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Abstract. The main goal of this article, is to develop a general method for improving some
new real power inequalities for convex and log-convex functions, which extends and unifies
two recent and important results due to M. Sababheh [Linear Algebra Appl. 506 (2016), 588–
602] and D. Q. Huy et al. [Linear Algebra Appl. 656 (2023), 368–384]. Then by selecting
some appropriate convex and log-convex functions, we obtain new mean inequalities for scalars
and matrices, some new refinements and reverses of the Heinz and Hölder type inequalities for
matrices. We get also some new and refined trace and numerical radius inequalities.

1. Introduction and preliminaries

Convex functions have played a key role in different fields, including mathematical
inequalities, optimization, functional analysis, applied mathematics and mathematical
physics. Recall that a function f : I → R is said to be convex on the interval I if

f ((1−ν)a+ νb) � (1−ν) f (a)+ ν f (b), (1)

for all a,b∈ I and ν ∈ (0,1). If this inequality is reversed, then f is said to be concave.
If log f is convex, then f is called log-convex. Accordingly, a log-convex function

is a positive function satisfying

f ((1−ν)a+ νb) � f (a)1−ν f (b)ν , (2)

for the same parameters as in (1).
Recent studies of the topic have investigated possible refinements of the above in-

equalities, where adding a positive term to the left side becomes possible. This idea has
been treated in [6, 17, 18, 19, 21, 22], where not only refinements have been investi-
gated, but also reversed versions and much more have been discussed. Research related
to the above discussion includes obtaining new forms that generalize these inequalities,
getting refinements that minimizes the difference between the two sides of the inequal-
ities and adding some acceptable terms that reverse such inequalities. For example, the
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inequality (1) was refined and reversed in [7]. Namely, the authors show the following
two inequalities

f ((1−ν)a+ νb) � (1−ν) f (a)+ ν f (b)−2r0

(
f (a)+ f (b)

2
− f

(
a+b

2

))
, (3)

and

(1−ν) f (a)+ ν f (b) � f ((1−ν)a+ νb)+2R0

(
f (a)+ f (b)

2
− f

(
a+b

2

))
, (4)

where a,b ∈ I , r0 = min{ν,1−ν} and R0 = max{ν,1−ν} .
A generalisation of the inequalities (3) and (4) is presented in [18] as follows.

THEOREM 1. Let f : [0,1] → [0,∞) is a convex function, 0 < ν � τ < 1 and
λ � 1. Then

(ν
τ

)λ
� ((1−ν) f (0)+ ν f (1))λ − f λ (ν)

((1− τ) f (0)+ τ f (1))λ − f λ (τ)
�
(

1−ν
1− τ

)λ
. (5)

The main objective of this paper is to provide a unified treatment of convex and
log-convex functions. More precisely, we will present a general improvement of Theo-
rem 1. As applications, by selecting some appropriate convex and log convex functions
we will derive improved versions of some classical inequalities, that includes scalar
and operator means, Heinz and Hölder type inequalities for matrices and the numerical
radius.

Before ending this section, let us fix some notations and remind the reader to
related concepts about matrices. Let Mn be the algebra of all complex matrices of
order n× n. A matrix A ∈ Mn is called Hermitian if A = A∗ , where A∗ is the adjoin
of A . The notation A � 0 (A > 0) is used to mean that A is positive semi-definite
(positive definite), if A and B are Hermitian and A−B is positive semi-definite, then
we write A � B. The set of all positive semi-definite matrices is denoted by M+

n and
the set of all definite matrices in M+

n is denoted by M++
n . The singular values of a

matrix A∈Mn are the eigenvalues of the positive semi-definite matrix |A| := (A∗A)1/2 ,
denoted by s j(A) for j = 1,2,3, . . . ,n; arranged in a non-increasing order. A unitarily
invariant norm ‖| · ‖| on Mn is a matrix norm that satisfies the invariance property:
‖|UAV‖| = ‖|A‖| for every A ∈ Mn and for all unitary matrices U,V ∈ Mn. The trace
norm is given by ||A||1 := tr|A| = ∑n

j=1 s j(A), where tr is the usual trace. This norm
is unitarily invariant. An important example of unitarily invariant norm is the Hilbert-
Schmidt norm || · ||2 defined by

||A||2 := tr(AA∗)
1
2 =

(
∑
i, j
|ai, j|2

) 1
2

,
(
A = (ai, j)

)
.

Speaking of the eigenvalues of a Hermitian matrix A , we use the notation λ j(A)
to mean the j -th eigenvalue of A , when written in a decreasing order.
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The comparison between matrices has been done in different ways, among which
the Löwener partial order � is the strongest. More precisely, when A and B are Her-
mitian such that A � B , we infer that λ j(A) � λ j(B),∀ j , which is another perspec-
tive to compare between A and B . Notice that the relation λ j(A) � λ j(B),∀ j implies
∑k

j=1 λ j(A) � ∑k
j=1 λ j(B) for 1 � k � n . This last comparison is what we call weak

majorization, and is denoted by ≺w . Thus, we have

A � B ⇒ λ j(A) � λ j(B),∀ j ⇒ A ≺w B ⇒‖|A‖|� ‖|B‖|
where ‖|.‖| stands for unitarily invariant norms. For A,B ∈ M++

n , ν ∈ [0,1] and p ∈
R \ {0}, the operators arithmetic, geometric, harmonic and power means are defined

respectively, by A∇νB := (1−ν)A+νB, A�νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2, A!νB :=

((1−ν)A−1 + νB−1)−1 and

A�p,νB := A1/2
(
(1−ν)I + ν(A−1/2BA−1/2)p

) 1
p
A1/2; p ∈ R\ {0}.

Thus, the value p → 0 gives the geometric mean, while the values p = 1,−1 give the
arithmetic and harmonic means, respectively.

In the sequel, we will adopt the following notations for a,b > 0 and ν ∈ (0,1).

a∇νb = (1−ν)a+ νb, a�νb = a1−νbν and a!νb = ((1−ν)a−1 + νb−1)−1,

to denote the arithmetic, geometric and harmonic means respectively. The arithmetic
means for scalars and operators can be rewritten by simplification as a∇b and A∇B for
ν = 1

2 .
This paper is organized as follows. After the forgoing section, we state and

prove our main results concerning the refinement of Theorem 1 using the weak sub-
majorization in the second section. In section 3, we present the application of our main
results to scalar means. Section 4 is devoted to present some new refinement of matrix
inequalities. In section 5, we discuss a new matrix norm inequalities via convexity and
log-convexity and we finish this paper by given some new inequalities for the general-
ized numerical radius in section 6.

2. Some new inequalities for convex functions via weak sub-majorization

In this section, we give an improved version of Theorem 1. We begin with recalling
the theory of weak sub-majorization. Throughout this section, we denote by a∗ =
(a∗1, . . . ,a

∗
n) the vector obtained from the vector a = (a1, . . . ,an) ∈ R

n by rearranging
the components of it in decreasing order. Then, for two vectors a = (a1, . . . ,an) and
b = (b1, . . . ,bn) in R

n,a is said to be weakly sub-majorized by b , written a ≺w b , if

k

∑
i=1

a∗i �
k

∑
i=1

b∗i

for all k = 1, . . . ,n . An important feature of the theory of weak sub-majorization which
will be used in proofs of our results is given by the following lemma.
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LEMMA 1. [14, pp. 13] Let a = (ai)n
i=1 ,b = (bi)n

i=1 ∈ R
n and J ⊂ R be an

interval containing the components of a and b. If a≺w b and φ : J →R is a continuous
increasing convex function, then

n

∑
i=1

φ (ai) �
n

∑
i=1

φ (bi) .

In order to accomplish our results, we need some preliminary results as follows.

LEMMA 2. Let f : [0,1] → [0,+∞) be a convex function and let 0 < ν � τ < 1 .
Then we have

f (0)∇ν f (1) � f (ν)+
ν
τ

( f (0)∇τ f (1)− f (τ))+2r0
(

f (0)∇ f (τ)− f
(τ

2

))
,

where r0 = min{ ν
τ ,1− ν

τ } .

Proof. By using the inequality (3), we have

f (0)∇ν f (1) − ν
τ

( f (0)∇τ f (1)− f (τ))

=
(
1− ν

τ

)
f (0)+

ν
τ

f (τ)

� f
((

1− ν
τ

)
0+

ν
τ

τ
)

+2r0
(

f (0)∇ f (τ)− f
(τ

2

))
= f (ν)+2r0

(
f (0)∇ f (τ)− f

(τ
2

))
. �

REMARK 1. Notice that Lemma 2 presents one refinement term of the first in-
equality in Theorem 1, for λ = 1.

LEMMA 3. Let f be a convex function on [0,1], 0 < ν � τ < 1 and a = (a1,a2,a3) ,
b = (b1,b2,b3) ∈ R

3 be two vectors with components

a1 = f (ν), a2 =
ν
τ

( f (0)∇τ f (1)) , a3 = 2r0 ( f (0)∇ f (τ)) ,

and
b1 = f (0)∇ν f (1), b2 =

ν
τ

f (τ), b3 = 2r0 f
(τ

2

)
,

where r0 = min{ ν
τ ,1− ν

τ }. Then, we have a≺w b, namely, the vectors a∗ and b∗ have
components satisfying that

a∗1 � b∗1, (6)

a∗1 +a∗2 � b∗1 +b∗2, (7)

a∗1 +a∗2 +a∗3 � b∗1 +b∗2 +b∗3. (8)
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Proof. In order to prove (6) remark that b∗1 is exactly b1 . Indeed, on one hand we
have b1−a2 =

(
1− ν

τ
)
f (0) � 0. This shows that b1 � a2 . Since a2 � b2 , then we get

that b1 � b2 . On the other hand, we have

b1−a3 = (1−ν − r0) f (0)+ ν f (1)− r0 f (τ). (9)

First of all remark that

{
(ν,τ) ∈ [0,1]2 : 0 < ν � τ < 1

}
=
{
(ν,τ) ∈ [0,1]2 : 0 < ν � τ

2

}
⋃{

(ν,τ) ∈ [0,1]2 :
τ
2

� ν < 1
}

.

At this point, we distinguish the following two situations.
If ν ∈ (0, τ

2

]
, then r0 = ν

τ , and so (9) becomes

b1−a3 =
(
1−ν − ν

τ

)
f (0)+ ν f (1)− ν

τ
f (τ)

=
(
1−ν − ν

τ

)
f (0)+ ν f (1)− ν

τ
f (τ)+

ν
τ

( f (0)∇τ f (1))− ν
τ

( f (0)∇τ f (1))

�
(

τ −2ν
τ

)
f (0)

� 0.

If ν ∈ [ τ
2 ,1
)
, then r0 = 1− ν

τ . We may write

b1−a3 =
(ν

τ
−ν
)

f (0)+ ν f (1)−
(
1− ν

τ

)
f (τ)

=
(ν

τ
−ν
)

f (0)+ ν f (1)−
(
1− ν

τ

)
f (τ)+

(
1− ν

τ

)
( f (0)∇τ f (1))

−
(
1− ν

τ

)
( f (0)∇τ f (1))

�
(

(1− τ)(2ν − τ)
τ

)
f (0)+ (2ν − τ) f (1)

� 0.

This implies that b1 � a3 . Furthermore, we have a3 � b3 , and so b1 � b3 . Hence b∗1 =
b1 . Moreover, by the previous notes, we have ai � b1 for every i = 1,2,3. Whence
a∗1 � b∗1 .

The third inequality comes from Lemma 2 and we have

a1 +a2 +a3 � b1 +b2 +b3. (10)

To prove the second inequality (7), the following inequalities should be shown.

a1 +a2 � b1 +b2, (11)

a1 +a3 � b1 +b3, (12)

a2 +a3 � b1 +b2. (13)
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The first inequality (11) comes easily from the first inequality in (5) for λ = 1. For the
second inequality (12), since b2 � a2 together with (10), we get that

a1 +a3 � b1 +b3− (a2−b2) � b1 +b3.

Now, let us treat our last inequality (13). We discuses the following two cases.
If ν ∈ (0, τ

2

]
, then r0 = ν

τ . We have

b1 +b2− (a2 +a3) = f (0)∇ν f (1)+
ν
τ

f (τ)−
(

ν
τ

f (0)∇τ f (1)+
2ν
τ

( f (0)∇ f (τ))
)

=
(

τ −2ν
τ

)
f (0)

� 0.

If ν ∈ [ τ
2 ,1
)
, then r0 = 1− ν

τ . Hence

b1 +b2 − (a2 +a3)

= f (0)∇ν f (1)+
ν
τ

f (τ)−
(ν

τ
f (0)∇τ f (1)+2

(
1− ν

τ

)
( f (0)∇ f (τ))

)
=
(

2ν − τ
τ

)
f (τ)

� 0.

Thus complete the proof. �

In the following, we state our first main results. Our arguments are influenced by
the ones given in [10]. The following results as mentioned before generalize the results
given by Sababheh in [18].

THEOREM 2. Let f be a convex function on [0,1] and φ be a strictly increasing
convex function defined on R

+ . Then for 0 < ν � τ < 1 , we have

φ ( f (0)∇ν f (1)) � φ ◦ f (ν)+ φ
(ν

τ
( f (0)∇τ f (1))

)
−φ
(ν

τ
f (τ)
)

+ φ
(
2r0( f (0)∇ f (τ))

)
−φ
(
2r0 f
(τ

2

))
. (14)

where r0 = min{ ν
τ ,1− ν

τ }.

Proof. Let a = (a1,a2,a3) and b = (b1,b2,b3) two vectors in R
3 where the com-

ponent are the same as Lemma 3. Let φ be a strictly increasing convex function defined
on R

+ and let f : [0,1] → [0,∞). Since a ≺w b , by applying Lemma 1, we get that

φ(a1)+ φ(a2)+ φ(a3) � φ(b1)+ φ(b2)+ φ(b3),
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or equivalently,

φ(b1) � φ(a1)+ (φ(a2)−φ(b2))+ (φ(a3)−φ(b3))

Thus complete the proof. �
The following theorem represent the reversed version of the previous one. Here

we use the previous theorem and some special variable change to get the proof. We also
mention that we can prove the following theorem using the same ideas as in Theorem
2.

THEOREM 3. Let f be a convex function on [0,1] and φ be a strictly increasing
convex function defined on R

+ . Then for 0 < ν � τ < 1 , we have

φ ( f (0)∇τ f (1)) � φ ◦ f (τ)+ φ
(

1− τ
1−ν

( f (0)∇ν f (1))
)
−φ
(

1− τ
1−ν

f (ν)
)

−φ
(
2R0( f (1)∇ f (ν))

)
−φ
(

2R0 f

(
1+ ν

2

))
, (15)

where R0 = min
{

1−τ
1−ν ,1− 1−τ

1−ν
}

.

Proof. First notice that if the function f (x) is convex in [0,1], then f (1− x) is
convex in [0,1]. If 0 � ν � τ � 1, then we have 0 � 1−τ � 1−ν � 1. So by changing
f (x), ν and τ into f (1−x), 1−τ and 1−ν , respectively in the Theorem 2. We obtain
the desired results. �

Notice that Theorems 2 and 3, represent the general version and the general re-
versed version of Lemma 2, respectively. In the following, by selecting some appropri-
ate convex functions, we gain some very nice and interesting refinement for the corre-
spondent inequalities for convex and log-convex functions that improve the main results
of [18].

Replacing f into log f , we obtain the following inequalities for log-convex func-
tions.

COROLLARY 1. Let f be a log-convex function on [0,1] and φ be a strictly in-
creasing convex function defined on R

+ . Then for 0 < ν � τ < 1 , we have

φ
(
log
(
f 1−ν (0) f ν (1)

))
� φ ◦ log f (ν)+ φ

(
log
(
f 1−τ(0) f τ (1)

) ν
τ
)
−φ
(
log f

ν
τ (τ)
)

+φ
(

log
(

f
1
2 (0) f

1
2 (τ)
)2r0
)
−φ
(
log f 2r0

(τ
2

))
, (16)

where r0 = min
{ ν

τ ,1− ν
τ
}

, and

φ
(
log
(
f 1−τ(0) f τ (1)

))
� φ ◦ log f (τ)+ φ

(
log
(
f 1−ν(0) f ν (1)

) 1−τ
1−ν

)

−φ
(
log f

1−τ
1−ν (ν)

)
+ φ
(

log
(

f
1
2 (1) f

1
2 (ν)
)2R0
)

−φ
(

log f 2R0

(
1+ ν

2

))
, (17)
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where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

Now, by selecting φ(x) = xλ for λ � 1, in Theorems 2 and 3, we get the following
corollary.

COROLLARY 2. Let f be a convex function on [0,1], 0 < ν � τ < 1 and λ > 1.
Then we have

( f (0)∇ν f (1))λ � f λ (ν)+
(ν

τ

)λ (
( f (0)∇τ f (1))λ − f λ (τ)

)
+(2r0)

λ
(
( f (0)∇ f (τ))λ − f λ

(τ
2

))
, (18)

where r0 = min{ ν
τ ,1− ν

τ }, and

( f (0)∇τ f (1))λ � f λ (τ)+
(

1− τ
1−ν

)λ (
( f (0)∇ν f (1))λ − f λ (ν)

)

+(2R0)
λ
(

( f (1)∇ f (ν))λ − f λ
(

1+ ν
2

))
, (19)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Now, by selecting φ(x) = exp(x) , in Corollary 1, we get the following new and

important refinement and reversed for log-convex functions.

COROLLARY 3. Let f be a log-convex function on [0,1]. Then for 0 < ν � τ < 1 ,
we have

f 1−ν(0) f ν (1) � f (ν)+
((

f 1−τ(0) f τ (1)
) ν

τ − f
ν
τ (τ)
)

+
(

f
1
2 (0) f

1
2 (τ)
)2r0 − f 2r0

(τ
2

)
, (20)

where r0 = min{ ν
τ ,1− ν

τ }, and

f 1−τ(0) f τ (1) � f (τ)+
(
( f 1−ν (0) f ν(1))

1−τ
1−ν − f

1−τ
1−ν (ν)

)
+
(

f
1
2 (1) f

1
2 (ν)
)2R0 − f 2R0

(
1+ ν

2

)
, (21)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

REMARK 2. Before proceeding to further results, we explain a little about the re-
lation among the Corollary 2 and Theorem 1. Notice that the first inequality in Theorem
1 can be written as follow(ν

τ

)λ [
( f (0)∇τ f (1))λ − f λ (τ)

]
� ( f (0)∇ν f (1))λ − f λ (ν), (22)
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with 0 � ν < τ � 1 and λ � 1. While the second inequality in the same theorem can
be stated in the following way(

1− τ
1−ν

)λ [
( f (0)∇ν f (1))λ − f λ (ν)

]
� ( f (0)∇τ f (1))λ − f λ (τ), (23)

where 0 � ν < τ � 1 and λ � 1. Consequently, the first inequality in Corollary 2
present one refining term of (22), while the second inequality in Corollary 2 present
one refining term of (23). Therefore, Corollary 2 gives a considerable refinement of
Theorem 1. Since Theorem 1 was a generalization of the results in [3, 12, 13], it follows
that our results in this section provide better new estimates than the results in these
references. This is the main significance of our results. In the next sections, we present
explicit examples of refined inequalities for both scalars and matrices.

3. Applications to scalar means

In this section, by selecting some appropriate convex functions, we present differ-
ent means inequalities that may be derived from our convexity results, which present
one term refinements of the main results of [3, 12, 13].

When a,b > 0 and p∈R\{0} the function f (x) = a�p,xb := ((1−x)ap+xbp)1/p

is convex on [0,1]. Applying Corollary 2 to this function we obtain the following the-
orem, that proves one term refinement and generalisation of the difference between the
arithmetic and the power mean inequalities presented in Theorem 2.3 of [12].

THEOREM 4. Let a,b > 0, 0 � ν � τ � 1, p ∈ R\ {0} and λ � 1. Then(ν
τ

)λ(
(a∇τb)λ − (a�(p,τ)b)λ

)
+
(
2r0
)λ((

a∇(a�(p,τ)b)
)λ − (a�(p, τ

2 )b)λ
)

�
(
a∇νb

)λ −
(
a�p,νb

)λ
, (24)

where r0 = min{ ν
τ ,1− ν

τ }, and( 1− τ
1−ν

)λ(
(a∇νb)λ − (a�(p,ν)b)λ

)
+
(
2R0

)λ((
b∇(a�(p,ν)b)

)λ − (a�(p, 1+ν
2 )b)λ

)
�
(
a∇τb

)λ −
(
a�(p,τ)b

)λ
, (25)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
By taking the limit for p −→ 0 in Theorem 4, we obtain the following theorem,

which present one refinement term of the main result of [3].

THEOREM 5. Let a,b > 0, 0 � ν � τ � 1 and λ � 1. Then we have(ν
τ

)λ(
(a∇τb)λ − (a�τb)λ

)
+
(
2r0
)λ(

(a∇(a�τb))λ − (a� τ
2
b)λ
)

�
(
a∇νb

)λ −
(
a�νb
)λ

, (26)
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where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
(a∇νb)λ − (a�νb)λ

)
+
(
2R0

)λ(
(b∇(a�νb))λ − (a� 1+ν

2
b)λ
)

�
(
a∇τb

)λ −
(
a�τb
)λ

, (27)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Take p = −1 in Theorem 4, we obtain the following theorem, which is the correspond-
ing refinement of theorem 2.1 in [13].

THEOREM 6. Let a,b > 0, 0 � ν � τ � 1 and λ � 1. Then we have

(ν
τ

)λ(
(a∇τb)λ − (a!τb)λ

)
+
(
2r0
)λ(

(a∇(a!τb))λ − (a! τ
2
b)λ
)

�
(
a∇νb

)λ −
(
a!νb
)λ

, (28)

where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
(a∇νb)λ − (a!νb)λ

)
+
(
2R0

)λ(
(b∇(a!νb))λ − (a! 1+ν

2
b)λ
)

�
(
a∇τb

)λ −
(
a!τb
)λ

, (29)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

4. Some refinements of matrix inequalities

In this section, we present some new matrix inequalities, that extend some known
results in the literature. We point out that the results in this section are valid for the
algebra B(H ) instead of Mn . However, our discussion will be limited to Mn only.
We start this section by the following Lemma quoted from [16, p. 3].

LEMMA 4. Let A∈Mn be Hermitian. If f and g are both continuous real valued
functions on an interval that contains the spectrum of A, with f (t) � g(t) for t ∈ Sp(A)
(where Sp(A) stands for the spectrum of A) , then f (A) � g(A).

The following theorem represents the matrix version of Theorem 4.

THEOREM 7. Let A,B ∈M++
n , 0 < ν � τ < 1, p ∈ R\{0} and λ � 1. Then we

have(ν
τ

)λ(
A�λ (A∇τB) − A�λ (A�p,τB)

)
+
(
2r0
)λ(

A�λ (A∇(A�p,τB))−A�p, τ
2
B)
)

� A�λ (A∇νB)−A�λ (A�p,νB), (30)
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where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
A�λ (A∇νB) − A�λ (A�p,νB)

)
+
(
2R0

)λ(
A�λ (B∇(A�p,τB))−A�p, 1+ν

2
B)
)

� A�λ (A∇τB)−A�λ (A�p,τB), (31)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

Proof. Let a = 1 in inequality (24), then

(ν
τ

)λ(
((1− τ)+ τb)λ −((1− τ)+ τbp)

λ
p

)

+(2r0)λ

⎡
⎣
(

1+((1− τ)+ τbp)
1
p

2

)λ

−
((

1− τ
2

)
+

τ
2
bp
) λ

p

⎤
⎦

� ((1−ν)+ νb)λ − ((1−ν)+ νbp)
λ
p . (32)

The matrix C := A
−1
2 BA

−1
2 has a positive spectrum, then by Lemma 4 and inequality

(32) we get

(ν
τ

)λ(
((1− τ)I + τC)λ −((1− τ)I + τCp)

λ
p

)

+(2r0)λ

⎡
⎣( I +((1− τ)I + τCp)

1
p

2

)λ

−
((

1− τ
2

)
I +

τ
2
Cp
) λ

p

⎤
⎦

� ((1−ν)I + νC)λ − ((1−ν)I+ νCp)
λ
p . (33)

Finally, multiply the inequality (33) by A
1
2 on the left and right hand sides we get

(ν
τ

)λ(
A�λ (A∇τB) − A�λ (A�p,τB)

)
+
(
2r0
)λ(

A�λ (A∇(A�p,τB))−A�p, τ
2
B)
)

� A�λ (A∇νB)−A�λ (A�p,νB).

Using the same technique, we can obtain the other inequality. This completes the
proof. �

The following lemma sets up the essential features for proving the next corollary.

LEMMA 5. ([24]) Let A,B ∈ M++
n and let α,β two real numbers. Then

A�α(A�β B) = A�αβ B.

Take the limit as p−→ 0 in Theorem 7 and using Lemma 5, we obtain the follow-
ing corollary which presents the matrix version of Theorem 5.
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COROLLARY 4. Let A,B ∈ M++
n , 0 < ν � τ < 1 and λ � 1. Then we have

(ν
τ

)λ(
A�λ (A∇τB) − A�λ τB

)
+
(
2r0
)λ(

A�λ (A∇(A�τB))−A� τ
2
B)
)

� A�λ (A∇νB)−A�λ νB, (34)

where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
A�λ (A∇νB) − A�λ νB

)
+
(
2R0

)λ(
A�λ (B∇(A�τB))−A� 1+ν

2
B)
)

� A�λ (A∇τB)−A�λ τB, (35)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
By taking p = −1 in Theorem 7, we get the following result, which presents the

matrix version of Theorem 6.

COROLLARY 5. Let A,B ∈ M++
n , 0 < ν � τ < 1 and λ � 1. Then we have

(ν
τ

)λ(
A�λ (A∇τB) − A�λ (A!τB)

)
+
(
2r0
)λ(

A�λ (A∇(A!τB))−A! τ
2
B)
)

� A�λ (A∇νB)−A�λ (A!νB), (36)

where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
A�λ (A∇νB) − A�λ (A!νB)

)
+
(
2R0

)λ(
A�λ (B∇(A!τB))−A! 1+ν

2
B)
)

� A�λ (A∇τB)−A�λ (A!τB), (37)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

5. Matrix norm inequalities

In this part of the paper, by selecting some appropriate convex and log-convex
functions, we obtain new refinements of some results in [18].

5.1. Matrix norm inequalities via convexity

The classical Young inequality a�νb � a∇νb has been extended to matrices as
follows

‖|A1−νXBν‖| � (1−ν)‖|AX‖|+ ν‖|XB‖|, 0 � ν � 1. (38)

It is known that for two matrices A,B ∈ M+
n and X ∈ Mn, the function f (ν) =

‖|A1−νXBν‖| is convex on [0,1], for any unitarily invariant norm ‖| · ‖| on Mn (see
[19]). Then by using Corollary 2 we obtain the following theorem which present one
refinement term of the corresponding Young’s inequality (38) for matrices.
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THEOREM 8. Let A,B ∈ M++
n , X ∈ Mn \ {0}, 0 < ν � τ < 1 and λ � 1. Then

we have(ν
τ

)λ(
(‖|AX‖|∇τ‖|XB‖|)λ − (‖|A1−τXBτ‖|)λ

)
+(2r0)

λ
((‖|AX‖|∇‖|A1−τXBτ‖|)λ −‖|A1− τ

2 XB
τ
2 ‖|λ
)

�
(
(1−ν)‖|AX‖|+ ν‖|XB‖|

)λ −
(
‖|A1−νXBν‖|

)λ
. (39)

where r0 = min{ ν
τ ,1− ν

τ }, and

( 1− τ
1−ν

)λ(
(‖|AX‖|∇ν‖|XB‖|)λ − (‖|A1−νXBν‖|)λ

)
+(2R0)

λ
((‖|XB‖|∇‖|A1−νXBν‖|)λ −‖|A1− 1+ν

2 XB
1+ν

2 ‖|λ
)

�
(
(1− τ)‖|AX‖|+ τ‖|XB‖|

)λ −
(
‖|A1−τXBτ‖|

)λ
, (40)

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Also it is known that for two matrices A,B ∈M+

n the function f (ν) = tr(A1−νBν)
is convex on [0,1], (see [19]). Then by using Corollary 2, we obtain the following
theorem which present one refinement term of the corresponding Young’s inequality
for trace of matrices.

THEOREM 9. Let A,B ∈ M+
n , 0 < ν � τ < 1 and λ � 1. Then we have

(ν
τ

)λ {
trλ (A∇τB)− trλ (A1−τBτ)}

+(2r0)
λ
((

tr(A)∇tr(A1−τBτ)
)λ − trλ (A1− τ

2 B
τ
2 )
)

� trλ (A∇νB)− trλ (A1−νBν) ,
where r0 = min{ ν

τ ,1− ν
τ }, and

(
1− τ
1−ν

)λ {
trλ (A∇νB)− trλ (A1−νBν)}

+(2R0)
λ
((

tr(B)∇tr(A1−νBν)
)λ − tr(A1− 1+ν

2 B
1+ν

2 )λ
)

� trλ (A∇τB)− trλ (A1−τBτ) ,
where R0 = min{ 1−τ

1−ν ,1− 1−τ
1−ν }.

Now, for two matrices A,B ∈ M+
n and X ∈ Mn , we consider the function f (ν) =∥∥∣∣A1−νXBν +AνXB1−ν‖∣∣ . From [18], we know that this function is convex on [0,1] ,

for any unitarily invariant norm ‖|.‖| on Mn . Consequently, we may apply Corollary 2
for this function to get the following Heinz-type inequality [1].
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THEOREM 10. Let A,B ∈ M+
n and X ∈ Mn,X �= 0,0 < ν � τ < 1 and λ � 1 .

Then, for any unitarily invariant norm ‖|.‖| , we have

‖|AX +XB‖|λ � ‖|A1−νXBν +AνXB1−ν‖|λ

+
(ν

τ

)λ (
‖|AX +XB‖|λ −‖|A1−τXBτ +AτXB1−τ‖|λ

)
+(2r0)λ

((‖|AX +XB‖|∇‖|A1−τXBτ +AτXB1−τ‖|)λ
−‖|A1− τ

2 XB
τ
2 +A

τ
2 XB1− τ

2 ‖|λ
)
,

where r0 = min{ ν
τ ,1− ν

τ }, and

‖|AX +XB‖|λ � ‖|A1−τXBτ +AτXB1−τ‖|λ

+
(

1− τ
1−ν

)λ (
‖|AX +XB‖|λ −‖|A1−νXBν +AνXB1−ν‖|λ

)
+(2R0)λ

((‖|AX +XB‖|∇‖|A1−νXBν +AνXB1−ν‖|)λ
−‖|A1− 1+ν

2 XB
1+ν

2 +A
1+ν

2 XB1− 1+ν
2 ‖|λ

)
,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Let A and B be two Hermitian matrices and let g be convex function on R . Then

fk(t) =
k

∑
j=1

λ j(g((1− t)A+ tB)),1 � k � n

is convex function on R for any k∈{1, . . . ,n} . By applyingCorollary 2 for the function
fk(t) = ∑k

j=1 λ j((1− t)A+ tB),0 � t � 1, we obtain the following eigenvalues version.

COROLLARY 6. Let A and B be Hermitian in Mn and let 0 < ν � τ < 1 . Then
for 1 � k � n and λ � 1 , we have

(
k

∑
j=1

((1−ν)λ j(A)+ νλ j(B))

)λ

−
(

k

∑
j=1

λ j((1−ν)A+ νB)

)λ

− (2r0)
λ

⎡
⎣(( k

∑
j=1

λ j(A)

)
∇

(
k

∑
j=1

λ j((1− τ)A+ τB)

))λ

−
(

k

∑
j=1

λ j

((
1− τ

2

)
A+

τ
2
B
))λ
⎤
⎦

�
(ν

τ

)λ
⎛
⎝( k

∑
j=1

((1− τ)λ j(A)+ τλ j(B))

)λ

−
(

k

∑
j=1

λ j((1− τ)A+ τB)

)λ
⎞
⎠ ,
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where r0 = min{ ν
τ ,1− ν

τ }, and(
k

∑
j=1

((1− τ)λ j(A)+ τλ j(B))

)λ

−
(

k

∑
j=1

λ j((1− τ)A+ τB)

)λ

− (2R0)
λ

⎡
⎣
((

k

∑
j=1

λ j(B)

)
∇

(
k

∑
j=1

λ j((1−ν)A+ νB)

))λ

−
(

k

∑
j=1

λ j

((
1− 1+ ν

2

)
A+

1+ ν
2

B

))λ
⎤
⎦

�
(

1− τ
1−ν

)λ
⎛
⎝
(

k

∑
j=1

((1−ν)λ j(A)+ νλ j(B))

)λ

−
(

k

∑
j=1

λ j((1−ν)A+ νB)

)λ
⎞
⎠ ,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Notice that ∑k

j=1 λ j(A) becomes the Ky Fan’s norm ‖A‖(k) when A is positive
[1]. In this case, the above inequality may be stated as follows.

COROLLARY 7. Let A,B ∈ M+
n and 0 < ν � τ < 1 . Then for 1 � k � n and

λ � 1 , we have((
(1−ν)‖A‖(k) + ν‖B‖(k)

)λ − (‖(1−ν)A+ νB‖(k)
)λ)

−(2r0)
λ

[(‖A‖(k)∇‖(1− τ)A+ τB‖(k)
)λ −

(∥∥∥(1− τ
2

)
A+

τ
2
B
∥∥∥

(k)

)λ
]

�
(ν

τ

)λ ((
(1− τ)‖A‖(k) + τ‖B‖(k)

)λ − (‖(1− τ)A+ τB‖(k)
)λ)

,

where r0 = min{ ν
τ ,1− ν

τ }, and(
(1− τ)‖A‖(k) + τ‖B‖(k)

)λ − (‖(1− τ)A+ τB‖(k)
)λ

−(2R0)
λ

⎡
⎣(‖B‖(k)∇‖(1−ν)A+ νB‖(k)

)λ −
(∥∥∥∥
(

1− 1+ ν
2

)
A+

1+ ν
2

B

∥∥∥∥
(k)

)λ
⎤
⎦

�
(

1− τ
1−ν

)λ ((
(1−ν)‖A‖(k) + ν‖B‖(k)

)λ − (‖(1−ν)A+ νB‖(k)
)λ)

,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.

5.2. Matrix inequalities via log-convexity

For all A,B∈Mn, any real number r > 0 and every unitarily invariant norm, Horn
and Mathias [8, 9] obtained the following matrix Cauchy-Schwarz inequality

‖| |A∗B|r ‖|2 � ‖|(A∗A)r‖|.‖|(B∗B)r‖|. (41)
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Bhatia and Davis proved in [4] a more general form of Cauchy-Schwarz inequality; for
A,B ∈ M+

n ,X ∈ Mn and r > 0,

‖| |A∗XB|r ‖| � ‖| |AA∗X |r ‖|.‖| |XBB∗|r ‖|, (42)

which is equivalent to,

‖| |A 1
2 XB

1
2 |r ‖|2 � ‖| |AX |r ‖|.‖| |XB|r ‖|. (43)

For A,B ∈ M+
n and ν ∈ [0,1], we have the Hölder type inequality [11]

‖| |A1−νXBν |r ‖| � ‖| |AX |r ‖|1−ν .‖| |XB|r ‖|ν . (44)

Let A,B ∈ M++
n and X ∈ Mn , the function f (ν) = ‖| |A1−νXBν |r ‖| is log-convex on

[0,1], for any unitarily invariant norm ‖| · ‖| on Mn (see [11]). By applying Corollary
3, we obtain the following new refinement and reverse of the Hölder type inequality
(44).

THEOREM 11. Let A,B ∈ M++
n , X ∈ Mn and 0 < ν � τ < 1. Then

‖| |AX |r ‖|1−ν .‖| |XB|r ‖|ν � ‖| |A1−νXBν |r ‖|
+
(‖| |AX |r ‖|1−τ .‖| |XB|r ‖|τ) ν

τ −‖| |A1−τXBτ |r ‖| ν
τ

+
(√

‖| |AX |r ‖|.‖| |A1−τXBτ |r ‖|
)2r0

−‖| |A1− τ
2 XB

τ
2 |r ‖|2r0 ,

where r0 = min{ ν
τ ,1− ν

τ }, and

‖| |AX |r ‖|1−τ .‖| |XB|r ‖|τ � ‖| |A1−τXBτ |r ‖|
+
(‖| |AX |r ‖|1−ν .‖| |XB|r ‖|ν) 1−τ

1−ν −‖| |A1−τXBτ |r ‖| 1−τ
1−ν

+
(√

‖| |XB|r ‖|.‖| |A1−νXBν |r ‖|
)2R0

−‖| |A1− 1+ν
2 XB

1+ν
2 |r ‖|2R0 ,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
For every A,B ∈ M++

n and X ∈ Mn , the function f (ν) = ‖| |AνXBν |r ‖| is log-
convex on [0,1], for any unitarily invariant norm ‖| · ‖| on Mn (see [11]). Applying
Corollary 3, we obtain the following new refinement and reverse of the Hölder type
inequality (44).

THEOREM 12. Let A,B ∈ M++
n , X ∈ Mn and 0 < ν � τ < 1. Then

‖| |AXB|r ‖|ν .‖| |X |r ‖|1−ν � ‖| |AνXBν |r ‖|
+
(‖| |AXB|r ‖|τ .‖| |X |r ‖|1−τ) ν

τ −‖| |AτXBτ |r ‖| ν
τ

+
(√

‖| |AXB|r ‖|.‖| |AτXBτ |r ‖|
)2r0 −‖| |A τ

2 XB
τ
2 |r ‖|2r0 ,
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where r0 = min{ ν
τ ,1− ν

τ }, and

‖| |AXB|r ‖|τ .‖| |X |r ‖|1−τ � ‖| |AτXBτ |r ‖|
+
(‖| |AXB|r ‖|ν .‖| |X |r ‖|1−ν) 1−τ

1−ν −‖| |AτXBτ |r ‖| 1−τ
1−ν

+
(√

‖| |AXB|r ‖|.‖| |AνXBν |r ‖|
)2R0 −‖| |A 1+ν

2 XB
1+ν

2 |r ‖|2R0 ,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
Notice that Theorem 12 present two refining terms and it reversed for the corre-

spondent Hölder type inequalities for unitary invariant norm. In particular for X = I ,
we get the following theorem which present two refinement terms and reverses of the
classical inequality ‖| |AB|r ‖|ν � ‖| |AνBν |r ‖|, for 0 < ν � 1.

THEOREM 13. Let A,B ∈ M++
n and 0 < ν � τ < 1. Then

‖| |AB|r ‖|ν � ‖| |AνBν |r ‖|
+(‖| |AB|r ‖|τ .) ν

τ −‖| |AτBτ |r ‖| ν
τ

+
(√

‖| |AB|r ‖|.‖| |AτBτ |r ‖|
)2r0 −‖| |A τ

2 B
τ
2 |r ‖|2r0 ,

where r0 = min{ ν
τ ,1− ν

τ }, and

‖| |AB|r ‖|τ � ‖| |AτBτ |r ‖|
+(‖| |AB|r ‖|ν)

1−τ
1−ν −‖| |AτXBτ |r ‖| 1−τ

1−ν

+
(√

‖| |AB|r ‖|.‖| |AνBν |r ‖|
)2R0 −‖| |A 1+ν

2 B
1+ν

2 |r ‖|2R0 ,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
It was shown in [11], that the function f (ν) = tr(A1−νBν ) is log-convex on [0,1] .

ApplyingCorollary 3, we obtain the following new refinement and reverse of the Hölder
type inequality for traces.

THEOREM 14. Let A,B ∈ M++
n , X ∈ Mn and 0 < ν � τ < 1. Then

tr1−ν(A)trν(B) � tr(A1−νBν)

+
(
tr1−τ(A)trτ(B)

) ν
τ − tr

ν
τ (A1−τBτ)

+
(√

tr(A)tr(A1−τBτ)
)2r0

− tr2r0
(
A1− τ

2 B
τ
2

)
,

where r0 = min{ ν
τ ,1− ν

τ }, and

tr1−τ(A)trτ(B) � tr(A1−τBτ)

+
(
tr1−ν(A)trν(B)

) 1−τ
1−ν − tr

1−τ
1−ν (A1−νBν)

+
(√

tr(B)tr(A1−νBν)
)2r0

− tr2r0
(
A1− 1+ν

2 B
1+ν

2

)
,
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where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
The previous Theorem present two refining terms and it reversed for Hölder type

inequalities for the trace.

6. Inequalities for generalized numerical radius

The generalized numerical radius for A , denoted by wN(A) , is obtained via the
supremum of the norm over the real parts of all rotations of A i.e.

wN(A) = sup
θ∈R

N
(
Re
(
eiθ A
))

.

Where X = Re(X)+ i Im(X) is the Cartesian decomposition of X ∈Mn,Re(X) = X+X∗
2

and Im(X) = X−X∗
2i , and X∗ denotes the adjoint of X . Simple computation shows that

when N is the usual operator norm inherited from the inner product on H then wN(·)
coincides with the usual numerical radius norm w(·) which is defined as

w(A) = sup
‖x‖=1

|〈Ax,x〉|.

On the other hand, it is known that if A,B∈M+
n and X ∈Mn , then the function f (ν) =

wN(A1−νXBν +AνXB1−ν) is convex on [0,1] , for any unitarily invariant norm N(.) on
Mn, [1]. Consequently, we may apply Corollary 2 for this function to get the following
Heinz-type inequality for the numerical radius.

THEOREM 15. Let A,B ∈ M+
n and X ∈ Mn,X �= 0,0 < ν � τ < 1 and λ � 1 .

Then, for any unitarily invariant norm ‖|.‖| , we have

wN(AX +XB)λ � wN(A1−νXBν +AνXB1−ν)λ

+
(ν

τ

)λ (
wN(AX +XB)λ −wN(A1−τXBτ +AτXB1−τ)λ

)
+(2r0)λ

((
wN(AX +XB)∇wN(A1−τXBτ +AτXB1−τ)

)λ
−wN(A1− τ

2 XB
τ
2 +A

τ
2 XB1− τ

2 )λ
)
,

where r0 = min{ ν
τ ,1− ν

τ }, and

wN(AX +XB)λ � wN(A1−τXBτ +AτXB1−τ)λ

+
(

1− τ
1−ν

)λ (
wN(AX +XB)λ −wN(A1−νXBν +AνXB1−ν)λ

)
+(2R0)λ

((
wN(AX +XB)∇wN(A1−νXBν +AνXB1−ν)

)λ
−wN(A1− 1+ν

2 XB
1+ν

2 +A
1+ν

2 XB1− 1+ν
2 )λ
)
,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
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Let A,B ∈ M+
n and X ∈ Mn , then the function f (ν) = wN(A1−νXBν) is convex

on [0,1] , for any unitarily invariant norm N(.) on Mn, (see [1]). Consequently, we
may apply Corollary 2 for this function to get the following Young-type inequality for
the numerical radius.

THEOREM 16. Let A,B ∈ M+
n and X ∈ Mn,X �= 0,0 < ν � τ < 1 and λ � 1 .

Then, for any unitarily invariant norm N(.) , we have

(wN(AX)∇νwN(XB))λ

� wλ
N(A1−νXBν)+

(ν
τ

)λ (
(wN(AX)∇τwN(XB))λ −wλ

N(A1−τXBτ)
)

+(2r0)λ
((

wN(AX)∇wN(A1−τXBτ)
)λ −wN(A1− τ

2 XB
τ
2 )λ
)
,

where r0 = min{ ν
τ ,1− ν

τ }, and

(wN(AX)∇τwN(XB))λ

� wλ
N(A1−τXBτ)+

(
1− τ
1−ν

)λ (
(wN(AX)∇νwN(XB))λ −wλ

N(A1−νXBν)
)

+(2R0)λ
((

wN(XB)∇wN(A1−νXBν)
)λ −wN(A1− 1+ν

2 XB
1+ν

2 )λ
)
,

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
On the other hand, by using [1] and Proposition 2.5 of [23] it is known that if A,B∈

M+
n and X ∈ Mn , then the function f (ν) = wN(AνXBν) is log-convex on [0,1] , for

any unitarily invariant norm N(.) on Mn, [1]. Consequently, we may apply Corollary 2
using this function to get the following Heinz-type inequality for the numerical radius.

THEOREM 17. Let A,B ∈ M++
n , X ∈ Mn and 0 < ν � τ < 1. Then

w1−ν
N (X)wν

N(AXB)

� wN(AνXBν)+
(
w1−τ

N (X)wτ
N(AXB)

) ν
τ −w

ν
τ
N (AτXBτ)

+
(√

wN(AXB)wN(AτXBτ)
)2r0 −w2r0

N (A1− τ
2 XB

τ
2 ),

where r0 = min{ ν
τ ,1− ν

τ }, and

w1−τ
N (X)wτ

N(AXB)

� wN(AτXBτ)+
(
w1−ν

N (X)wν
N(AXB)

) 1−τ
1−ν −w

1−τ
1−ν
N (A1−νXB1−ν)

+
(√

wN(X)wN(AνXBν)
)2r0 −w2r0

N (A1− 1+ν
2 XB

1+ν
2 ),

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
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In particular for X = I we get the following theorem.

THEOREM 18. Let A,B ∈ M++
n , X ∈ Mn and 0 < ν � τ < 1. Then

wν
N(AB) � wN(AνBν )+ (wτ

N(AB))
ν
τ −w

ν
τ
N (AτBτ)

+
(√

wN(AB)wN(AτXBτ)
)2r0 −w2r0

N (A1− τ
2 B

τ
2 ),

where r0 = min{ ν
τ ,1− ν

τ }, and

wτ
N(AB) � wN(AτBτ)+ (wν

N(AB))
1−τ
1−ν −w

1−τ
1−ν
N (A1−νB1−ν)

+
(√

wN(AνBν)
)2r0 −w2r0

N (A1− 1+ν
2 B

1+ν
2 ),

where R0 = min{ 1−τ
1−ν ,1− 1−τ

1−ν }.
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