
Operators
and

Matrices

Volume 17, Number 1 (2023), 235–244 doi:10.7153/oam-2023-17-17

BIRKHOFF–JAMES ORTHOGONALITY IN CERTAIN

TENSOR PRODUCTS OF BANACH SPACES

MOHIT AND RANJANA JAIN

(Communicated by V. Bolotnikov)

Abstract. In this article, the relationship between Birkhoff-James orthogonality of elementary
tensors in certain tensor product spaces with the Birkhoff-James orthogonality of individual ele-
ments in their respective spaces is studied.

1. Introduction

Orthogonality plays a vital role in the study of Hilbert spaces. In the last few
decades, there have been several generalizations of the notion of orthogonality in the
setting of normed spaces, one may refer to the survey article [1] for more details.
Among them, Birkhoff-James orthogonality ([5, 9]) has been studied extensively and
has found various significant relationships with other geometric properties of normed
spaces. For a normed space X over the scalar field F (R or C) and x,y ∈ X , we say
that x is Birkhoff-James orthogonal to y (denoted by x ⊥BJ y) if

||x+ αy||� ||x||, for all α ∈ F.

It is closely related to the notion of best approximation to a point in a subspace
as is evident from the fact that for a normed space V and a subspace W of V , a point
w ∈ W is best approximation to v in V if and only if v−w ⊥BJ W . It is also useful
to obtain some distance formulae in normed spaces. For more details on the geometric
significance of BJ- orthogonality, one may refer to [3, 5, 8, 9, 16] and the references
therein.

On the other hand, as has been observed with various categories, the theories of
tensor products of Banach spaces and of C∗ -algebras are indispensable to the under-
standing of these objects. Thus, it is quite natural to analyze the notion of Birkhoff-
James orthogonality in tensor product spaces. Our interest in fact grew from this very
basic curiosity. Quite surprisingly, this aspect has been hardly touched upon and there
are no substantial results in the literature. Closely related to our interest, Light and

Mathematics subject classification (2020): 46J10, 46A32, 46M05, 46L06.
Keywords and phrases: Birkhoff-James orthogonality, cross norm, injective tensor product, minimal

tensor product of C∗ -algebras, strong Birkhoff-James orthogonality.
Research of the second named author is supported by Faculty Research Programme Grant by IoE, University of Delhi

vide Ref. No./IoE/2021/12/FRP.

c© � � , Zagreb
Paper OaM-17-17

235

http://dx.doi.org/10.7153/oam-2023-17-17


236 MOHIT AND R. JAIN

Cheney (in [12]) discussed the theory of approximation in terms of proximinality in
various tensor products of spaces which can be linked with the Birkhoff-James or-
thogonality to some extent. For instance, they proved that for subspaces G and H
having linear proximity maps in Banach spaces X and Y respectively, the subspace
X⊗H

α +G⊗Y
α

also has a linear proximity map, and is proximinal in X ⊗α Y , where
⊗α is a uniform cross norm. In particular, for finite-dimensional subspaces G and H
of L1(S) and L1(T ) , respectively, S and T being finite measure spaces, the subspace
L1(S)⊗H +G⊗L1(T ) is proximinal in L1(S×T ) .

It is natural to ask how Birkhoff-James orthogonality of elementary tensors in
various tensor products of Banach spaces is related to the Birkhoff-James orthogonality
of the individual elements in their respective spaces. As a first step in this direction, for
Banach spaces X and Y , any cross norm ‖ ·‖α on their algebraic tensor product X ⊗Y
and elements x1,x2 ∈ X , y1,y2 ∈ Y , one can ask the following questions:

1. If x1 ⊥BJ x2 and(or) y1 ⊥BJ y2 then is x1⊗ y1 ⊥BJ x2⊗ y2 ?

2. If x1⊗ y1 ⊥BJ x2⊗ y2 in X ⊗α Y then is x1 ⊥BJ x2 and(or) y1 ⊥BJ y2 ?

3. For subspaces X1 and Y1 of X and Y respectively, and x⊗ y ⊥BJ X1 ⊗Y1 , can
we say that x ⊥BJ X1 or y ⊥BJ Y1 ?

In this article we make an attempt to answer these questions by considering dif-
ferent cross norms on X ⊗Y . We show that the first assertion is always true for a
reasonable cross norm, whereas we provide an example (see Example 3.2) to show that
Question 2 does not have an affirmative answer in general. This also leads to a neg-
ative answer of Question 3 (see, 3.3). More precisely, we demonstrate that it fails in
CC(K1)⊗α CC(K2) , where CF(K) denotes the space of F-valued continuous functions
defined on a compact Hausdorff space K equipped with the sup norm and ‖ · ‖α is
any reasonable cross norm. However, this is not a general phenomenon. By deploying
different techniques, we discuss various spaces and tensor products for which Question
2 in fact has a positive answer. In particular, we prove that it has an affirmative answer
for the following spaces:

• X ⊗λ Y , where X and Y are real normed spaces and ⊗λ is the injective tensor
product;

• Lp(S,μ)⊗Δp Lp(T,ν), where 1 < p < ∞ , (S,μ) and (T,ν) are positive mea-
sure spaces and ⊗Δp is the natural norm on the tensor product of p -integrable
functions (see (1));

• B(H)⊗min B(K) (for elementary tensors of rank one operators), H and K being
Hilbert spaces;

• CC(K1)⊗λ CC(K2) , with Birkhoff-James orthogonality being replaced by strong
Birkhoff-James orthogonality.
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2. Preliminaries

Let us first recall some definitions and different notions of tensor norms. Given
Banach spaces X and Y, Banach space injective tensor norm on the algebraic tensor
product X ⊗Y is defined as

||u||λ = sup

{∣∣∣∣∣
n

∑
i=1

f (xi)g(yi)

∣∣∣∣∣ : f ∈ BX∗ ,g ∈ BY∗

}
, u =

n

∑
i=1

xi ⊗ yi ∈ X ⊗Y,

where BX∗ denotes the closed unit ball of X∗ . The completion of X ⊗Y with respect
to ‖ ·‖λ is called the Banach space injective tensor product of X and Y and is denoted
by X ⊗λ Y . A norm ‖ · ‖α on X ⊗Y is said to be a cross norm if ‖x⊗ y‖α = ‖x‖‖y‖
for all x ∈ X ,y∈Y . We say that ‖ ·‖α is reasonable if for every f ∈ X∗ , g ∈Y ∗ , f ⊗g
is a bounded linear functional on X ⊗α Y with ‖ f ⊗ g‖ = ‖ f‖‖g‖ . It is known that
the injective norm ‖ · ‖λ is the smallest reasonable cross norm (see, for instance, [12,
Lemma 1.6]). Similarly, given two C∗ -algebras A and B , the minimal tensor norm on
the algebraic tensor product A⊗B is defined as

||u||min = sup{||(π1⊗π2)(u)||} , u ∈ A⊗B,

where the supremum runs over all the representations π1 and π2 of A and B respec-
tively. The completion of A⊗B with respect to ‖ ·‖min is called the minimal C∗ -tensor
product of A and B and is denoted by A⊗min B. For a detailed study of these norms
one may refer to [12, 15, 18].

We now recall and collect some important results and identifications which will be
useful in the later discussion. The first in the list is a basic yet an important and useful
characterization of BJ-orthogonality in terms of the linear functionals.

THEOREM 2.1. [9, Theorem 2.1] In a normed space X , x ⊥BJ y if and only if
there exists a linear functional f ∈ X∗ such that | f (x)| = ‖ f‖‖x‖ and f (y) = 0 .

It is a well known fact that the tensor product of continuous functions over compact
spaces can be treated as a continuous function on an appropriate compact space. More
precisely,

THEOREM 2.2. [6, §I.4.2] Let K1 K2 be compact Hausdorff spaces. The injec-
tive tensor product CF(K1)⊗λ CF(K2) is isometrically isomorphic to the space CF(K1×
K2) via the identification f1 ⊗ f2 → f1 f2 where f1 f2 : K1 ×K2 → F is defined as
f1 f2(k1,k2) = f1(k1) f2(k2) for ki ∈ Ki .

There is an interesting geometric charaterization of BJ-orthogonality in CC(K)
which follows immediately from [10, Corollary 2.1].

THEOREM 2.3. Let K be a compact Hausdorff space, f ,g ∈ CC(K) and Mf :=
{t ∈ K : | f (t)| = || f ||}. Then f ⊥BJ g if and only if the set A = { f (t)g(t) : t ∈ Mf }
is not contained in an open half plane (in C) with boundary that contains the origin.
Equivalently, f ⊥BJ g if and only if the closed convex hull of A contains the origin.
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We have an elegant characterization of BJ-orthogonality for vector valued contin-
uous functions also. For a real normed space X and a non-zero element x ∈ X , we use
the notations, x+ = {y ∈ X : ‖x+ λy‖� ‖x‖, ∀ λ � 0} and x− = {y ∈ X : ‖x+ λy‖�
‖x‖, ∀ λ � 0} . It is known that for any x,y ∈ X , either y ∈ x+ or y ∈ x− , see [16,
Proposition 2.1].

THEOREM 2.4. [14, Theorem 2.1] Let K be a compact Hausdorff space, X be a
real normed space and f ,g ∈C(K,X) be non-zero elements. Then f ⊥BJ g if and only
if there exists k1,k2 ∈ Mf such that g(k1) ∈ f (k1)+ and g(k2) ∈ f (k2)− .

3. Main results

We start with a proof of our first assertion.

THEOREM 3.1. Let X and Y be Banach spaces, x1,x2 ∈ X with x1 ⊥BJ x2. Then
for any y1,y2 ∈Y , x1⊗y1 ⊥BJ x2⊗y2 in X ⊗α Y , where ‖ ·‖α is any reasonable cross
norm on X ⊗Y.

Proof. Since x1 ⊥BJ x2 , by Theorem 2.1, there exists a φ0 ∈ X∗ with ||φ0|| = 1
such that |φ0(x1)| = ||x1|| and φ0(x2) = 0. Consider ψ0 ∈ Y ∗ such that ||ψ0|| = 1 and
ψ0(y1) = ||y1||. Now for any μ ∈ C, we have

‖(x1⊗ y1)+ μ(x2⊗ y2)||α � ‖(x1⊗ y1)+ μ(x2⊗ y2)‖λ

= sup{|φ(x1)ψ(y1)+ μφ(x2)ψ(y2)| : φ ∈ BX∗ ,ψ ∈ BY∗}
� |φ0(x1)ψ0(y1)+ μφ0(x2)ψ0(y2)|
= ‖x1‖‖y1‖ = ‖x1⊗ y1‖α .

This completes the proof. �
In general, converse of the above result is not true.

EXAMPLE 3.2. Let K1 = {x1,x2,x3} and K2 = {y1,y2,y3} be compact Haus-
dorff spaces equipped with discrete topology. Consider f1, f2 ∈ CC(K1) defined as
f1(x1) = 1, f1(x2) = 1+2i, f1(x3) = 1−2i and f2(xi) = 1 for i = 1,2,3. Also, consider
g1,g2 ∈CC(K2) defined as g1(y1) = 1,g1(y2) =−1+2i,g1(y3) =−1−2i and g2(yi) =
2 for all i = 1,2,3. Note that ‖ f1‖ = ‖g1‖ =

√
5, Mf1 = {x2,x3} and Mg1 = {y2,y3} .

Thus, closed convex hull of the sets { f1(t) f2(t) : t ∈ Mf1} and {g1(s)g2(s) : s ∈ Mg1}
are the line joining 1 + 2i,1− 2i and the line joining −2 + 4i,−2− 4i , respectively.
Since both the closed convex hulls do not contain the origin, by Theorem 2.3, nei-
ther f1 ⊥BJ f2 nor g1 ⊥BJ g2. On the other hand, ‖ f1 ⊗ g1‖ = ‖ f1‖‖g1‖ = 5 and
Mf1g1 = {(x2,y2),(x2,y3),(x3,y2),(x3,y3)} . Since the closed convex hull of the set
{ f1(t)g1(s) f2(t)g2(s) : (t,s) ∈ Mf1g1} is the triangle with vertices −10, 6+8i , 6−8i
and it contains the origin, thus, again by Theorem 2.3, f1g1 ⊥BJ f2g2 in CC(K1 ×K2) .
Equivalently, f1 ⊗ g1 ⊥BJ f2 ⊗ g2 in CC(K1)⊗λ CC(K2) . Since injective norm ‖ · ‖λ
is the least reasonable cross norm on X ⊗Y , it follows that f1 ⊗ g1 ⊥BJ f2 ⊗ g2 in
CC(K1)⊗α CC(K2) , for any reasonable cross norm ‖ · ‖α .
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REMARK 3.3. By considering the subspaces X2 and Y2 spanned by f2 and g2

respectively in the above example, we observe that f1 ⊗ g1 ⊥BJ X2 ⊗Y2 , but neither
f1 ⊥BJ X2 nor g1 ⊥BJ Y2 .

It is also interesting to note that x1 ⊗ x2 ⊥BJ y1 ⊗ y2 does not necessarily imply
x1 ⊥BJ y1 and y1 ⊥BJ y2 both. This can be illustrated by the following (and various
other) examples:

EXAMPLE 3.4. For the identity function Id ∈ CC[0,1] and the constant unity
function 1, Id ⊗ 1 ⊥BJ 1⊗ Id in CC[0,1]⊗λ CC[0,1] . This can be seen using The-
orem 2.2, for any μ ∈ C , we have

||Id⊗1+ μ1⊗ Id||λ = ||Id.1+ μ1.Id||= sup
x,y∈[0,1]

|x+ μy|� 1 = ||Id⊗1||.

However, Id 
⊥BJ 1 as ||Id−(1/2)1||= 1/2� ||Id||= 1. The fact that 1⊥BJ Id follows
easily from the definition.

EXAMPLE 3.5. Consider the matrices A,B,C ∈M2(C) given by A =
(

1 0
0 2

)
, B =(

1 0
0 0

)
and C =

(
1 1
1 0

)
. We claim that A⊗B ⊥BJ C⊗ I in M2(C)⊗min M2(C). Since

M2(C)⊗min M2(C) can be identified with M4(C) equipped with the spectral norm, it

is equivalent to check that P ⊥BJ Q for P =

(
1 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

)
, Q =

(
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

)
. For the unit

vector x = [0 0 1 0]t ∈ C4 , we have ||Px|| = 2 = ||P||, 〈Px,Qx〉 = 0. Thus, by a well
known characterization given by Bhatia and Semrl [3, Theorem 1.1], P ⊥BJ Q . Here
A ⊥BJ C as for x = (0,1)t , ‖Ax‖ = 2 = ‖A‖ and 〈Ax,Cx〉 = 0. However, B 
⊥BJ I as
for any unit vector x = (x1,x2)t in C2 , ||Bx|| = 1 = ||B|| will imply that |x1| = 1 but
for such an x , 〈Bx,x〉 
= 0.

Here is another non-trivial example.

EXAMPLE 3.6. Consider the operators P,Q,R ∈ B(�2) given by P(x1,x2, . . .) =
(x1,0,0, . . .); Q(x1,x2, . . .) = (x1,x2,0, . . .) and R(x1,x2, . . .) = (0,x1,x2, . . .) , and let
I ∈ B(�2) be the identity operator. We claim that P⊗ I ⊥BJ Q⊗R in B(�2)⊗min B(�2) .
To see this, we use the inclusion B(�2)⊗min B(�2) ⊆ B(�2 ⊗ �2) , where ⊗ represents
the Hilbertian tensor product, and consider λ ∈ C,

||(P⊗ I)+ λ (Q⊗R)||2 = sup
h∈�2⊗�2, ||h||=1

||(P⊗ I)h+ λ (Q⊗R)h||2

� ||(P⊗ I)(e1⊗ e2)+ λ (Q⊗R)(e1⊗ e2)||2
= ||e1⊗ e2 + λe1⊗ e3||2
= 〈e1 ⊗ e2 + λe1⊗ e3,e1⊗ e2 + λe1⊗ e3〉
= 1+ |λ |2 � 1 = ||P⊗ I||
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Here I ⊥BJ R as for the constant sequence of unit vectors {hn} ∈ �2 where hn = e1

for all n , we have limn→∞ ||I(hn)|| = ||e1|| = 1 = ||I|| and limn→∞〈I(hn),R(hn)〉 =
〈e1,e2〉 = 0 and thus orthogonality follows from [3, Remark 3.1]. However, P 
⊥BJ Q ,

if not, then we get a sequence of unit vectors say {hn = (h(m)
n )} in �2 such that

limn→∞ ||P(hn)||= limn→∞ |h(1)
n |= ||P||= 1 and limn→∞〈P(hn),Q(hn)〉= limn→∞ |h(1)

n |2
= 0, which is not possible.

In many spaces the converse of Theorem 3.1 holds true. We shall now discuss few
of such spaces.

THEOREM 3.7. Let X and Y be real Banach spaces and x1,x2 ∈ X , y1,y2 ∈ Y .
Then x1⊗ y1 ⊥BJ x2⊗ y2 in X ⊗λ Y if and only if either x1 ⊥BJ x2 or y1 ⊥BJ y2.

Proof. In view of Theorem 3.1, we only need to prove the necessary part. Suppose
that v1 = x1⊗y1 ⊥BJ x2⊗y2 = v2 in X⊗λ Y. By [15, Section 3.4], we know that X⊗λ Y
can be embedded (isometrically) as a subspace of CR(BX∗ ×BY∗) via the embedding
(∑n

i=1 xi ⊗ yi) ↪→ ∑n
i=1 fxi fyi , where fx : X∗ → R represents the map fx(φ) = φ(x), for

all φ ∈X∗ ; here BX∗ ,BY ∗ are closed unit balls in X∗ and Y ∗ respectively equipped with
the weak∗ -topology. Note that, by Banach Alaoglu’s Theorem, BX∗ ×BY∗ is compact,
BX∗ and BY ∗ being compact.

Thus, v1 ⊥BJ v2 in X⊗λ Y is equivalent to saying that fx1 fy1 ⊥BJ fx2 fy2 in CR(BX∗
×BY∗).

We claim that either fx1 ⊥BJ fx2 in CR(BX∗) or fy1 ⊥BJ fy2 in CR(BY ∗) . Let, if
possible, neither fx1 ⊥BJ fx2 nor fy1 ⊥BJ fy2 . Then, by Theorem 2.4, either fx2(φ) ∈
fx1(φ)+ for all φ ∈ Mfx1

or fx2(φ) ∈ fx1(φ)− for all φ ∈ Mfx1
. Similarly, either

fy2(ψ) ∈ fy1(ψ)+ for all ψ ∈ Mfy1
or fy2(ψ) ∈ fy1(ψ)− for all ψ ∈ Mfy1

. Let us dis-
cuss the case when fx2(φ)∈ fx1(φ)+ and fy2(ψ)∈ fy1(ψ)+ for all φ ∈Mfx1

,ψ ∈Mfy1
.

Then, we have fx1(φ) fx2 (φ) > 0 and fy1(ψ) fy2 (ψ) > 0 for all φ ∈ Mfx1
,ψ ∈ Mfy1

.
This gives fx1(φ) fx2 (φ) fy1 (ψ) fy2(ψ) > 0 for all (φ ,ψ) ∈Mfx1

×Mfy1
= Mfx1 fy1

which
contradicts the hypothesis fx1 fy1 ⊥BJ fx2 fy2 . So this case is not possible. Similarly, we
will get contradiction in rest of the three cases.

Now, assume that fx1 ⊥BJ fx2 . Therefore for any scalar μ ∈R, we have sup{| fx1(φ)
+ μ fx2(φ)| : φ ∈ BX∗} � sup{| fx1(φ)| : φ ∈ BX∗} which, using a consequence of Hahn
Banach Theorem, gives that ||x1 + μx2||� ||x1|| and thus x1 ⊥BJ x2 . Similarly fy1 ⊥BJ

fy2 would imply that y1 ⊥BJ y2 . �

Birkhoff-James orthogonality behaves well for the injective tensor norm on the real
Banach spaces. We next move to a natural norm on the space of p -integrable functions.
For an arbitrary measure space (S,μ) and a Banach space X , let Lp(μ ,X) , 1 � p < ∞ ,
denote the space of Bochner p -integrable functions from S to X . Consider the norm on
Lp(S,μ)⊗X , written as Δp , induced via the injective map φ : Lp(S,μ)⊗X → Lp(μ ,X)
given by φ( f ⊗ x) = f (·)x , that is,

||u||Δp = ||φ(u)||Lp(μ,X), for all u ∈ Lp(S,μ)⊗X . (1)
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We take X = Lp(T,ν) and assume that Lp(S,μ)⊗Δp Lp(T,ν) denotes the comple-
tion of Lp(S,μ)⊗ Lp(T,ν) with respect to the Δp -norm. It is known that the space
Lp(S,μ)⊗Δp Lp(T,ν) is isometrically isomorphic to Lp(S×T,μ ×ν) , 1 < p < ∞ , see
[6, §I.7.2].

We state a result which we shall require for BJ-orthogonality of p -integrable func-
tions.

THEOREM 3.8. [17, Theorem 1.11] Let (S,μ) be a positive measure space, G
be a subspace of Lp(S,μ) , 1 < p < ∞ and f ∈ Lp(S,μ)\G. An element g ∈ G is best
approximation to f if and only if∫

S

h(s)| f (s)−g(s)|p−1 sign( f (s)−g(s))dμ(s) = 0, for all h ∈ G.

THEOREM 3.9. Let (S,μ) and (T,ν) be positive measure spaces. Then f1 ⊗
f2 ⊥BJ g1 ⊗g2 in Lp(S,μ)⊗Δp Lp(T,ν) , 1 < p < ∞ if and only if either f1 ⊥BJ g1 or
f2 ⊥BJ g2.

Proof. Using the identification mentioned above, we know that f1 ⊗ f2 ⊥BJ g1 ⊗
g2 in Lp(S,μ)⊗Δp Lp(T,ν) if and only if f1 f2 ⊥BJ g1g2 in Lp(S× T,μ × ν). Let if
possible, neither f1 
⊥BJ g1 nor f2 
⊥BJ g2. Now, f1 
⊥BJ g1 gives that 0 is not a best
approximation to f1 from the subspace span{g1} . By Theorem 3.8, we have∫

S

g1(s)| f1(s)|p−1 sign( f1(s))dμ(s) 
= 0,

and similarly the other part gives∫
T

g2(t)| f2(t)|p−1 sign( f2(t))dν(t) 
= 0.

Combining both we have∫∫
S×T

g1(s)g2(t)| f1(s) f2(t)|p−1 sign( f1(s) f2(t))(dμ(s)×dν(t)) =

⎛
⎝∫

S

g1(s)| f1(s)|p−1 sign( f1(s))dμ(s)

⎞
⎠
⎛
⎝∫

T

g2(t)| f2(t)|p−1 sign( f2(t))dν(t)

⎞
⎠ 
= 0,

which implies that f1 f2 
⊥BJ g1g2 in Lp(S×T,μ ×ν) . This completes the proof. �
We now turn our attention back to the space of continuous complex valued func-

tions. It was illustrated in Example 3.2 that the BJ-orthogonality does not work well for
the tensor product CC(K1)⊗α CC(K2) with respect to any reasonable cross norm α .
Although in a special situation it does work well.
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PROPOSITION 3.10. Let f1 ∈ CC(K1) and g1 ∈ CC(K2) both attain their norms
at a unique point. Then, for any f2 ∈ CC(K1) and g2 ∈ CC(K2) , f1 ⊗g1 ⊥BJ f2 ⊗g2

in CC(K1)⊗λ CC(K2) implies f1 ⊥BJ f2 or g1 ⊥BJ g2.

Proof. It follows easily from Theorem 2.3. �

However, if we treat CC(K) , K being a compact Hausdorff space, as a C∗ -algebra
then we have the desired result with BJ-orthogonality being replaced by the strong BJ-
orthogonality.

Recall that, if H is a right Hilbert C∗ -module over a C∗ -algebra A , then for
h1,h2 ∈ H , we say that h1 is strongly Birkhoff-James orthogonal to h2 (written as
h1 ⊥s

BJ h2), if ||h1 + h2a|| � ||h1|| for all a ∈ A , see [2]. It is obvious that any C∗ -
algebra is a Hilbert C∗ -module over itself. Also, it is worth mentioning that for com-
mutative C∗ -algebras, the injective norm coincides with the minimal C*-tensor norm
[18, Theorem 4.14]. More precisely, CC(K1)⊗λ CC(K2) is isometrically isomorphic to
CC(K1)⊗minCC(K2) and the latter is again a C∗ -algebra.

THEOREM 3.11. Let K1 and K2 be compact Hausdorff spaces, f1, f2 ∈ CC(K1)
and g1,g2 ∈ CC(K2). Then f1 ⊗g1 ⊥s

BJ f2 ⊗g2 in CC(K1)⊗min CC(K2) if and only if
either f1 ⊥s

BJ f2 or g1 ⊥s
BJ g2.

Proof. First suppose that f1 ⊗g1 ⊥s
BJ f2 ⊗g2. Using the identification as in The-

orem 2.2, we have f1g1 ⊥s
BJ f2g2 in CC(K1 ×K2) . By [2, Proposition 4.2], there exists

(x0,y0) ∈ K1 ×K2 such that | f1(x0)g1(y0)| = ‖ f1‖‖g1‖ and f2(x0)g2(y0) = 0. The
former condition implies that || f1|| = | f1(x0)| and ||g1|| = |g1(x0)| and the latter one
implies either f2(x0) = 0 or g2(y0) = 0.

Thus, again by using [2, Proposition 4.2], we have f1 ⊥s
BJ f2 or g1 ⊥s

BJ g2. Con-
versely, let us assume that f1 ⊥s

BJ f2. So there exists x0 ∈ Mf1 such that f2(x0) = 0.
Since Mg1 
= φ , by fixing any y0 ∈ Mg1 , we have f2(x0)g2(y0)= 0 and | f1(x0)g1(y0)|=
‖ f1‖‖g1‖ . Thus f1 ⊗g1 ⊥s

BJ f2 ⊗g2 . �

REMARK 3.12. Above result gives that f1⊗g1 ⊥s
BJ f2⊗g2 implies either f1 ⊥s

BJ
f2 or g1 ⊥s

BJ g2. So f1 ⊥BJ f2h or g1 ⊥BJ g2k for every h∈ CC(K1) , k∈CC(K2). Since
strong BJ-orthogonality implies BJ-orthogonality, this gives f1 ⊥BJ f2 or g1 ⊥BJ g2.

Lastly, we deviate our attention a little bit from the commutative setup to a non-
commutative setting. It is quite obvious to ask what happens in the tensor product
of non-commutative space B(H) , the space of bounded linear operators on a Hilbert
space. In this direction, we obtain a positive result for the elementary tensors of rank
one operators in B(H)⊗min B(H).

PROPOSITION 3.13. Let H be a Hilbert space and let T1,T2,S1,S2 ∈ B(H) be
rank one operators satisfying T1 ⊗ T2 ⊥BJ S1 ⊗ S2 in B(H)⊗min B(H). Then either
T1 ⊥BJ S1 or T2 ⊥BJ S2.
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Proof. We can embed B(H)⊗min B(H) into B(H ⊗H) isometrically. Note that
a rank one operator T in B(H) is of the form x⊗ y for some x,y ∈ H , where (x⊗
y)(h) = 〈h,y〉x , for all h ∈ H . It is easy to check that tensor product of two rank one
operators is again a rank one operator on H⊗H , more precisely, if Ti = xi⊗yi , i = 1,2,
then T1 ⊗T2 = (x1 ⊗ x2)⊗ (y1 ⊗ y2). Taking Si = zi ⊗wi , i = 1,2, since T1 ⊗T2 ⊥BJ

S1 ⊗ S2, by [7, Example 4.5], either 〈x1 ⊗ x2,z1 ⊗ z2〉 = 0 or 〈y1 ⊗ y2,w1 ⊗w2〉 = 0.
That is, either 〈x1,z1〉〈x2,z2〉 = 0 or 〈y1,w1〉〈y2,w2〉= 0. The former case implies that
either 〈x1,z1〉= 0 or 〈x2,z2〉= 0, which gives either T1 ⊥BJ S1 or T2 ⊥BJ S2, using [7,
Example 4.5] again. Similarly one can check for the other case. �
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[10] D. J. KEČKIĆ, Orthogonality and smooth points in C(K) and Cb(Ω) , Eurasian Math. J. 3 (4) (2012),
44–52.

[11] E. KREYSZIG, Introductory Functional Analysis With Applications, John Wiley and Sons, 1978.

[12] W. A. LIGHT AND E. W. CHENEY, Approximation theory in tensor product spaces, Lecture Notes in
Mathematics, Springer-Verlag, Berlin, 1985.

[13] G. MURPHY, C∗ -algebras and operator theory, Academic Press Inc., 1990.

[14] S. ROY, T. SENAPATI AND D. SAIN, Orthogonality of bilinear forms and application to matrices,
Linear Algebra Appl. 615 (2021), 104–111.

[15] R. A. RYAN, Introduction to tensor products of Banach spaces, Springer-Verlag, London, 2000.

[16] D. SAIN, Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces, J.
Math. Anal. Appl. 447 (2017), 860–866.



244 MOHIT AND R. JAIN

[17] I. SINGER, Best approximation in normed linear spaces by elements of linear subspaces, Springer-
Verlag, Berlin, 1970.

[18] M. TAKESAKI, Theory of Operator Algebra I, Springer-Verlag, New York, 1979.

(Received November 17, 2022) Mohit
Department of Mathematics

University of Delhi
Delhi

e-mail: mohitdhandamaths@gmail.com

Ranjana Jain
Department of Mathematics

University of Delhi
Delhi

e-mail: rjain@maths.du.ac.in

Operators and Matrices
www.ele-math.com
oam@ele-math.com


