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Abstract. In this work, we give refinements of some well-known numerical radius inequalities.
Also, we present an improvement of the triangle inequality for the operator norm.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators on a complex
Hilbert space H with inner product 〈·, ·〉 . For A ∈ B(H) , let w(A) and ‖A‖ denote
the numerical radius and the operator norm of A , respectively. Recall that w(A) =
sup{|〈Ax,x〉|, x ∈H, ‖x‖ = 1} or w(A) = sup

θ∈R

‖Re(eiθ A)‖ and ‖A‖ = sup{|〈Ax,y〉|,
x,y ∈H, ‖x‖ = ‖y‖ = 1} .

The spectral radius of A , denoted by ρ(A) , is defined by ρ(A)= sup{|λ |,λ ∈ σ(A)} ,
where σ(A) is the spectrum of A .

The Aluthge transform of A , denoted by Ã , is defined as Ã = |A| 1
2U |A| 1

2 , where

|A| = (A∗A)
1
2 .

There are many existing papers dealing with bounding the numerical radius for
operators, we refer the readers to [1], [3], [4], [9] and the references therein.

It is well-known that w(·) defines a norm on B(H) , which is equivalent to the
operator norm. In fact, we have

1
2
‖A‖ � w(A) � ‖A‖. (1.1)

In [11], Kittaneh refined the inequalities in (1.1) and obtained the following result

1
4
‖AA∗ +A∗A‖ � w2(A) � 1

2
‖AA∗ +A∗A‖ . (1.2)

In [6], Dragomir gave the following results
√

2
2

max

{∥∥∥∥ (1− i)A+(1+ i)A∗

2

∥∥∥∥ ,

∥∥∥∥ (1+ i)A+(1− i)A∗

2

∥∥∥∥
}

� w(A) (1.3)
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and
1
4

∥∥A2 +(A∗)2
∥∥� w2(A). (1.4)

Kittaneh, Moslehian and Yamazaki [13] have obtained the following inequalities

1
2
‖A−A∗‖ � w(A) (1.5)

and
1
2
‖A+A∗‖ � w(A). (1.6)

In [16], Yamazaki gave the following inequality

w(A) � 1
2
‖A‖+

1
2
w(Ã). (1.7)

Abu-Omar and Kittaneh [1] refined the second inequality in (1.1) and have obtained the
following result

w(A) � 1
2

√
‖A∗A+AA∗‖+2w(A2). (1.8)

El-Haddad and Kittaneh, see [7], proved that

2(−r
2 −1)‖|H +K|r + |H−K|r‖ � wr(A) for r � 2, (1.9)

where A = H + iK is the Cartesian decomposition of A .
Bhunia, Bag and Paul [5] established the following inequality

w(A) �
√
‖Re(A)‖2 +‖Im(A)‖2, (1.10)

where Re(A) =
A+A∗

2
and Im(A) =

A−A∗

2i
.

In [15], Sattari, Moslehian and Yamazaki have obtained the following upper bounds
for the numerical radius

wr(B∗A) � 1
4
‖(AA∗)r +(BB∗)r‖+

1
2
wr(AB∗) for r � 1 (1.11)

and

w2r(A) � 1
2
wr(A2)+

1
2
‖A‖2r for r � 1. (1.12)

Recently, Omidvar and Moradi [14] have obtained the following upper bound of the
operator norm for the sum of two operators

‖A+B‖�
√
‖A‖2 +‖B‖2 +‖A‖‖B‖+w(B∗A). (1.13)

In [2], Abu-Omar and Kittaneh have proved that

w(A+B) �
√

w(A)2 +w(B)2 +‖A‖‖B‖+w(B∗A). (1.14)

In this paper, we refine all the above numerical radius inequalities. In Section 2,
we derive some new bounds of the numerical radius for operator. These bounds refine
some of the previous numerical radius inequalities for operators. In Section 3, we give
some bounds of the numerical radius for two operators. These bounds improve the rest
of the above numerical radius inequalities.
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2. Main results

Our first result can be stated as follows.

THEOREM 2.1. Let A ∈ B(H) have the Cartesian decomposition A = H + iK .
Then for α,β > 0 ,

sup
α2+β 2=1

∥∥α2H2 + β 2K2
∥∥� w2(A). (2.1)

Proof. Let x ∈H be any unit vector. Then

|〈Ax,x〉|2 = 〈Hx,x〉2 + 〈Kx,x〉2
= sup

α2+β 2=1
(α|〈Hx,x〉|+ β |〈Kx,x〉|)2

� sup
α2+β 2=1

|〈(αH ±βK)x,x〉|2 .

By taking the supremum on both sides in the above inequality over x∈H with ‖x‖= 1,
we get

w2(A) � sup
α2+β 2=1

‖αH±βK‖2. (2.2)

Thus

2w2(A) � sup
α2+β 2=1

(∥∥(αH + βK)2
∥∥+

∥∥(αH −βK)2
∥∥)

� sup
α2+β 2=1

∥∥(αH + βK)2 +(αH−βK)2
∥∥ .

Hence
w2(A) � sup

α2+β 2=1

∥∥α2H2 + β 2K2
∥∥ ,

as required. �

REMARK 2.2. Taking α = β = 1√
2

in the inequality (2.1), gives

1
4
‖A∗A+AA∗‖ � sup

α2+β 2=1
‖α2H2 + β 2K2‖ � w2(A).

This proves that the inequality (2.1) is an improvement of the first inequality in (1.2).

COROLLARY 2.3. Let A ∈ B(H) have the Cartesian decomposition A = H + iK .
Then for α,β > 0 ,

max

{
sup

α2+β 2=1
‖αH−βK‖ , sup

α2+β 2=1
‖αH + βK‖

}
� w(A). (2.3)
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Proof. The inequality (2.3) follows from the inequality (2.2). �
Now, taking α = β = 1√

2
in the inequality (2.3), gives the inequality (1.3). There-

fore, one can conclude that the inequality (2.3) is a refinement of the inequality (1.3).

THEOREM 2.4. Let A ∈ B(H) . Then for α,β > 0 ,

1
2

sup
α2+β 2=1

w
(
α2A2 + β 2(A∗)2)� w2(A). (2.4)

Proof. Let x ∈H be any unit vector. Then

2|〈Ax,x〉|2 = |〈Ax,x〉|2 + |〈A∗x,x〉|2
= sup

α2+β 2=1
(α|〈Ax,x〉|+ β |〈A∗x,x〉|)2

� sup
α2+β 2=1

|〈(αA±βA∗)x,x〉|2 .

By taking the supremum on both sides in the above inequality over x∈H with ‖x‖= 1,
we get

2w2(A) � sup
α2+β 2=1

w2 (αA±βA∗) . (2.5)

Thus

4w2(A) � sup
α2+β 2=1

(
w(αA+ βA∗)2 +w(αA−βA∗)2

)
� sup

α2+β 2=1
w
(
(αA+ βA∗)2 +(αA−βA∗)2) .

Hence
2w2(A) � sup

α2+β 2=1
w
(
α2A2 + β 2(A∗)2) ,

as required. �
If we take α = β = 1√

2
in the inequality (2.4) and using the fact that the operator(

A2 +(A∗)2
)

is self-adjoint, then we get the inequality (1.4). Therefore, we conclude
that the inequality (2.4) is sharper than the inequality (1.4).

COROLLARY 2.5. Let A ∈ B(H) . Then for α,β > 0 ,

1√
2

max

{
sup

α2+β 2=1
w(αA−βA∗) , sup

α2+β 2=1
w(αA+ βA∗)

}
� w(A). (2.6)

Proof. The inequality (2.6) follows from the inequality (2.5). �
If we choose in the inequality (2.6), α = β = 1√

2
and taking into account that A+

A∗ and A−A∗ are normal, then we get the inequalities (1.5) and (1.6). Therefore, one
can conclude that the inequality (2.6) is a refinement of the both previous inequalities.

The following result can be found in [5, 8].
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LEMMA 2.6. Let A,X ∈ B(H) . Then

w(AX +XA) � 2w(A)‖X‖.

THEOREM 2.7. Let A ∈ B(H) . Then

w2(A) � 1
4

(‖A‖2 +w2(Ã)+w(|A|Ã+ Ã|A|)) . (2.7)

Proof. Let A =U |A| be the polar decomposition of A and let θ ∈ R. For any unit
vector x ∈H , we have

〈eiθ Ax,x〉 = 〈eiθ |A|x,U∗x〉
=

1
4

(
〈|A|(eiθ +U∗)x,(eiθ +U∗)x〉− 〈|A|(eiθ −U∗)x,(eiθ −U∗)x〉

)
+

i
4

(
〈|A|(eiθ + iU∗)x,(eiθ + iU∗)x〉− 〈|A|(eiθ − iU∗)x,(eiθ − iU∗)x〉

)
.

Thus

Re〈eiθ Ax,x〉 =
1
4

(
〈|A|(eiθ +U∗)x,(eiθ +U∗)x〉− 〈|A|(eiθ −U∗)x,(eiθ −U∗)x〉

)
� 1

4
‖(e−iθ +U)|A|(eiθ +U∗)‖

=
1
4

∥∥∥(e−iθ +U)|A| 1
2

(
(e−iθ +U)|A| 1

2

)∗∥∥∥
=

1
4

∥∥∥((e−iθ +U)|A| 1
2

)∗
(e−iθ +U)|A| 1

2

∥∥∥
=

1
4
‖|A| 1

2 (eiθ +U∗)(e−iθ +U)|A| 1
2 ‖

=
1
2

∥∥∥|A|+Re(eiθ Ã)
∥∥∥ .

Then

Re〈eiθ Ax,x〉 � 1
2

∥∥∥∥(|A|+Re(eiθ Ã)
)2
∥∥∥∥

1
2

=
1
2

∥∥∥|A|2 +Re2(eiθ Ã)+Re
(
eiθ (|A|Ã+ Ã|A|)

)∥∥∥ 1
2
.

By taking the supremum on the both sides in the above inequality over θ ∈ R , gives

|〈Ax,x〉|2 � 1
4

(‖A‖2 +w2(Ã)+w(|A|Ã+ Ã|A|)) .
Therefore, the desired result follows by taking the supremum in the above inequality
over x ∈H with ‖x‖ = 1. �
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REMARK 2.8. The inequality (2.7) is better than the inequality (1.7). Indeed,
using Lemma 2.6, we obtain

1
4

(‖A‖2 +w2(Ã)+w(|A|Ã+ Ã|A|)) � 1
4

(‖A‖2 +w2(Ã)+2w(Ã)‖A‖)
=
(

1
2
‖A‖+

1
2
w(Ã)

)2

.

LEMMA 2.9. [12] Let A1,A2,B1,B2 ∈ B(H) . Then

ρ(A1B1 +A2B2) � 1
2

(‖B1A1‖+‖B2A2‖)

+
1
2

√
(‖B1A1‖−‖B2A2‖)2 +4‖B1A2‖‖B2A1‖.

THEOREM 2.10. Let A ∈ B(H) . Then

w2(A) � 1
8

(
2w(A2)+‖S‖+

√
(2w(A2)−‖S‖)2 +8 sup

θ∈R

‖SRe(e2iθ A2)‖
)

, (2.8)

where S = AA∗ +A∗A.

Proof. Let x ∈H be any unit vector. It is well-known that

|〈Ax,x〉| = sup
θ∈R

1
2

∣∣∣eiθ 〈Ax,x〉+ e−iθ 〈A∗x,x〉
∣∣∣ .

By taking the supremum on both sides in the above inequality over x∈H with ‖x‖= 1,
we obtain

w2(2A) � sup
θ∈R

∥∥∥(eiθ A+ e−iθA∗)(eiθ A+ e−iθA∗)∗
∥∥∥

= sup
θ∈R

∥∥∥2Re(e2iθ A2)+AA∗+A∗A
∥∥∥

= sup
θ∈R

ρ
(
2Re(e2iθ A2)+AA∗+A∗A

)
.

By choosing A1 = I,A2 = 2Re(e2iθ A2),B1 = S and B2 = I in Lemma 2.9, we get

w2(A) � sup
θ∈R

1
8

{
‖2Re(e2iθ A2)‖+‖S‖+

√
(‖2Re(e2iθ A2)‖−‖S‖)2+8‖SRe(e2iθ A2)‖

}
.
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Thus

w2(A) � 1
4

∥∥∥∥∥∥∥
⎡
⎢⎣ sup

θ∈R

‖2Re(e2iθ A2)‖ sup
θ∈R

√
‖2SRe(e2iθ A2)‖

sup
θ∈R

√
‖2SRe(e2iθ A2)‖ sup

θ∈R

‖S‖

⎤
⎥⎦
∥∥∥∥∥∥∥

=
1
4

∥∥∥∥∥∥∥
⎡
⎢⎣ 2w(A2) sup

θ∈R

√
‖2SRe(e2iθ A2)‖

sup
θ∈R

√
‖2SRe(e2iθ A2)‖ ‖S‖

⎤
⎥⎦
∥∥∥∥∥∥∥

=
1
8

(
2w(A2)+‖S‖)+ 1

8

√
(2w(A2)−‖S‖)2 +8 sup

θ∈R

‖SRe(e2iθ A2)‖,

as required. �

REMARK 2.11. Setting

c0 =
1
8

(
2w(A2)+‖S‖)+ 1

8

√
(2w(A2)−‖S‖)2 +8 sup

θ∈R

‖SRe(e2iθ A2)‖.

Then

c0 � 1
8

(
2w(A2)+‖S‖)+ 1

8

√
(2w(A2)−‖S‖)2 +8w(A2)‖S‖

=
1
2
w(A2)+

1
4
‖AA∗+A∗A‖.

This proves that the inequality (2.8) is an improvement of the inequality (1.8).

A generalization of Theorem 2.1 can be stated as follows.

THEOREM 2.12. Let A ∈ B(H) have the Cartesian decomposition A = H + iK ,
and let r � 2 . Then for α,β > 0 ,

sup
α2+β 2=1

1
2
‖|αH + βK|r + |αH−βK|r‖ � wr(A). (2.9)

Proof. From the inequality (2.2), we get

wr(A) � sup
α2+β 2=1

∥∥(αH±βK)2
∥∥ r

2

= sup
α2+β 2=1

‖|αH±βK|r‖.

Hence

wr(A) � sup
α2+β 2=1

1
2
‖|αH + βK|r + |αH−βK|r‖ . �
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REMARK 2.13. If we take α = β = 1√
2

in the inequality (2.9), then we obtain

sup
α2+β 2=1

1
2
‖|αH + βK|r + |αH−βK|r‖ � 2

−r
2 −1 ‖|H +K|r + |H−K|r‖ .

This means that the inequality (2.9) is a refinement of the inequality (1.9).

THEOREM 2.14. Let A ∈ B(H) have the Cartesian decomposition A = H + iK .
Then

w2(A) � 1
2

{
‖H‖2 +‖K‖2 +

√
(‖H‖2−‖K‖2)2 +‖HK+KH‖2

}
. (2.10)

Proof. We have

w2(A) = sup
α2+β 2=1

‖αH + βK‖2

= sup
α2+β 2=1

‖α2H2 + β 2K2 + αβ (HK +KH)‖

� sup
α2+β 2=1

(
α2‖H‖2 + β 2‖K‖2 + |αβ |‖HK +KH‖)

=
1
2

{
‖H‖2 +‖K‖2 +

√
(‖H‖2−‖K‖2)2 +‖HK+KH‖2

}
. �

It is easy to check that the inequality (2.10) is a refinement of the inequality (1.10).

3. Numerical radius inequalities of the product and the sum for two operators

In the following theorems, we present some numerical radius inequalities of the
product and the sum for two operators. Some well-known numerical radius inequalities
are reobtained.

THEOREM 3.1. Let A,B ∈ B(H) . Then

w2(B∗A) � 1
4
w2(AB∗)+

1
8
w(PAB∗+AB∗P)+

1
16

‖P‖2, (3.1)

where P = AA∗ +BB∗.
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Proof. Let x ∈H be any unit vector. For any θ ∈ R , we have

Re〈eiθ B∗Ax,x〉 = Re〈eiθ Ax,Bx〉
=

1
4

∥∥∥(eiθ A+B)x
∥∥∥2 − 1

4

∥∥∥(eiθ A−B)x
∥∥∥2

� 1
4

∥∥∥eiθ A+B
∥∥∥2

=
1
4

∥∥∥P+2Re(eiθ AB∗)
∥∥∥

=
1
4

∥∥∥P2 +4Re2(eiθ (AB∗))+2Re(eiθ (PAB∗+AB∗P))
∥∥∥ 1

2

� 1
4

(
‖P‖2 +4‖Re(eiθ (AB∗))‖2 +2‖Re(eiθ (PAB∗+AB∗P))‖

) 1
2
.

By taking the supremum on the both sides in the above inequality over θ ∈ R , gives

|〈B∗Ax,x〉|2 � 1
4
w2(AB∗)+

1
8
w(PAB∗ +AB∗P)+

1
16

‖P‖2.

Therefore, the desired inequality follows by taking the supremum in the above inequal-
ity over x ∈H with ‖x‖ = 1. �

REMARK 3.2. Using Lemma 2.6, it follows that

1
4
w2(AB∗)+

1
8
w(PAB∗ +AB∗P)+

1
16

‖P‖2 � 1
4
w2(AB∗)+

1
4
w(AB∗)‖P‖+

1
16

‖P‖2

=
(

1
4
‖P‖+

1
2
w(AB∗)

)2

.

This proves that the inequality (3.1) is sharper than the inequality (1.11) for r = 1.

The following lemma is known as the mixed Schwarz inequality, it can be found
in [10, pp. 75–76].

LEMMA 3.3. Let A ∈ B(H) . Then

|〈Ax,y〉| � 〈|A|x,x〉 1
2 〈|A∗|y,y〉 1

2 for all x,y ∈H.

THEOREM 3.4. Let A,B ∈ B(H) . Then

w(BA) � min

{
1
2
‖ A∗|B|A+ |B∗| ‖, 1

2
‖ B|A∗|B∗ + |A| ‖

}
.

Proof. Let x ∈H be any unit vector. Using Lemma 3.3, we have

|〈BAx,x〉| � 〈|B|Ax,Ax〉 1
2 〈|B∗|x,x〉 1

2

= 〈A∗|B|Ax,x〉 1
2 〈|B∗|x,x〉 1

2

� 1
2

(〈A∗|B|Ax,x〉+ 〈|B∗|x,x〉) .
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By taking the supremum on both sides in the above inequality over x∈H with ‖x‖= 1,
we get

w(BA) � 1
2
‖A∗|B|A+ |B∗|‖.

Again, we have w(BA) = w(A∗B∗) � 1
2
‖B|A∗|B∗+ |A|‖. This completes the proof. �

THEOREM 3.5. Let A,B ∈ B(H) . Then

w2(A+B) � 2w(AB)+‖AA∗+B∗B‖. (3.2)

Proof. Let x ∈H be any unit vector. Then

|〈(A+B)x,x〉| � |〈Ax,x〉|+ |〈Bx,x〉|
= sup

θ∈R

∣∣∣eiθ 〈Ax,x〉+ e−iθ 〈B∗x,x〉
∣∣∣

= sup
θ∈R

∣∣∣〈(eiθ A+ e−iθB∗)x,x〉
∣∣∣ .

By taking the supremum on both sides in the above inequality over x∈H with ‖x‖= 1,
we obtain

w2(A+B) � sup
θ∈R

∥∥∥(eiθ A+ e−iθB∗)(eiθ A+ e−iθB∗)∗
∥∥∥

= sup
θ∈R

∥∥∥2Re(e2iθ AB)+AA∗+B∗B
∥∥∥

� sup
θ∈R

∥∥∥2Re(e2iθ AB)
∥∥∥+‖AA∗ +B∗B‖

= 2w(AB)+‖AA∗+B∗B‖,

as required. �
If we take B = A in the inequality (3.2), then we reobtain the inequality (1.8).

REMARK 3.6. If A,B are normal, then the inequality (3.2) is a refinement for the
triangle inequality of the numerical radius. Indeed,

w2(A+B) � 2w(AB)+‖AA∗+B∗B‖ � 2w(A)w(B)+w(AA∗ +B∗B)
� w2(A)+w2(B)+2w(A)w(B)

= (w(A)+w(B))2 .

THEOREM 3.7. Let A,B ∈ B(H) and let r � 1 . Then

w2r(A+B) � 22r−1
(

wr(AB)+
1
2
‖(AA∗)r +(B∗B)r‖

)
.
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Proof. Using the previous theorem, it follows that

w2r(A+B) � (2w(AB)+‖AA∗+B∗B‖)r

� 2r−1
(

2rwr(AB)+2r

∥∥∥∥
(

AA∗ +B∗B
2

)r∥∥∥∥
)

� 22r−1
(

wr(AB)+
1
2
‖(AA∗)r +(B∗B)r‖

)
. �

COROLLARY 3.8. Let A ∈ B(H) and let r � 1 . Then

w2r(A) � 1
2

(
wr(A2)+

1
2
‖(AA∗)r +(A∗A)r‖

)
. (3.3)

Note that

1
2

(
wr(A2)+

1
2
‖(AA∗)r +(A∗A)r‖

)
� 1

2
wr(A2)+

1
2
‖A‖2r.

Therefore, the inequality (3.3) is an improvement of the inequality (1.12).

THEOREM 3.9. Let A,B ∈ B(H) . Then

w4(A+B) � 4w2(BA)+2w(BAP+PBA)+‖P‖2,

where P = A∗A+BB∗.

Proof. We have
w(A+B) � sup

θ∈R

‖eiθ A+ e−iθB∗‖.

Let ψ(θ ) = ‖eiθ A+ e−iθB∗‖ . Then

ψ(θ ) = ‖(eiθ A+ e−iθB∗)∗(eiθ A+ e−iθB∗)‖ 1
2

= ‖P+2Re(e2iθ (BA))‖ 1
2

= ‖P2 +4Re2(e2iθ (BA))+2Re(e2iθ (BAP+PBA))‖ 1
4

�
(
‖P‖2 +4‖Re(e2iθ (BA))‖2 +2‖Re(e2iθ (BAP+PBA))‖

)1
4
.

By taking the supremum on both sides in ψ(θ ) over θ ∈ R , we obtain the desired
inequality. �

REMARK 3.10. If we put A = B in the previous theorem, then we get

w4(A) � 1
4
w2(A2)+

1
8
w(A2R+RA2)+

1
16

‖R‖2,

where R = A∗A+AA∗.
This inequality has been given in [5].
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COROLLARY 3.11. Let A,B ∈ B(H) . Then

w4(A+B) � 4w2(AB)+2w(ABT +TAB)+‖T‖2,

where T = B∗B+AA∗.

THEOREM 3.12. Let A,B ∈ B(H) . Then

‖A+B‖2 � min{‖AA∗+BB∗‖+2w(AB∗),‖A∗A+B∗B‖+2w(B∗A)} . (3.4)

Proof. Let x,y ∈H be two vectors with ‖x‖ = ‖y‖ = 1. Then

|〈(A+B)x,y〉| � |〈Ax,y〉|+ |〈Bx,y〉|
= sup

θ∈R

∣∣∣eiθ 〈Ax,y〉+ e−iθ 〈Bx,y〉
∣∣∣

� sup
θ∈R

∥∥∥eiθ A+ e−iθB
∥∥∥‖x‖‖y‖.

By taking the supremum on both sides in the above inequality over x,y∈H with ‖x‖=
1 and ‖y‖ = 1, we obtain

‖A+B‖� sup
θ∈R

∥∥∥eiθ A+ e−iθB
∥∥∥ .

Using the fact that ‖XX∗‖ = ‖X∗X‖ = ‖X‖2 and w(X) = sup
θ∈R

∥∥∥Re
(
eiθ X

)∥∥∥ for any

operator X , the desired result is obtained. �

The inequality (3.4) is a refinement of the triangle inequality. Indeed,

‖A+B‖2 � ‖A∗A+B∗B‖+2w(B∗A) � ‖A‖2 +‖B‖2 +2‖A‖‖B‖= (‖A‖+‖B‖)2.

Also, it easy to check that the inequality (3.4) is an improvement of the inequality
(1.13).

COROLLARY 3.13. Let A,B ∈ B(H) . Then

w2(A+B) � min{‖AA∗ +BB∗‖+2w(AB∗),‖A∗A+B∗B‖+2w(B∗A)} . (3.5)

It is easy to see that, if A and B are normal, then the inequality (3.5) is better than
the inequality (1.14).
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