEGRAL EQUATIONS IN TWO VARIABLES 193

3. Solvability of infinite system of integral equation in two variables

We will examine the infinite system of Volterra-Hammerstein type nonlinear quad-
ratic integral equations of the form

xp(w,s) = αp(w,s)+ fp(w,s,x1(w,s),x2(w,s), . . .)

×
∫ w

0

∫ s

0
kp(w,s,τ1,τ2)gp(u,v,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2 (3.1)

for w,s ∈ R+×R+ and for p = 1,2, . . . .
Our objective is to demonstrate that infinite system of integral equations (3.1) has

a solution x(w,s) = (xp(w,s)) in the space BC(R+×R+, �∞) such that there exists a
limit lim

w,s→∞
xp(w,s) . That limit is clearly an element of the space �∞ . As we pointed out

in section (2), Remark (1), the functions of the sequence (xp(w,s)) tend coordinatewise
to proper limits at infinity (with the same rate ). Our considerations are located in the
mentioned Banach space BC(R+×R+, �∞) discussed previously in details. Aside from
that, it’s important to note that in our study of solutions of infinite system (3.1) we will
use the measure of noncompactness φ1

β (X) expressed by formula (2.9) given in the
previous section.

Now we will look at the assumptions that will be used to study the infinite system
of integral equations (3.1).

(i) The sequence (αp(w,s)) is an element of the space BC(R+×R+, �∞) such that
there exists the proper limit lim

w,s→∞
αp(w,s) uniformly with respect to p ∈ N i.e.,

the following condition of the Cauchy type is satisfied

∀ε>0 ∃ζ>0 ∀p∈N ∀w,s,u,v�ζ |αp(w,s)−αp(u,v)| � ε.

Moreover, lim
w,s→∞

αp(w,s) = 0 for any w,s ∈ R+ .

(ii) The functions kp(w,s,τ1,τ2) = kp : R+ ×R+×R+×R+ → R are continuous on
the set R+ ×R+ ×R+ ×R+(p = 1,2, . . .) . Apart from this the functions w,s →
kp(w,s,τ1,τ2) are equicontinuous on the set R+ ×R+ uniformly with respect to
τ1,τ2 ∈ R+ ×R+ i.e, the following condition is satisfied

∀ε>0 ∃δ>0 ∀p∈N ∀τ1,τ2∈R+×R+ ∀w1,w2,s1,s2∈R+×R+

[|w2−w1| � δ , |s2 − s1| � δ
=⇒ |kp(w2,s2,τ1,τ2)− kp(w1,s1,τ1,τ2)| � ε

]
.

(iii) There exists a constant K1 > 0 such that

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dτ1,dτ2 � K1

for any w,s ∈ R+ ×R+ and p = 1,2, . . . .

Moreover, lim
w,s→∞

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dτ1,dτ2 = 0 uniformly with respect to p ∈
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N i.e., the following condition is satisfied

∀ε>0 ∃ζ>0 ∀w,s�ζ ∀p∈N

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dτ1,dτ2 � ε.

(iv) The sequence (kp(w,s,τ1,τ2)) is equibounded on R+×R+×R+×R+ i.e, there
exists a constant K2 > 0 such that |kp(w,s,τ1,τ2)|� K2 for w,s,τ1,τ2 ∈ R+×R+
and p = 1,2, . . . .

(v) The functions fp are defined on the set R+ ×R+ ×R
∞ and take real values for

p = 1,2, . . . . Moreover, the functions w,s → fp(w,s,x1,x2, . . .) are equicontin-
uous on R+ ×R+ uniformly with respect to x = (xp) ∈ �∞ i.e., the following
condition is satisfied

∀ε>0 ∃δ>0 ∀p∈N ∀u,v∈R+×R+ ∀w,s,u,v∈R+×R+

[||(w,s)− (u,v)|| � δ
=⇒ | fp(w,s,x1,x2, . . .)− fp(u,v,x1,x2, . . .)| � ε

]
.

(vi) The function sequence ( f p) defined by the equality f p(w,s) = | fp(w,s,0,0, . . .)|
(for w,s ∈ R+ and p = 1,2, . . .) is bounded on R+ ×R+ and lim

p→∞
f p(w,s) = 0

for any w,s ∈ R+ .

(vii) For each t > 0 there exists a proper limit lim
w,s→∞

fp(w,s,x1,x2, . . .) uniformly with

respect to x ∈ �∞ such that ||x||�∞ � t and p ∈ N i.e., the following condition is
satisfied

∀ε>0 ∀t>0 ∃ζ>0 ∀w,s�ζ ∀x∈�∞,||x||�∞ �t ∀p∈N | fp(w,s,x)− fp(u,v,x)| � ε.

(viii) There exists a function l : R+ ×R+ → R+ ×R+ such that l is nondecreasing on
R+ ×R+ , l(0) = 0, l is continuous at 0 and the following is satisfied

| fp(w,s,x1,x2, . . .)− fp(w,s,y1,y2, . . .)| � l(r)sup
{|xi − yi| : i � p

}
for any r > 0, for x = (xi),y = (yi) ∈ �∞ such that ||x||�∞ � r, ||y||�∞ � r and for
all w,s ∈ R+ ×R+ and p = 1,2, . . . .

(ix) The functions gp are defined on the set R+ ×R+ ×R
∞ and take real values for

p = 1,2, . . . . Moreover, the operator g defined on the set R+ ×R+× �∞ by for-
mula

(gx)(w,s) = (gp(w,s,x)) = (g1(w,s,x),g2(w,s,x), . . .)

transforms the set R+×R+× �∞ into �∞ and is such that the family of functions
{(gx)(w,s)}w,s∈R+ is equicontinuous on the space �∞ i.e., for any ε > 0 there
exists δ > 0 such that

||(gy)(w,s)− (gx)(w,s)||�∞ � ε

for any w,s ∈ R+ and for all x,y ∈ �∞ such that ||x− y||�∞ � δ .
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(x) The operator g defined on the space R+×R+× �∞ by the formula

(gx)(w,s) = (gp(w,s,x)) = (g1(w,s,x),g2(w,s,x), . . .)

is bounded i.e., there exists a positive constant g such that ||(gx)(w,s)||�∞ � g for
any x ∈ �∞ and for each w,s ∈ R+×R+ .

(xi) There exists a positive solution r0 of the inequality

A+FgG1 +gG1rl(r) � r

such that

GK1l(r0) < 1

where the constants G,K1 were defined above and the constant AF, was defined
in the following way

A = sup{|αp(w,s) : w,s ∈ R+×R+, p = 1,2, . . .},
F = sup{ f p)(w,s) : w,s ∈ R+×R+, p = 1,2, . . .}.

Now, we formulate remarks and lemmas concerning some components involved
in infinite system (3.1).

REMARK 3.1. Observe that in view of assumptions (i) and (vi) the constants A
and F defined above are finite.

REMARK 3.2. The sequence ( f p ) from assumption (vi) is an element of the space
BC(R+×R+, �∞) .

In order to prove the above assertion let us first notice that in view of assumption
(vi) the sequence ( f p(w,s)) is an element of the space �∞ for any w,s ∈ R+ . Now,
we show that the function f : R+ → �∞ defined by the equality f (w,s) = ( f p(w,s)) , is
continuous on R+×R+ .

To prove this fact let us fix arbitrarily ε > 0. Then for arbitrarily w,s,u,v ∈ R+
we have

| f p(w,s)− f p(u,v)| = ∣∣| fp(w,s,0,0, . . .)|− | fp(u,v,0,0, . . .)|∣∣
� | fp(w,s,0,0, . . .)− fp(u,v,0,0, . . .)|,

for any p = 1,2, . . . . Hence, in view of assumption (v) we can choose a number δ > 0
such that for any p ∈ N and for arbitrary w,s,u,v ∈ R+ such that ||(w,s)− (u,v)|� δ ,
we have

| f p(w,s)− f (u,v)| � ε.

This implies that || f p(w,s)− f p(u,v)||�∞ � ε for w,s,u,v ∈ R+, ||(w,s)− (u,v)| � δ .
Thus the sequence f (w,s) = ( f p(w,s)) is an element of the space BC(R+×R+, �∞) .



196 A. H. JAN AND T. JALAL

LEMMA 3.3. [14] Let the function x(w,s) = (xp(w,s)) be an element of the space
BC(R+×R+, �∞) . Then the sequence (xp) is equibounded and locally equicontinuous
on R+×R+ .

Since the proof can be accomplished using the same steps as the proof of Lemma
3.1 in [14], it is omitted.

LEMMA 3.4. Let the function x(t,s) = (xp(t,s)) be an element of the space
BC(R+×R+, �∞) such that there exists a proper limit lim

w,s→∞
xp(w,s) uniformly with

respect to n ∈ N i.e., the following condition is satisfied

∀ε>0∃ζ>0∀w,s,τ1,τ2�ζ∀p∈N|xp(w,s)− xp(τ1,τ2)| � ε

(cf. assumption (i)). Then the sequence (xp) is equibounded and equicontinuous on
R+×R+ .

Proof. The equiboundedness of the sequence (xp) on R+ ×R+ follows imme-
diately from Lemma 2. In order to prove the equicontinuity of the sequence (xp) on
R+ ×R+ let us fix ε > 0. Then, in view of the assumption imposed in our lemma we

can find a number ζ > 0 such that |xp(w,s)−xp(τ1,τ2)|� ε
2

for w,s,τ1,τ2 � ζ and for

p = 1,2, . . . . On the other hand, in virtue of Lemma 2 we infer that the sequence (xp) is
equicontinuous on the interval [0,ζ ] . This means that we can find a number δ > 0 such

that |xp(w1,s1)− xp(w2,s2)| � ε
2

, for w1,w2,s1,s2 ∈ [0,ζ ] such that |w2 −w1| � δ ,

|s2− s1| � δ and for all p = 1,2,3, . . . .
Now, let us take arbitrary numbers t1,t2 ∈ R+×R+ such that |w2−w1|� δ , |s2−

s1| � δ . Without loss of generality we can assume that (w1,s1) � (w2,s2) .
If w1,s1,w2,s2 ∈ [0,ζ ] then, according to the above established fact we have that

|xp(w2,s2)− xp(w1,s1)| � ε
2

for p = 1,2, . . . .
If w1,s1,w2,s2 � ζ then in view of the made choice of the number ζ we have that

|xp(w2,s2)− xp(w1,s1)| � ε
2
.

Further, let us assume that (w1,s1) < ζ � (w2,s2) . Then, for an arbitrarily fixed
p ∈ N , taking into account the above established facts we get

|xp(w2,s2)− xp(w1,s1)| � |xp(w2,s2)− xp(ζ )|+ |xp(ζ )− xp(w1,s1)| � ε
2

+
ε
2

= ε.

This shows that the sequence (xp) is equicontinuous on the interval R+×R+ . �

Now we can express our existence result in terms of an infinite system (3.1).



VOLTERRA-HAMMERSTEIN INTEGRAL EQUATIONS IN TWO VARIABLES 197

THEOREM 3.5. Under assumptions (i)–(xi) the infinite system of integral equa-
tions (3.1) has atleast one solution x(w,s) = (xp(w,s)) in the space BC(R+×R+, �∞) .
Moreover, the function x = x(w,s) is uniformly continuous on the interval R+×R+ and
tends at infinity to a limit being an element of the space �∞ .

Proof. We start with defining three operators F,V,Q on the space BC(R+ ×R+, �∞)
in the following way:

(Fx)(w,s) = ((Fpx)(w,s)) = ( fp(w,s,x(w,s))) = ( fp(w,s,x1(w,s),x2(w,s), . . .)),

(Vx)(w,s) = ((Vpx)(w,s)) =
( w∫
o

s∫
o

kp(w,s,τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(u,v), . . .)dτ1dτ2
)
,

(Qx)(w,s) = ((Qpx)(w,s)) = (αp(w,s)+ (Fpx)(w,s)(Vpx)(w,s)).

At the beginingwe show that the operator F transforms the space BC(R+×R+, �∞)
into itself.

To this end let us choose a function x = (xn(w,s)) ∈ BC(R+ ×R+, �∞) . Then, in
view of the imposed asssumptions (vi) and (viii), for any arbitrary fixed n ∈ N , we
obtain

|(Fpx)(w,s)| � | fp(w,s,x1(w,s),x2(w,s), . . .)− fp(w,s,0,0, . . .)|+ | fp(w,s,0,0, . . .)|
� l(||x(w,s)||�∞)sup{|xI(w,s) : i � p}+ | f n(w,s)|
� l(||x||BC(R+×R+,�∞))||x||BC(R+×R+,�∞) +F. (3.2)

Hence, we obtain the inequality

|(Fpx)(w,s)| � F + l(||x||BC(R+×R+,�∞))||x||BC(R+×R+,�∞),

which implies the following estimate

||Fx||BC(R+×R+,�∞) � l(||x||BC(R+×R+,�∞))||x||BC(R+×R+,�∞) (3.3)

for any x ∈ BC(R+×R+, �∞) . This estimate shows that the function Fx is bounded on
R+×R+ .

Next, we show that the function Fx is continuous on R+ ×R+ . In order to show
this fact we will utilize the continuity of an arbitrary function

x = x(w,s) = (xp(w,s)) ∈ BC(R+×R+, �∞)

on the interval R+ ×R+ . Let us fix ε > 0. Then, on the basis of assumption (v)
we can find a number δ = δ (ε, ||x||�∞) > 0 such that for w,s,u,v ∈ R+ ×R+ witth
||(w,s)− (u,v)|| � δ the following inequality holds

| fp(w,s,x1,x2, . . .)− fp(u,v,x1,x2, . . .)| � ε.

This implies that

||(Fx)(w,s)− (Fx)(u,v)||�∞ � ε



198 A. H. JAN AND T. JALAL

for all w,s,u,v∈R+×R+ such that ||(w,s)−(u,v)||� δ . This means that the function
Fx is continuous (even uniformly continuous) on R+ ×R+ . Hence, we infer that that
the operator F transforms the space BC(R+×R+, �∞) into itself.

In what follows we show that the operator V acts from the space BC(R+×R+, �∞)
into itself.

To this end, similarly as above, let us fix a function x = x(w,s) = (xp(w,s)) be-
longing to the space BC(R+ ×R+, �∞) . Next, take arbitrary numbers w,s ∈ R+ ×R+ .
Then, for a fixed natural number n , in view of assumptions (iii) and (x), we obtain

|(upx)(w,s)| �
∫ w

o

∫ s

0
|kp(w,s,τ1,τ2)||gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

�
∫ w

o

∫ s

0
|kp(w,s,τ1,τ2)|Gdτ1dτ2

= G
∫ w

o

∫ s

0
|kp(w,s,τ1,τ2)|dτ1dτ2 � GK1. (3.4)

We now are going to show that the above mentioned operator V transforms the
space BC(R+ ×R+, �∞) into itself. To this end, similarly as above, take a function
x = x(w,s) = (xn(w,s)) ∈ BC(R+×R+, �∞) . Then, for arbitrarily fixed numbers w,s ∈
R+×R+ and p ∈ N , based on assumptions (iii) and (ix), we get

|(Vpx)(w,s)| �
w∫

o

s∫
o

|kp(w,s,τ1,τ2)||gp(u,v,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

�
w∫

o

s∫
o

|kp(w,s,τ1,τ2)|Gdτ1dτ2

� G

w∫
o

s∫
o

|kp(w,s,τ1dτ2)|dudv � GK1. (3.5)

The derived estimate, in particular, shows that the fuunction Vx is bounded on the inter-
val R+×R+ . Next, fix ε > 0 and determine a number δ > 0 according to assumption
(ii). Then, for arbitrary w1,w2,s1,s2 ∈R+×R+ such that ||(w2,s2)−(w1,s1)||� δ , on
the basis of assumptions (ii) and (ix) (assuming, for example, that (w1,s1) < (w2,s2) ,
we have

|(Vpx)(w2,s2)− (Vpx)(w1,s1)|

�
∣∣∣∣

w2∫
o

s2∫
o

kp(w2,s2,τ1,τ2)gp(u,v,x1(τ1,τ2),x2(u,v), . . .)dτ1dτ2

−
w2∫
o

s2∫
o

kp(w1,s1,τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2

∣∣∣∣

+
∣∣∣∣

w2∫
o

s2∫
o

kp(w1,s1,τ1,τ2)gp(τ1,τ2,x1(u,v),x2(τ1,τ2), . . .)dτ1dτ2
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−
w1∫
o

s1∫
o

kp(w1,s1,τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2

∣∣∣∣

�
w2∫
o

s2∫
o

|kp(w2,s2,τ1,τ2)− kp(w1,s1,τ1,τ2)||gp(u,v,x1(τ1,τ2), . . .)|dτ1dτ2

+
w2∫

w1

s2∫
s1

|kp(w1,s1,τ1,τ2)||gp(τ1,τ2,x1(τ1,τ2), . . .)|dτ1dτ2

�
w2∫

w1

s2∫
s1

ωk(δ )|gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2) . . .)|dτ1dτ2

+
w2∫

w1

s2∫
s1

K2|gp(τ1,τ2,x1(τ1,τ2), . . .)|dτ1dτ2,

where K2 is a constant from assumption (iv) and ωk(δ ) denotes a common modulus
of equicontnuity of the sequence of functions w,s → kp(w,s,u,v) (according to the
assumption (iii)). Obviously we have ωk(δ ) → 0 as δ → 0.

Let us now notice that, using assumptions (ix) and (x), we can obtain the following
estimate from the previous one

|(Vpx)(w2,s2)− (Vpx)(w1,s1)| � Gωk(δ )+GK2δ . (3.6)

Hence, we get

||(Vx)(w2,s2)− (Vx)(w1,s1)||�∞ � Gωk(δ )+GK2δ .

This shows that the function Vx is continuous on the interval R+ ×R+ . We conclude
that the operator V transforms the space BC(R+ ×R+, �∞) into itself by linking the
boundedness of the function Vx with its continuity on R+×R+ .

Taking into account the fact the space BC(R+ ×R+, �∞) is a Banach algebra in
terms of coordinatewise multiplication of function sequences and keeping in mind the
definition of the operator Q and assumption (i), we deduce that for an arbitrarily fixed
function x = x(w,s) ∈ BC(R+ ×R+, �∞) the function (Qx)(w,s) = ((Qpx)(w,s)) =
(αp(w,s)+(Fpx)(w,s)(Vpx)(w,s)) transforms the interval R+×R+ into the space �∞ .

Indeed, in virtue of the fact that ((Fpx)(w,s)) ∈ �∞ for any w,s ∈ R+×R+ and in
the light of estimate (3.5), we get

|(Qpx)(w,s)| � |αp(w,s)|+GK1|(Fpx)(w,s)|
for any p ∈ N . In view of (3.2) this yields that (Qx)(w,s) = ((Qpx)(w,s)) ∈ �∞ for
every w,s ∈ R+×R+ .

Next, let us notice that the continuity of the function Qx on R+ ×R+ follows
easily from the continuity of the functions Fx and Vx on the interval R+ ×R+ . Sim-
ilarly, if we use assumption (i), we may infer the boundedness of the function Qx on
R+×R+ .
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Finally, by combining all the above established properties of the function Qx we
infer that the operator Q transforms the space BC(R+×R+, �∞) into itself.

Now, let us observe that in view of estimates (3.2) and (3.5), for an arbitrarily fixed
p ∈ N and w,s ∈ R+×R+ , we have

|(Qpx)(w,s)| � |αp(w,s)|+ |(Fpx)(w,s)||(Vpx)(w,s)|
� A+

[
l(||x(w,s||�∞)||x(w,s||�∞)+F

]
GK1.

As a result, we arrive at the following estimate:

||Qx||BC(R+×R+,�∞) � A+FGK1 +GK1l(||x||BC(R+×R+,�∞))||x||BC(R+×R+,�∞).

Based on the aforementioned estimate and assumption (xi) we conclude that there ex-
ists a number r0 > 0 such that the operator Q transforms the ball Br0 (in the space
BC(R+×R+, �∞)) into itself.

In what follows we show that the operator Q is continuous on the ball Br0 . To
achive this, it is sufficient to show the continuity of the operator F and V seperately,
taking into account the representation of the operator Q .

So, let us fix an arbitrary ε > 0 and choose x ∈ Br0 . Next, take an arbitrary
point y ∈ Br0 such that ||x− y||BC(R+×R+,�∞) � ε . Then, for a fixed p ∈ N and for
w,s ∈ R+×R+ , in view of assumption (vi), we have

|(Fnx)(w,s)− (Fny)(w,s)|
= | fn(w,s,x1(w,s),x2(w,s), . . .)− fn(w,s,y1(w,s),y2(w,s), . . .)|
� l(r0)||x− y||BC(R+×R+,�∞) � l(r0)ε.

Hence, we obtain

||Fx−Fy||BC(R+×R+,�∞) � l(r0)ε.

This sows that the operator F is continuous on the ball Br0 .
To prove the continuity of the operator V on the ball Br0 let us consider the func-

tion δ = δ (ε) defined in the following way

δ (ε) = sup{|gp(w,s,x)−gp(w,s,y)| : x,y ∈ �∞, ||x− y||�∞ � ε,w,s ∈ R+, p ∈ N}.
Then, in view of assumption (ix) we have δ (ε) → 0 as ε → 0. Now, taking x,y ∈ Br0
such that ||x− y||BC(R+×R+,�∞) � ε and w,s ∈ R+ and fixing p ∈ N we obtain

|(Vpx)(w,s)− (Vpy)(w,s)|
�

∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)||gp(u,v,x1(τ1,τ2),x2(τ1,τ2), . . .)

−gp(τ1,τ2,y1(τ1,τ2),y2(τ1,τ2), . . .)|dτ1dτ2

�
∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)|dτ1dτ2δ (ε)

� K1δ (ε).
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This implies the estimate

||Vx−Vy||BC(R+×R+,�∞) � K1δ (ε).

Thus we see that the operator V is continuous on the ball Br0 .
Finally, in the light of the above mentioned statement we conclude that the operator

Q is continuous on Br0 .
Further, let us fix an arbitrary number ε > 0 and choose a number δ = δ (ε,r0) > 0

according to assumption (v). Next, take a nonempty subset X of the ball Br0 . Assume
that x ∈ X . Then, for arbitrarily fixed n ∈ N and w,s,u,v ∈ R+ with ||(w,s)− (u,v)| �
δ , in view of assumptions (v) and (vii), we obtain

|(Fpx)(w,s)− (Fpx)(u,v)|
= | fp(w,s,x1(w,s),x2(w,s), . . .)− fp(u,v,x1(u,v),x2(u,v), . . .)|
� | fp(w,s,x1(w,s),x2(w,s), . . .)− fp(u.v,x1(w,s),x2(w,s), . . .)|

+ | fp(u,v,x1(w,s),x2(w,s), . . .)− fp(u.v,x1(u,v),x2(u,v), . . .)|
� ε + l(r0)sup{|xi(w,s)− xi(u,v) : i � p}
� ε + l(r0)sup{|xi(w,s)− xi(u,v) : i ∈ N}
� ε + l(r0)ω∞(x,δ ).

The above estimate implies the following one

ω∞(Fx,ε) � ε + l(r0)ω∞(x,δ ). (3.7)

Further, similarly as above, let us fix ε > 0 and choose a number δ > 0 according
to assumption (ii) (we may choose a number δ with respect to assumptions (ii) and (v)).
Next, fix p ∈ N and w,s,u,v ∈ R+ (say, (u,v) < (w,s)) such that ||(w,s)− (u,v)|| =
(w,s)− (u,v) � δ . Then, repeating the reasoning conducted in order to obtain estimate
(3.6), in view of that estimate, we get

|(Vpx)(w,s)− (Vpx)(u,v)| � Gωk(δ )+K2Gδ ,

where K2 is a constant appearing in assumption (iv) and ωk(δ ) denotes the above
introduced common modulus of continuity of the function sequence w,s→ kp(w,s,u,v)
on the interval R+ ×R+ (recall that ωk(δ ) → 0 as δ → 0).

Hence, we derive the following estimate

ω∞(Vx,ε) � Gωk(δ )+GK2δ . (3.8)

Further on, keeping in mind the representation of the operator Q , for an arbitrary
function x ∈ X and for arbitrary w,s,u,v ∈ R+ , we have

||(Qx)(w,s)− (Qx)(u,v)||�∞ � ||a(w,s)−a(u,v)||�∞

+ ||(Vx)(w,s)||�∞ ||(Fx)(w,s)− (Fx)(u,v)||�∞

+ ||(Fx)(w,s)||�∞ ||(Vx)(w,s)− (Vx)(u,v)||�∞ ,
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where a(w,s) = (ap(w,s)) .
Next, fix ε > 0 and assume that ||(w,s)− (u,v)|| � ε . Then, from the above

inequality and estimates (3.7), (3.8), (3.3) and (3.4), we get

ω∞(Qx,ε) � ω∞(a,ε)+GK1ω∞(Fx,ε)+ (F + r0m(r0))(Gωk(ε)+GK2ε)

� ω∞(a,ε)+GK1m(r0)ω∞(x,ε)+GK1ε +(F + r0m(r0))(Gωk(ε)+GK2ε).

Now, in view of lemma 3 we infer that ω∞(a,ε) → 0 as ε → 0. Next, taking into
account that ωk(ε) → 0 as ε → 0, from the above obttained estimate we deduce the
following inequality

ω∞
0 (QX) � GK1m(r0)ω∞

0 (X). (3.9)

In what follows we will investigate the behaviour of the operator Q with respect to
second term μ−1

∞ (cf. formula (2.11)) of the measure of noncompactness μ1
b defined by

(2.9). To this end take a nonempty subset X of the ball Br0 and choose an element x =
x(w,s) ∈ X . Further, fix a natural number p and ζ > 0. Then, for an arbitrarily fixed
number w,s ∈ [0,ζ ] , in virtue of the representation of the operator Q and estimates
(3.2) and (3.4), we get

|(Qpx)(w,s)| � |ap(w,s)|+ | fp(w,s,x1(τ1,τ2),x2(τ1,τ2), . . .)|
w∫

0

s∫
0

|kp(w,s,τ1,τ2)|

× |gp(u,v,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

� |ap(w,s)|+[ f p(w,s)+m(||x(w,s)||�∞)sup{|xi(w,s) : i � p}]GK1.

Now, taking supremum over x ∈ X , from the above estimate we obtain

sup
x∈X

|(Qpx)(w,s)| � |ap(w,s)|+GK1

[
f p(w,s)+m(r0)sup

x∈X

{
sup{xi(w,s) : i � p}

}]
.

Hence, in view of assumptions (i) and (vi), we derive the following inequality

lim
p→∞

{
sup
x∈X

|(Qpx)(w,s)|} � GK1m(r0)
{

lim
p→∞

{
sup
x∈X

{
sup{xi(w,s) : i � p}

}}}
.

Finally, if we take supremum over w,s ∈ [0,ζ ] on both sides of the above inequality
and if we pass with ζ → ∞ , in view of formula (2.11) we have

μ−1
∞ (QX) � GK1m(r0)μ−1

∞ (QX). (3.10)

Now, we proceed to the study the behaviour of the operator Q with respect to the
quantity b∞ = b∞(X) defined by (2.12) which creates the last component of the measure
of noncompactness μ−1

b (cf. formula (2.9)).
Thus, take a nonempty subset X of the ball Br0 and an arbitrary number ζ > 0.

Next, fix numbers w,s,u,v such that w,s,u,v � ζ and p ∈ N . Then, for an arbitrarily
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fixed function x ∈ X , we obtain

|(Qpx)(w,s)− (Qpx)(u,v)|
� |ap(w,s)−ap(u,v)|+ | fp(w,s,x1(w,s),x2(w,s), . . .)

∫ w

0

∫ s

0
kp(w,s,τ1,τ2)

×gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2 − fp(u,v,x1(u,v),x2(u,v), . . .)

×
∫ u

0

∫ v

0
kp(u,v.τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2|

� |ap(w,s)−ap(u,v)|+ | fp(w,s,x1(w,s),x2(w,s), . . .)
∫ w

0

∫ s

0
kp(w,s,τ1,τ2)

×gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2 − fp(u,v,x1(u,v),x2(u,v), . . .)

×
∫ w

0

∫ s

0
kp(u,v.τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2|

� | fp(u,v,x1(u,v),x2(u,v), . . .)

×
∫ w

0

∫ s

0
kp(u,v.τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2

− fp(u,v,x1(u,v),x2(u,v), . . .)

×
∫ u

0

∫ v

0
kp(u,v.τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2|

� |ap(w,s)−ap(u,v)|+ | fp(w,s,x1(w,s),x2(w,s), . . .)− fp(u,v,x1(u,v),x2(u,v), . . .)|
×

∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)||gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

+ | fp(u,v,x1(u,v),x2(u,v), . . .)||
×

∫ w

0

∫ s

0
kp(w,s,τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2

−
∫ u

0

∫ v

0
kp(u,v.τ1,τ2)gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)dτ1dτ2|

� |ap(w,s)−ap(u,v)|+ [| fp(w,s,x1(w,s),x2(w,s), . . .)− fp(u,v,x1(u,v),x2(u,v), . . .)|
× | fp(u,v,x1(w,s),x2(w,s), . . .)− fp(u,v,x1(u,v),x2(u,v), . . .)|]

×
∫ w

0

∫ s

0
G|kp(w,s,τ1,τ2)|dτ1dτ2 +

[
f p(u,v)+m(||x(u,v)||�∞)sup

{
|xi(u,v) : i � p

}]

×
{∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)||gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

+
∫ u

0

∫ v

0
|kp(u,v,τ1,τ2)||gp(τ1,τ2,x1(τ1,τ2),x2(τ1,τ2), . . .)|dτ1dτ2

}

� |ap(w,s)−ap(u,v)|+
[

Ωr0( f ,ζ )+m(r0)sup{|xi(w,s)− xi(u,v)| : i � p}
]
GK1

+[F + r0m(r0)]{
∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)|Gdτ1dτ2 +

∫ u

0

∫ v

0
|kp(u,v,τ1,τ2)|Gdτ1dτ2},

(3.11)
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where we denoted

Ωr0( f ,ζ ) = sup

{
| fp(w,s,x1,x2, . . .)− fp(u,v,x1,x2, . . .)| :

w,s,u,v � ζ ,x = (xi) ∈ Br0 , p ∈ N

}
.

Observe that lim
ζ→∞

Ωr0( f ,ζ ) = 0, in view of assumption (vii).

Further, from estimate (3.11), for w,s,u,v � ζ and for p ∈ N we obtain

|(Qpx)(w,s)− (Qpx)(u,v)|

� |ap(w,s)−ap(u,v)|+
[

Ωr0( f ,ζ )+m(r0)sup{|xi(w,s)− xi(u,v)| : i � p}
]
GK1

+[F + r0m(r0)]{
∫ w

0

∫ s

0
|kp(w,s,τ1,τ2)|Gdτ1dτ2 +

∫ u

0

∫ v

0
|kp(u,v,τ1,τ2)|Gdτ1dτ2}.

Now, keeping in mind the above estimate, assumptions (i) and (iii) and the above estab-
lished facts, in view of formula (2.12), we derive the following inequality

b∞ � GK1m(r0)b∞(X). (3.12)

Finally, linking estimates (3.9), (3.10), (3.12) and taking account the formula (2.9), we
obtain the following inequality for an arbitrary nonempty subset X of the ball Br0 :

μ1
b (QX) � GK1m(r0)μ1

b (X).

Hence, combining the fact that the operator Q maps continuously the ball Br0 into
itself, assumption (xi) and Theorem (1), we infer that the infinite system of Volterra-
Hammerstein integral equation (3.1) has at least one solution x = x(w,s) in the space
BC(R+×R+, �∞) which belongs to the ball br0 and is uniformly continuous on the
interval R+R+ .

Moreover, since the mentioned solution x = x(w,s) of infinite system (3.1) belongs
to the kernal ker μ1

b we conclude that there exists a limit lim
w,s→∞

x(w,s) in the space �∞

i.e., there exists an element g = (gp) ∈ �∞ such that lim
w,s→∞

x(w,s) = g . Equivalently

this means that if we write x(w,s) = (xp(w,s)) then for any fixed p ∈ N there exists
a proper limit lim

p→∞
xp(w,s) = gp (cf. Remark 1 ). Other words this means that the

solution x = x(w,s) = (xp(w,s)) is coordinatewise converging at infinity. The proof is
complete. �

This outcome is illustrated by the following example:

EXAMPLE 3.6. Let us take a look at the following infinite system of Volterra-
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Hammerstein type nonlinear quadratic integral equations.

xp(w,s) = wse−2pws +
(

x2
p(w,s)+1

p+ws
+

x2
p+1(w,s)+1

p+ws
+

xp+2(w,s)+1
p+ws

)

×
∫ w

0

∫ s

0
e−γ(ws+p)τ1τ2 arctan

(
x1(τ1,τ2)+ xp(τ1,τ2)+ xp+1(τ1,τ2)

p+ws+ β

)
dτ1dτ2

(3.13)

for p = 1,2, . . . and w,s ∈ R+×R+ . Also, we assume β and γ appearing in the above
are positive constants.

Observe that infinite system (3.13) is a particular case of system (3.1) if we put

αp(w,s) = wse−2pws, (3.14)

fp(w,s,x1,x2, . . .) =
x2

p(w,s)+1

p+ws
+

x2
p+1(w,s)+1

p+ws
+

xp+2(w,s)+1
p+ws

, (3.15)

kp(w,s,u,v) = e−γ(ws+p)τ1τ2 , (3.16)

gp(w,s,x1,x2, . . .) = arctan

(
x1(τ1,τ2)+ xp(τ1,τ2)+ xp+1(τ1,τ2)

p+ws+ β

)
(3.17)

for p = 1,2, . . . and w,s ∈ R+×R+ .
In what follows we are going to show that the infinite system of integral equations

(3.13) has a solution x = x(w,s) = (xp(w,s)) in the Banach space BC(R+ ×R+, �∞)
which is coordinatewise converging at infinity in the sense of Remark (1). In order to
show that the infinite system of integral equations (3.19) has a solution in the Banach
space BC(R+ ×R+, �∞) it is sufficient to apply Theorem (2). To this end, we have to
show that the functions defined by formulas (3.14)–(3.17) satisfy assumptions (i)–(xi)
of Theorem (2).

At the begining let us observe that the functions αp(w,s) defined by (3.20) sat-
isfy the Lipschitz condition with the constant l = 1 + e−1 for p = 1,2, . . . . We omit
elementary details of the proof.

Hence we infer that the function α(w,s) = (αp(w,s)) is an element of the space
BC(R+×R+, �∞) and satisfies the Cauchy condition indicated in assumption (i). More-
over, in view of the inequality

αp(w,s) = wse−2pws � 1
2p

e−1

we infer that lim
p→∞

αp(w,s) = 0 for any w,s ∈ R+ . Apart from this we have that

|αp(w,s)| � 1
2
e−1

for all w,s ∈ R+ and p = 1,2, . . . .
Thus, the function sequence (αp(w,s)) is equibounded on R+ ×R+ . Moreover,

we have

A = sup{|αp(w,s)| : p = 1,2, . . . ,w,s ∈ R+×R+} =
1
2
e−1.
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This shows that the assumption (i) is satisfied.
Further, let us notice that the function kp(w,s,τ1,τ2) defined by (3.16) (p =

1,2, . . .) is continuous on R+ ×R+ ×R+ ×R+ . additionally, uusing standard tools
of differential calculus it is easy seen that

∂kp

∂ (w,s)
= −γτ1τ2e

−γ(ws+p)τ1τ2 = −γτ1τ2e
−γ(ws)τ1τ2e−γ pτ1τ2 (3.18)

for p = 1,2,3, . . . . It is easy to check that if we consider the function zp(τ1,τ2) =

τ1τ2e−γ pτ1τ2 then zp(τ1,τ2) � 1
γ p

for any τ1,τ2 ∈ R+ and p = 1,2, . . . . Hence in view

of (3.18) we deduce that the
∂kp

∂ (w,s)
is bounded i.e.,

∣∣∣ ∂kp

∂ (w,s)

∣∣∣ � 1

for w,s,τ1,τ2 ∈ R+ and for p = 1,2, . . . . Hence it follows that the function w,s →
kp(w,s,τ1,τ2) satisfies the Lipschitz condition on the set R+ ×R+ uniformly with
respect to τ1,τ2 ∈ R+ ×R+ .

Summing up, we see that there is satisfied assumption (ii).
Next, let us observe that for each p ∈ N and for arbitrary w,s,τ1,τ2 ∈ R+ ×R+

we have the following estimate

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dudv =
w∫

o

s∫
o

e−γ(ws+p)dτ1dτ2

=
1

γ(ws+ p)
(1− e−γ(ws+p)ws) � 1

γ(ws+ p)
.

Hence we see that

lim
w,s→∞

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dudv = 0

uniformly with respect to w,s ∈ R+ and p = 1,2, . . . . Moreover, we have that

w∫
o

s∫
o

|kp(w,s,τ1,τ2)|dud � 1
γ

for w,s ∈ R+ and p = 1,2, . . . . Thus for constant K1 = 1, we infer that assumption
(iv) is satisfied.

Further on we show that the function fp = fp(w,s,x1,x2, . . .) verifies assumption
(v) (p = 1,2, . . . ). To this end fix ε > 0,t > 0 and take an arbitrary element x = (xi) ∈
�∞ such that ||x||�∞ � t . Then, for arbitrary chosen numbers w,s,u,v ∈ R+ and p ∈ N
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we obtain

| fp(w,s,x1,x2, . . .)− fp(u,v,x1,x2, . . .)|

�
∣∣∣∣ x2

p +1

p+ws
− x2

p +1

p+uv

∣∣∣∣+
∣∣∣∣x

2
p+1 +1

2p+ws
− x2

p+1 +1

2p+uv

∣∣∣∣+
∣∣∣∣xp+2 +2

p2 +ws
− xp+2 +2

p2 +uv

∣∣∣∣
�

|uvx2
p−wsx2

p +uv−ws|
(p+ws)(p+uv)

+ x2
p+1

√
(w−u)2 +(s− v)2

(2p+ws)(2p+uv)

+
|uvxp+2−wsxp+2 +2s−2ws|

(p2 +ws)(p3 +uv)

�
x2

p

√
(w−u)2 +(s− v)2 +

√
(w−u)2 +(s− v)2

(p+ws)(p+uv)

+ x2
p+1

√
(w−u)2 +(s− v)2

(2p+ws)(2p+uv)

+
|xp+2|

√
(w−u)2 +(s− v)2 +2

√
(w−u)2 +(s− v)2

(p2 +ws)(p2 +uv)

� t2
√

(w−u)2 +(s− v)2 +
√

(w−u)2 +(s− v)2

(1+ws)(1+uv)
+ t2

√
(w−u)2 +(s− v)2

(2+ws)(2+uv)

+
t
√

(w−u)2 +(s− v)2 +2
√

(w−u)2 +(s− v)2

(1+ws)(1+uv)

� (t2 +1)
√

(w−u)2 +(s− v)2 + t2
√

(w−u)2 +(s− v)2

+(t +2)
√

(w−u)2 +(s− v)2

= (2t2 + t +3)
√

(w−u)2 +(s− v)2.

From the above estimate, we conclude that assumption (v) is satisfied.
Now, let us observe that

f p(w,s) = | fp(w,s,0,0, . . .)| = 1
p+ws

+
2

p2 +ws
.

Hence we infer that lim
p→∞

f p(w,s) = 0 for any w,s ∈ R+ .

Moreover, we have the following estimate

f p(w,s) � 1
1+ws

+
2

1+ws
� 1+2 = 3

for any w,s ∈ R+ and p = 1,2, . . . .
Hence we conclude that the function sequence ( f p) satisfies assumption (vi).

Moreover, we may accept that F = 3, where the constant F is defined in assumption
(xi).

In order to verify assumption (vii) let us fix an arbitrary number t > 0. Take ε > 0
and x ∈ �∞ such that ||x||�∞ � t and choose an arbitrary number ζ > 0. Then, for
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w,s,u,v ∈ R+ such that w,s,u,v � ζ and for an arbitrary number ζ > 0. Then, for
w,s,u,v ∈ R+ such that w,s,u,v � ζ and for an arbitrarily fixed natural number n , we
obtain

| fp(w,s,x)− fp(u,v,x)|

�
∣∣∣∣ x2

p +1

p+ws
− x2

p +1

p+uv

∣∣∣∣+
∣∣∣∣x

2
p+1 +1

2p+ws
− x2

p+1 +1

2p+uv

∣∣∣∣+
∣∣∣∣xp+2 +2

p2 +ws
− xp+2 +2

p2 +uv

∣∣∣∣
�

|x2
p(uv−ws)+ (uv−ws)|

(p+ws)(p+ws)
+ x2

p+1

√
(w−u)2 +(s− v)2

(2p+ws)(2p+uv)

+
|xp+2(uv−ws)+2(uv−ws)|

(p2 +ws)(p2 +uv)

� (x2
p +1)

ws+uv
(p+ws)(p+ws)

+ x2
p+1

ws+uv
(2p+ws)(2p+ws)

+ (|xp+2|+2)

� (t2 +1)
[

ws
(p+ws)(p+ws)

+
uv

(p+ws)(p+ws)

]

+ t2
[

ws
(2p+ws)(2p+ws)

+
uv

(2p+ws)(2p+ws)

]

+(t +2)
[

ws
(p2 +ws)(p2 +ws)

+
uv

(p2 +ws)(p2 +ws)

]

� (t2 +1)
(

1
p+uv

+
1

p+ws

)
+ t2

(
1

2p+uv
+

1
2p+ws

)

+(t +2)
(

1
p2 +uv

+
1

p2 +ws

)

� (t2 +1)
2

1+ ζ
+ t2

2
2+ ζ

+(t +2)
2

1+ ζ

� (t2 +1)
2

1+ ζ
+ t2

2
1+ ζ

+(t +2)
2

1+ ζ

= (2t2 + t +3)
2

1+ ζ
.

From the above obtained estimate we infer that assumption (vii) is satisfied.

In what follows let us fix t > 0 and p ∈ N . Next, take x = (xi) , y = yi ∈ �∞ such
that ||x||�∞ � t , ||y||�∞ � t . Then we get

| fp(w,s,x1,x2, . . .)− fp(w,s,y1,y2, . . .)|

�
∣∣∣∣ x2

p +1

p+ws
− y2

p +1

p+ws

∣∣∣∣+
∣∣∣∣ x2

p+1

2p+ws
− y2

p+1

2p+ws

∣∣∣∣+
∣∣∣∣ xp+2 +2
p+2+ws

− yp+2 +2
p+2+ws

∣∣∣∣
� 1

p+ws
|x2

p− y2
p|+

1
2p+ws

|x2
p+1− y2

p+1|+
1

p+ws
|xp+2− yp+2|
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� 1
1+ws

|xp− yp||xp + yp|+ 1
2+ws

|xp+1− yp+1||xp+1 + yp+1|

+
1

1+ws
|xp+2− yp+2|

� 1
1+ws

|xp− yp|(|xp + yp|)+
1

1+ws
|xp+1− yp+1|(|xp+1 + yp+1|)

+
1

1+ws
|xp+2− yp+2|

� 1
1+ws

[
2t|xp− yp|+2t|xp+1− yp+1|+ |xp+2− yp+2|

]

� 4t +1)max{|xi− yi| : i = p, p+1, p+2}
� (4t +1)sup{|xi− yi| : i � p}.

Thus we see that assumption (viii) is satisfied with the function m having the form
m(t) = 4t +1.

Now, keeping in mind formula (3.17) we are going to check assumption (ix). To
this end fix w,s ∈ R+ , p ∈ N and take x = (xi) , y = (yi) ∈ �∞ . Then we get

|gp(w,s,y)−gp(w,s,x)| = |gp(w,s,y1,y2, . . .)−gp(w,s,x1,x2, . . .)|

=
∣∣∣∣arctan

(
y1 + yp + yp+1

p+ws+ β

)
− arctan

(
x1 + xp + xp+1

p+ws+ β

)∣∣∣∣
�

∣∣∣∣y1 + yp + yp+1

p+ws+ β
− x1 + xp + xp+1

p+ws+ β

∣∣∣∣
� (|y1− x1|+ |yp− xp|+ |yp+1− xp+1|)
� 1

p+ws+ β
max{|y1− x1|, |yp− xp|, |yp+1− xp+1|}

� 3sup{|yp− xp| : p ∈ N}
= 3||y− x||�∞.

Hence we see that the function g = (gx)(w,s) satisfies assumption (ix).
Next, let us observe that for arbitrarily fixed w,s ∈ R+,n ∈ N and x ∈ �∞ we have

|gp(w,s,x)| = |gp(w,s,x1,x2, . . .)| =
∣∣∣∣arctan

(
x1 + xp + xp+1

p+ws+ β

)∣∣∣∣ � π
2

.

Obviously this implies that ||g(x)(w,s)||� π
2

for any x∈ �∞ and w,s ∈R+×R+ . Thus

the operator g is bounded on the set R+ ×R+× �∞ and we accept that G =
π
2

, where

G is the constant appearing in assumption (x) .
Finally, we are going to verify assumption (xi) . To this end let us consider the

inequality from the assumption. Indeed, taking into account all constants A, F,G,K1

established above and keeping in mind that the function l = l(t) has form l(t) = 4r+1,
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we obtain that the mentioned inequality has the form

1
2
e−1 +3

π
2

1
γ

+
π
2γ

t(4t +1) � t.

Equivalently, we get te inequality

1
2

γe−1 +
3π
2

+
πt
2

(4t +1) � γt,

which can be written in the form

2πt2 +
(π

2
− γ

)
t +

3
2

π +
1
2

γe−1 � 0. (3.19)

It is easy to check that the above inequality has a positive solution for suitable value of

parameter γ . For example, for γ = 5π the number t0 =
9
8

is a solution of inequality

(3.19).
Observe that if t0 > 0 is a solution of inequality (3.19) (equivalently: t0 > 0 is a

solution of the first inequality from assumption (xi) ) then we have that

GK1l(t0) <
1
t0

[A+FGK1 +GK1t0l(t0)] � t0
t0

= 1.

Hence, we infer that the second part of assumption (xi) of Theorem (2) is also satisfied.
Thus, in view of Theorem (2), we conclude that infinite system of integral equa-

tions (3.13) has a solution x(w,s) in the Banach space BC(R+ ×R+, �∞) which is
coordinatewise converging at infinity.
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