THE STABILITY OF PROPERTY ($g t$) UNDER PERTURBATION AND TENSOR PRODUCT

Mohammad H. M. Rashid and Muneo Chō

(Communicated by R. Curto)

Abstract

An operator T acting on a Banach space \mathscr{X} obeys property $(g t)$ if the isolated points of the spectrum $\sigma(T)$ of T which are eigenvalues are exactly those points λ of the spectrum for which $T-\lambda$ is an upper semi- B-Fredholm with index less than or equal to 0 . In this paper we study the stability of property $(g t)$ under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T. Moreover, we study the transfer of property $(g t)$ from a bounded linear operator T acting on a Banach space \mathscr{X} and a bounded linear operator S acting on a Banach space \mathscr{Y} to their tensor product $T \otimes S$.

1. Introduction

Let $\mathscr{B}(\mathscr{X})$ denote the algebra of all bounded linear operator T acting on a Banach space \mathscr{X}. For $T \in \mathscr{B}(\mathscr{X})$, let $T^{*}, \operatorname{ker}(T), \mathfrak{R}(T), \sigma(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote respectively the adjoint, the null space, the range, the spectrum, the point spectrum and the approximate point spectrum of T. Let \mathbb{C} denote the set of complex numbers. Let us denote by $\alpha(T)$ the dimension of the kernel and by $\beta(T)$ the codimension of the range. Recall that an operator $T \in \mathscr{B}(\mathscr{X})$ is said to be upper semi-Fredholm, $T \in S F_{+}(\mathscr{X})$, if the range of $T \in \mathscr{B}(\mathscr{X})$ is closed and $\alpha(T)<\infty$, while $T \in \mathscr{B}(\mathscr{X})$ is said to be lower semi-Fredholm, $T \in S F_{-}(\mathscr{X})$, if $\beta(T)<\infty$. An operator $T \in$ $\mathscr{B}(\mathscr{X})$ is said to be semi-Fredholm if $T \in S F_{+}(\mathscr{X}) \cup S F_{-}(\mathscr{X})$ and Fredholm, $T \in \mathfrak{F}$, if $T \in S F_{+}(\mathscr{X}) \cap S F_{-}(\mathscr{X})$. If T is semi-Fredholm then the index of T is defined by $\operatorname{ind}(\mathrm{T})=\alpha(\mathrm{T})-\beta(\mathrm{T})$.

Let $a:=a(T)$ be the ascent of an operator T; i.e., the smallest nonnegative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, let $d:=d(T)$ be the descent of an operator T; i.e., the smallest nonnegative integer q such that $\mathfrak{R}\left(T^{q}\right)=\mathfrak{R}\left(T^{q+1}\right)$, and if such integer does not exist we put $d(T)=\infty$. It is well known that if $a(T)$ and $d(T)$ are both finite then $a(T)=d(T)$ [24, Proposition 38.3]. Moreover, $0<a(T-\lambda I)=d(T-\lambda I)<\infty$ precisely when λ is a pole of the resolvent of T, see Heuser [24, Proposition 50.2].

[^0]A bounded linear operator T acting on a Banach space \mathscr{X} is Weyl, $T \in \mathscr{W}$, if it is Fredholm of index zero and Browder, $T \in \mathfrak{B}$, if T is Fredholm of finite ascent and descent. The Weyl spectrum $\sigma_{w}(T)$ and Browder spectrum $\sigma_{b}(T)$ of T are defined by

$$
\begin{aligned}
\sigma_{w}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Weyl }\} \\
\sigma_{b}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Browder }\} .
\end{aligned}
$$

Let $E^{0}(T)=\{\lambda \in$ iso $\sigma(T): 0<\alpha(T-\lambda)<\infty\}$ and let $\pi_{0}(T):=\sigma(T) \backslash \sigma_{b}(T)$ all Riesz points of T. According to Coburn [18], Weyl's theorem holds for T if $\Delta(T)=$ $\sigma(T) \backslash \sigma_{w}(T)=E^{0}(T)$, and that Browder's theorem holds for T if $\sigma_{w}(T)=\sigma_{b}(T)$.

Here and elsewhere in this paper, for $A \subset \mathbb{C}$, iso A denotes the set of all isolated points of A and acc A denotes the set of all accumulation points of A.

Let $S F_{+}^{-}(\mathscr{X})=\left\{T \in S F_{+}: \operatorname{ind}(T) \leqslant 0\right\}$. The upper semi Weyl spectrum is defined by $\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S F_{+}^{-}(\mathscr{X})\right\}$. According to Rakočević [32], an operator $T \in \mathscr{B}(\mathscr{X})$ is said to satisfy a-Weyl's theorem, $T \in a^{\mathscr{W}}$, if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$, where

$$
E_{a}^{0}(T)=\left\{\lambda \in \text { iso } \sigma_{a}(T): 0<\alpha(T-\lambda I)<\infty\right\}
$$

It is known [32] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

For $T \in \mathscr{B}(\mathscr{X})$ and a non negative integer n define $T_{[n]}$ to be the restriction T to $\mathfrak{R}\left(T^{n}\right)$ viewed as a map from $\mathfrak{R}\left(T^{n}\right)$ to $\mathfrak{R}\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some integer n the range space $\mathfrak{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp., lower) semiFredholm operator, then T is called upper (resp., lower) semi- B-Fredholm operator. In this case index of T is defined as the index of semi- B-Fredholm operator $T_{[n]}$. A semi-B-Fredholm operator is an upper or lower semi-Fredholm operator [11]. Moreover, if $T_{[n]}$ is a Fredholm operator then T is called a B-Fredholm operator [9]. An operator T is called a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(T)$ is defined by $\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda$ is not B-Weyl operator $\}$ [12].

An operator $T \in \mathscr{B}(\mathscr{X})$ is called Drazin invertible if it has a finite ascent and descent. The Drazin spectrum $\sigma_{D}(T)$ of an operator T is defined by $\sigma_{D}(T)=\{\lambda \in$ $\mathbb{C}: T-\lambda$ is not a Drazin invertible $\}$. Define also the set $L D(\mathscr{X})$ by $L D(\mathscr{X})=\{T \in$ $\mathscr{B}(\mathscr{X}): a(T)<\infty$ and $\mathfrak{R}\left(T^{a(T)+1}\right)$ is closed $\}$ and $\sigma_{L D}(T)=\{\lambda \in \mathbb{C}: T-\lambda \notin L D(\mathscr{X})\}$. Following [14], an operator $T \in \mathscr{B}(\mathscr{X})$ is said to be left Drazin invertible if $T \in$ $L D(\mathscr{X})$. We say that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda \in L D(\mathscr{X})$, and that $\lambda \in \sigma_{a}(T)$ is a left pole of T of finite rank if λ is a left pole of T and $\alpha(T-\lambda)<\infty$. Let $\pi_{a}(T)$ denote the set of all left poles of T and let π_{a}^{0} denote the set of all left poles of T of finite rank. From [14, Theorem 2.8] it follows that if $T \in \mathscr{B}(\mathscr{X})$ is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index less than or equal to 0.

Let $\pi(T)$ be the set of all poles of the resolvent of T and let $\pi^{0}(T)$ be the set of all poles of the resolvent of T of finite rank, that is $\pi^{0}(T)=\{\lambda \in \pi(T): \alpha(T-\lambda)<\infty\}$. According to [24], a complex number λ is a pole of the resolvent of T if and only if $0<\max \{a(T-\lambda), d(T-\lambda)\}<\infty$. Moreover, if this is true then $a(T-\lambda)=d(T-\lambda)$.

According also to [24], the space $\mathfrak{R}\left((T-\lambda)^{a(T-\lambda)+1}\right)$ is closed for each $\lambda \in \pi(T)$. Hence we have always $\pi(T) \subset \pi_{a}(T)$ and $\pi^{0}(T) \subset \pi_{a}^{0}(T)$. We say that a-Browder's theorem holds for $T \in \mathscr{B}(\mathscr{X}), T \in a \mathfrak{B}$, if $\Delta_{a}(T)=\pi_{a}^{0}(T)$. Following [13], we say that generalized Weyl's theorem holds for $T \in \mathscr{B}(\mathscr{X}), T \in g^{\mathscr{W}}$ if $\Delta^{g}(T)=\sigma(T) \backslash$ $\sigma_{B W}(T)=E(T)$, where $E(T)=\{\lambda \in$ iso $\sigma(T): \alpha(T-\lambda)>0\}$ is the set of all isolated eigenvalues of T, and that generalized Browder's theorem holds for $T \in \mathscr{B}(\mathscr{X}), T \in$ $g \mathfrak{B}$, if $\Delta^{g}(T)=\pi(T)$. It is proved in [6, Theorem 2.1] that generalized Browder's theorem is equivalent to Browder's theorem. In [14, Theorem 3.9], it is shown that an operator satisfying generalized Weyl's theorem satisfies also Weyl's theorem, but the converse does not hold in general. Nonetheless and under the assumption $E(T)=\pi(T)$, it is proved in [15, Theorem 2.9] that generalized Weyl's theorem is equivalent to Weyl's theorem.

Let $S B F_{+}(\mathscr{X})$ be the class of all upper semi-B-Fredholm operators, $S B F_{+}^{-}(\mathscr{X})=$ $\left\{T \in S B F_{+}(\mathscr{X}): \operatorname{ind}(T) \leqslant 0\right\}$. The upper B-Weyl spectrum of T is defined by $\sigma_{S B F_{+}^{-}}(T)$ $=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S B F_{+}^{-}(\mathscr{X})\right\}$. We say that generalized a-Weyl's theorem holds for $T \in \mathscr{B}(\mathscr{X}), T \in g a \mathscr{W}$, if $\Delta_{a}^{g}(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$, where $E_{a}(T)=$ $\left\{\lambda \in\right.$ iso $\left.\sigma_{a}(T): \alpha(T-\lambda)>0\right\}$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$ and that $T \in \mathscr{B}(\mathscr{X})$ obeys generalized a-Browder's theorem, $T \in g a \mathfrak{B}$, if $\Delta_{a}^{g}(T)=\pi_{a}(T)$. It is proved in [6, Theorem 2.2] that generalized a-Browder's theorem is equivalent to a-Browder's theorem, and it is known from [14, Theorem 3.11] that an operator satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem, but the converse does not hold in general and under the assumption $E_{a}(T)=\pi_{a}(T)$ it is proved in [15, Theorem 2.10] that generalized a-Weyl's theorem is equivalent to a-Weyl's theorem.

The organization of the paper is as follows: In section 2, we study the property $(g t)$ in connection with Weyl type theorems. We prove that an operator T possessing property $(g t)$ possesses generalized a-Weyl's theorem, but the converse is not true in general as shown by Example 2.5. And we obtain the equivalence of generalized a Weyl's theorem and property $(g t)$ if the operator T is a generalized scalar. In section 3 , we study the stability of property $(g t)$ under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T. Section 4 is devoted to study the transfer of property $(g t)$ from a bounded linear operator T acting on a Banach space \mathscr{X} and a bounded linear operator S acting on a Banach space \mathscr{Y} to their tensor product $T \otimes S$.

2. Property $(g t)$ for bounded linear operators

Let $\Delta_{+}^{g}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$.
Definition 2.1. ([39]) An operator T acting on a Banach space \mathscr{X} obeys property $(g t)$ if the isolated points of the spectrum $\sigma(T)$ of T which are eigenvalues are exactly those points λ of the spectrum for which $T-\lambda$ is an upper semi- B Fredholm with index less than or equal to 0 , that is, $T \in \mathscr{B}(\mathscr{X})$ possesses property $(g t)$ if $\Delta_{+}^{g}(T)=E(T)$.

THEOREM 2.2. If $T \in \mathscr{B}(\mathscr{X})$ satisfies property $(g t)$, then $\sigma(T)=\sigma_{a}(T)$.
Proof. Since $\sigma_{a}(T) \subseteq \sigma(T)$ holds for every operator T, we need only to prove $\sigma(T) \subseteq \sigma_{a}(T)$. Let $\lambda \in \sigma(T)$. Since T satisfies property $(g t)$, we have $\lambda \in E(T)$. If $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$, then $\lambda \in$ iso $\sigma(T) \subseteq \sigma_{a}(T)$. If $\lambda \in \sigma_{S B F_{+}^{-}}(T)$, it is easy to see that $\lambda \in \sigma_{a}(T)$, that is, $\sigma(T)=\sigma_{a}(T)$.

THEOREM 2.3. If $T \in \mathscr{B}(\mathscr{X})$ obeys property $(g t)$, then $E(T)=E_{a}(T)$.
Proof. Suppose that T satisfies property $(g t)$, then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$, it follows from Theorem 2.2 that $\sigma(T)=\sigma_{a}(T)$, and so $E(T)=E_{a}(T)$.

Combining Theorems 2.2 and 2.3, we have
THEOREM 2.4. If $T \in \mathscr{B}(\mathscr{X})$ obeys property $(g t)$, then T satisfies generalized a-Weyl's theorem.

The following example shows that generalized a-Weyl's theorem is weaker than property $(g t)$.

EXAMPLE 2.5. Let $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be the unilateral right shift operator defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right) \text { for all } x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N})
$$

Then $\sigma(T)=\mathbb{D}, \sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T)=\partial \mathbb{D}$ and $E(T)=E_{a}(T)=\emptyset$, where \mathbb{D} denote the closed unit circle and $\partial \mathbb{D}$ denote the unit circle. It follows that $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=$ $E_{a}(T)$, then T satisfies generalized a-Weyl's theorem. Whilst T doesn't obeys property $(g t)$, since $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T) \neq E(T)$.

THEOREM 2.6. Let $T \in \mathscr{B}(\mathscr{X})$. Then T obeys property $(g t)$ if and only if the following conditions hold:
(i) T satisfies generalized a-Browder's theorem;
(ii) $\sigma(T)=\sigma_{a}(T)$;
(iii) $E(T)=\pi_{a}(T)$.

Proof. If T obeys property $(g t)$, it follows from [39, Propsition 2.7] and Theorem 2.2 that T satisfies generalized a-Browder's theorem, $E(T)=\pi_{a}(T)$ and $\sigma(T)=$ $\sigma_{a}(T)$. Conversely, if T satisfies generalized a-Browder's theorem, $E(T)=\pi_{a}(T)$ and $\sigma(T)=\sigma_{a}(T)$, then

$$
\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi_{a}(T)=E(T)
$$

that is, T obeys property $(g t)$.

THEOREM 2.7. Let $T \in \mathscr{B}(\mathscr{X})$. Then T obeys property $(g t)$ if and only if the following conditions hold:
(i) T satisfies generalized Browder's theorem;
(ii) $\quad \sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$;
(iii) $E(T)=\pi(T)$.

Proof. If T obeys property ($g t$), then it follows from [39, Theorem 2.10] that T satisfies generalized Weyl's theorem and $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$ and T satisfies generalized Browder's theorem and $E(T)=\pi(T)$. On the other hand, if T satisfies generalized Browder's theorem, $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$ and $E(T)=\pi(T)$, we have

$$
\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi(T)=E(T)
$$

that is, T obeys property $(g t)$.
Following [23] we say that $T \in \mathscr{B}(\mathscr{X})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathscr{X}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. An operator $T \in \mathscr{B}(\mathscr{X})$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$. An operator $T \in \mathscr{B}(\mathscr{X})$ has the SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. The identity theorem for analytic functions ensures that for every $T \in \mathscr{B}(\mathscr{X})$, both T and T^{*} have the SVEP at the points of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$. In particular, that both T and T^{*} have the SVEP at every isolated point of $\sigma(T)=\sigma\left(T^{*}\right)$. The SVEP is inherited by the restrictions to closed invariant subspaces, i.e., if $T \in \mathscr{B}(\mathscr{X})$ has the SVEP at λ_{0} and M is closed T-invariant subspace then $\left.T\right|_{M}$ has SVEP at λ_{0}. Let $S(T):=\{\lambda \in \mathbb{C}: T$ does not have the SVEP at $\lambda\}$. Observe that $T \in \mathscr{B}(\mathscr{X})$ has SVEP if and only if $S(T)=\emptyset$.

REMARK 2.8. If $T^{*} \in \mathscr{B}(\mathscr{X})$ has the SVEP, then it is known from [27, Page 35] that $\sigma(T)=\sigma_{a}(T)$ and from [38, Corollary 2.9] we have $\sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T)$. Hence $E_{a}(T)=E(T), \Delta^{g}(T)=\Delta_{a}^{g}(T)$ and $\Delta_{+}^{g}(T)=\Delta^{g}(T)$. Moreover, it is known that from [3, Theorem 2.6] that if T^{*} has the SVEP, then $\sigma_{S F_{+}^{-}}(T)=\sigma_{w}(T)$ and hence $E_{a}^{0}(T)=E^{0}(T), \Delta_{a}(T)=\Delta(T)$ and $\Delta_{+}(T)=\Delta(T)$.

Let $H_{n c}(\sigma(T))$ denote the set of all analytic functions, defined on an open neighborhood of $\sigma(T)$, such that f is non-constant on each of the components of its domain. Define, by the classical calculus, $f(T)$ for every $f \in H_{n c}(\sigma(T))$.

A bounded operator $T \in \mathscr{B}(\mathscr{X})$ is said to be polaroid (respectively, a-polaroid) if iso $\sigma(T)=\emptyset$ or every isolated point of $\sigma(T)$ is a pole of the resolvent of T (respectively, if iso $\sigma_{a}(T)=\emptyset$ or every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent of T).

THEOREM 2.9. Let T be a bounded linear operator on \mathscr{X} satisfying the SVEP. If $T-\lambda I$ has finite descent at every $\lambda \in E_{a}(T)$, then property (gt) holds for $f\left(T^{*}\right)$, for every $f \in H_{n c}(\sigma(T))$.

Proof. Let $\lambda \in E_{a}(T)$, then $p=d(T-\lambda I)<\infty$ and since T has the SVEP it follows that $a(T-\lambda I)=d(T-\lambda I)=p$ and hence λ is a pole of the resolvent of T of order p, consequently λ is an isolated point in $\sigma_{a}(T)$. Then $\mathscr{X}=K(T-\lambda I) \oplus$ $H_{0}(T-\lambda I)$, with $K(T-\lambda I)=\Re(T-\lambda I)^{p}$ is closed, Therefore, $\lambda \in \pi_{a}(T)$. Hence, T is a-polaroid. Now the result follows now from [39, Theorem 3.6].

The quasinilpotent part $H_{0}(T-\lambda I)$ and the analytic core $K(T-\lambda)$ of $T-\lambda$ are defined by

$$
H_{0}(T-\lambda):=\left\{x \in \mathscr{X}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and

$$
\begin{aligned}
K(T-\lambda)= & \left\{x \in \mathscr{X}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathscr{X} \text { and } \delta>0\right. \text { for which } \\
& \left.x=x_{0},(T-\lambda) x_{n+1}=x_{n} \text { and }\left\|x_{n}\right\| \leqslant \delta^{n}\|x\| \text { for all } n \in \mathbb{N}\right\} .
\end{aligned}
$$

We note that $H_{0}(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyper-invariant subspaces of $T-\lambda$ such that $(T-\lambda)^{-p}(0) \subseteq H_{0}(T-\lambda)$ for all $p=0,1, \cdots$ and $(T-\lambda) K(T-\lambda)=K(T-\lambda)$.

The class of operators $T \in \mathscr{B}(\mathscr{X})$ for which $K(T)=\{0\}$ was introduced and studied by M. Mbekhta in [28]. It was shown that for such operators, the spectrum is connected and the SVEP holds.

THEOREM 2.10. Let $T \in \mathscr{B}(\mathscr{X})$. If there exists λ such that $K(T-\lambda)=\{0\}$, then $f(T) \in g a \mathfrak{B}$, for every $f \in H_{n c}(\sigma(T))$. Moreover, if in addition $\operatorname{ker}(T-\lambda)=0$, then property $(g t)$ holds for $f(T)$

Proof. Since T has the SVEP, then by [6, Theorem 3.2], generalized a-Browder's theorem holds for $f(T)$. Let $\gamma \in \sigma(f(T))$, then

$$
f(z)-\gamma I=P(z) g(z)
$$

where g is complex-valued analytic function on a neighborhood of $\sigma(T)$ without any zeros in $\sigma(T)$ while P is a complex polynomial of the form $P(z)=\prod_{j=1}^{n}\left(z-\lambda_{j} I\right)^{k_{j}}$ with distinct roots $\lambda_{1}, \cdots, \lambda_{n} \in \sigma(T)$. Since $g(T)$ is invertible, then we deduce that

$$
\operatorname{ker}(f(T)-\gamma I)=\operatorname{ker}(P(T))=\bigoplus_{j=1}^{n} \operatorname{ker}\left(T-\lambda_{j} I\right)^{k_{j}}
$$

On the other hand, it follows from [28, Proposition 2.1] that $\sigma_{p}(T) \subseteq\{\lambda\}$. If we assume that $\operatorname{ker}(T-\lambda I)=0$, then $T-\lambda I$ is an injective and consequently $\sigma_{p}(T)=\emptyset$. Hence $\operatorname{ker}(f(T)-\lambda I)=0$. Therefore, $\sigma_{p}(f(T))=\emptyset$. Now, we prove that

$$
\pi^{a}(f(T))=E(f(T))
$$

Obviously, the condition $\sigma_{p}(f(T))=\emptyset$ entails that

$$
E(f(T))=E^{a}(f(T))=\emptyset
$$

On the other hand, the inclusion $\pi^{a}(f(T)) \subseteq E^{a}(f(T))$ holds for every operator $T \in$ $\mathscr{B}(\mathscr{X})$. So also $\pi^{a}(f(T))=\emptyset$. Hence property $(g w)$ and generalized a-Weyl's theorem hold for $f(T)$ and so $\sigma_{S B F_{+}^{-}}(f(T))=\sigma_{B W}(f(T))=\sigma(T)=\sigma_{a}(T)$. It then follows by [39, Theorem 2.10] that $f(T)$ obeys property $(g t)$.

In [29] Oudghiri introduced the class $H(p)$ of operators on Banach spaces for which there exists $p:=p(\lambda) \in \mathbb{N}$ such that

$$
H_{0}(\lambda I-T)=\operatorname{ker}(T-\lambda I)^{p} \quad \text { for all } \lambda \in \mathbb{C}
$$

Let $P(\mathscr{X})$ be the class of operators $T \in \mathscr{B}(\mathscr{X})$ having the property $H(p)$. The class $P(\mathscr{X})$ contains the classes of subscalar, algebraically $w F(p, q, r)$ operators with $p, r>$ 0 and $q \geqslant 1$ [37], algebraically w-hyponormal operators [34], algebraically quasi-class (A, k) [33]. It is known that if $H_{0}(T-\lambda I)$ is closed for every complex number λ, then T has the SVEP (see [1,25]). So that, the SVEP is shared by all operators of $P(\mathscr{X})$. Moreover, T is polaroid, see [2, Lemma 3.3].

THEOREM 2.11. Let T be a bounded operator on \mathscr{X}. If there exists a function $g \in H_{n c}(\sigma(T))$ such that $g\left(T^{*}\right) \in P\left(\mathscr{X}^{*}\right)$, then property $(g t)$ holds for $f(T)$, for every $f \in H_{n c}(\sigma(T))$.

Proof. Suppose that $g\left(T^{*}\right) \in P\left(\mathscr{X}^{*}\right)$, then by [29, Theorem 3.4], we have $T^{*} \in$ $P\left(\mathscr{X}^{*}\right)$. Since T^{*} has the SVEP, then as it had been already mentioned, we have

$$
\sigma_{a}(T)=\sigma(T), \sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T), E_{a}(T)=E(T) \text { and } \quad \Delta_{+}^{g}(T)=\Delta_{+}(T)
$$

it suffices to show that $\pi_{a}(T)=E_{a}(T)$. For this let $\lambda \in E_{a}(T)$, then λ is an isolated eigenvalue of $\sigma_{a}(T)$. So $\mathscr{X}^{*}=H_{0}\left(T^{*}-\bar{\lambda}\right) \oplus K\left(T^{*}-\bar{\lambda}\right)$, where the direct sum is topological. Since $T^{*} \in P\left(\mathscr{X}^{*}\right)$, then there exists $t=d_{\lambda} \in \mathbb{N}$ such that $H_{0}\left(T^{*}-\bar{\lambda} I\right)=$ $\operatorname{ker}\left(T^{*}-\bar{\lambda} I\right)^{t}$, and hence $\mathscr{X}^{*}=\operatorname{ker}\left(T^{*}-\bar{\lambda}\right)^{t} \oplus K\left(T^{*}-\bar{\lambda}\right)$. Since

$$
\mathfrak{R}\left((T-\bar{\lambda} I)^{t}\right)=(T-\bar{\lambda})^{t}(K(T-\bar{\lambda} I))=K(T-\bar{\lambda} I),
$$

so

$$
\mathscr{X}=\operatorname{ker}(T-\bar{\lambda} I)^{t} \oplus \mathfrak{R}\left((T-\bar{\lambda} I)^{t}\right),
$$

which implies, by [1, Theorem 3.6], that $a\left(T^{*}-\bar{\lambda} I\right)=d(T-\bar{\lambda} I) \leqslant t$, hence $\bar{\lambda}$ is a pole of the resolvent of T^{*}, so that T^{*} is polaroid. Hence we have $\mathscr{X}^{*}=\operatorname{ker}\left(T^{*}-\right.$ $\bar{\lambda} I)^{t} \oplus \Re\left(T^{*}-\bar{\lambda} I\right)^{t}$ and $\Re\left(T^{*}-\bar{\lambda} I\right)^{t}$ is closed. Therefore, $\Re(T-\lambda I)$ is closed and $\mathscr{X}=\operatorname{ker}\left(T^{*}-\bar{\lambda} I\right)^{\perp} \oplus \mathfrak{R}\left(T^{*}-\bar{\lambda} I\right)^{\perp}=\operatorname{ker}(T-\lambda I) \oplus \mathfrak{R}(T-\lambda I)$. So $\lambda \in \pi_{a}(T)$. As T^{*} has the SVEP and T is polaroid, then $f(T)$ satisfies property ($g t$) for every $f \in$ $H_{n c}(\sigma(T))$ by [39, Theorem 3.6].

THEOREM 2.12. Suppose that $T \in \mathscr{B}(\mathscr{X})$ is generalized scalar. Then T satisfies property $(g t)$ if and only if T satisfies generalized Weyl's theorem

Proof. If T is generalized scalar then both T and T^{*} has SVEP. Moreover, T is polaroid since every generalized scalar has the property $H(p)$. Then T satisfies property $(g t)$ by [39, Theorem 3.5]. The equivalence then follows from [39, Theorem 2.10].

EXAMPLE 2.13. Property $(g t)$, as well as generalized Weyl's theorem, is not transmitted from T to its dual T^{*}. To see this, consider the weighted right shift $T \in \mathscr{B}\left(\ell^{2}(\mathbb{N})\right)$, defined by

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{x_{1}}{2}, \frac{x_{2}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Then

$$
T^{*}\left(x_{1}, x_{2}, \cdots\right):=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Both T and T^{*} are quasi-nilpotent, and hence are decomposable, T satisfies generalized Weyl's theorem since $\sigma(T)=\sigma_{B W}(T)=\{0\}$ and $E(T)=\pi(T)=\emptyset$ and hence T has property $(g t)$. On the other hand, we have $\sigma\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)=\sigma_{S B F_{+}^{-}}\left(T^{*}\right)=$ $E_{a}\left(T^{*}\right)=\sigma_{B W}\left(T^{*}\right)=E\left(T^{*}\right)=\{0\}$ and $\pi_{a}\left(T^{*}\right)=\emptyset$, so T^{*} does not satisfy generalized Weyl's theorem (and nor generalized a-Weyl's theorem). Although T^{*} has SVEP, But T^{*} does not satisfy property $(g t)$.

3. Property ($g t$) under perturbations

we shall consider nilpotent perturbations of operators satisfying property $(g t)$. It easy to check that if N is a nilpotent operator commuting with T, then

$$
\begin{equation*}
\sigma(T)=\sigma(T+N) \text { and } \sigma_{a}(T)=\sigma_{a}(T+N) \tag{3.1}
\end{equation*}
$$

Hence it follows from Equation (3.1)

$$
\begin{equation*}
E^{0}(T)=E^{0}(T+N), \quad E_{a}^{0}(T)=E_{a}^{0}(T+N), \quad E(T)=E(T+N) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{a}(T)=E_{a}(T+N) \tag{3.3}
\end{equation*}
$$

By [43, Corollary 3.8] we have

$$
\begin{equation*}
\pi_{a}(T)=\pi_{a}(T+N) \text { and } \pi(T)=\pi(T+N) \tag{3.4}
\end{equation*}
$$

THEOREM 3.1. Suppose that $T \in \mathscr{B}(\mathscr{X})$ and $N \in \mathscr{B}(\mathscr{X})$ is a nilpotent operator commuting with T. Then T obeys property $(g t)$ if and only if $T+N$ obeys property $(g t)$.

Proof. Suppose that T obeys property $(g t)$ we have $\Delta_{+}^{g}(T)=E(T)$. It follows from [43, Corollary 3.1] that $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+N)$. Hence

$$
E(T+N)=E(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)
$$

That is, $T+N$ obeys property $(g t)$. The converse follows by symmetry.
The next example shows that the commutativity hypothesis in Theorem 3.1 is essential.

Example 3.2. Let $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{1}}{2}, \frac{x_{2}}{4}, \frac{x_{3}}{8}, \cdots\right) \text { for all } x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N})
$$

and

$$
N\left(x_{1}, x_{2}, \cdots\right)=\left(0,0,-\frac{x_{1}}{2}, 0,0, \cdots\right) \text { for all } x=\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N})
$$

Clearly N is nilpotent, $\sigma(T)=\sigma_{S B F_{+}^{-}}(T)=\{0\}$ and $E(T)=\emptyset$. If follows that $\sigma(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=E(T)$, i.e., T obeys property $(g t)$. On the other hand, $\sigma(T+N)=$ $\sigma_{S B F_{+}^{-}}(T+N)=\{0\}$ and $E(T+N)=\{0\}$, it follows that $\sigma(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=$ $\emptyset \neq E(T+N)$, that is, $T+N$ doesn't obeys property $(g t)$.

THEOREM 3.3. Suppose that $T \in \mathscr{B}(\mathscr{X})$ is polaroid, $N \in \mathscr{B}(\mathscr{X})$ is a nilpotent operator commuting with T. If T^{*} has SVEP and $f \in H_{n c}(\sigma(T))$ then property ($g t$) holds for $f(T)+N$.

Proof. By [39, Theorem 3.5], T satisfies property $(g t)$. The SVEP for T^{*} implies that $\sigma(T)=\sigma_{a}(T)$, so every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent of T. It follows from [39, Theorem 3.7] that property $(g t)$ holds for $f(T)$. Since $\sigma(f(T))=$ $f(\sigma(T))=f\left(\sigma_{a}(T)\right)=\sigma_{a}(f(T))$ we have by Theorem 3.1 $f(T)+N$ satisfies property (gt).

REMARK 3.4. It is somewhat meaningful to ask what we can say about the operators $f(T+N)$, always under the assumptions of Theorem 3.3. Now, if T is polaroid then $T+N$ is polaroid, by [3, Theorem 2.10]. Moreover, by $T^{*}+N^{*}=(T+N)^{*}$ has SVEP by [1, Corollary 2.12]. Hence by [39, Theorem 3.7] $f(T+N)$ satisfies property $(g t)$ for every $f \in H_{n c}(\sigma(T))$.

Note that Theorem 3.1 does not extend to commuting finite rank operators as shown by the following example.

Example 3.5. Let $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be an injective quasinilpotent operator and let $U: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by $U\left(x_{1}, x_{2}, \cdots\right)=\left(-\frac{x_{1}}{2}, 0,0, \cdots\right)$ for all $x=$ $\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2}(\mathbb{N})$. Define

$$
T=\left(\begin{array}{cc}
\frac{1}{2} I & 0 \\
0 & S
\end{array}\right) \text { and } F=\left(\begin{array}{cc}
U & 0 \\
0 & 0
\end{array}\right)
$$

Then $\sigma(T)=\sigma_{S B F_{+}^{-}}(T)=\left\{0, \frac{1}{2}\right\}$ and $E(T)=\emptyset$. It follows that $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=$ $E(T)$, i.e., T obeys property $(g t)$. On the other hand, since $\sigma(T+F)=\sigma_{S B F_{+}^{-}}(T+$ $F)=\left\{0, \frac{1}{2}\right\}$ and $E(T+F)=\{0\}$, then $\sigma(T+F) \backslash \sigma_{S B F_{+}^{-}}(T+F)=\emptyset \neq E(T+F)$, i.e., $T+F$ does not obeys property $(g t)$. Note that F is finite rank operator commuting with T.

Lemma 3.6. Suppose that $T \in \mathscr{B}(\mathscr{X})$ obeys property $(g t)$ and F is a finite operator commuting with T such that $\sigma_{a}(T+F)=\sigma_{a}(T)$. Then $\pi_{a}(T+F) \subseteq E(T+$ $F)$.

Proof. As T obeys property $(g t)$ then it follows from [39, Theorem 2.4] that T obeys property $(g w)$ and hence the result then follows by [36, Lemma 2.13].

Recall that a bounded operator $T \in \mathscr{B}(\mathscr{X})$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T.

THEOREM 3.7. Suppose that $T \in \mathscr{B}(\mathscr{X})$ is isoloid, F is an operator that commutes with T and for which there exists a positive integer n such that F^{n} is finite rank. If T satisfies property $(g t)$, then $T+F$ satisfies property $(g t)$.

Proof. Suppose that T obeys property ($g t$). It follows from [39, Proposition 2.8] that T satisfies generalized Browder's theorem and $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$, and hence $T+F$ satisfies generalized Browder's theorem and $\sigma_{B W}(T+F)=\sigma_{S B F_{+}^{-}}(T+F)$. By Theorem 2.7, in order to show that $T+F$ satisfies property $(g t)$, we need only to show $\pi(T+F)=E(T+F)$. Since $\pi(T+F) \subseteq E(T+F)$ holds for every operator, it is sufficient to prove $E(T+F) \subseteq \pi(T+F)$. Let $\lambda \in E(T+F)$. If $T-\lambda$ is invertible, then $T+F-\lambda$ is B-Fredholm, and hence $\lambda \in E(T+F)$. If $\lambda \in \sigma(T)$, it follows from [30, Lemma 2.3] that $\lambda \in \operatorname{iso} \sigma(T)$. Since T is isoloid, we have $0<\alpha(T+F)$ as F^{n} is a finite rank operator commuting with $T,\left.(T+F-\lambda)^{n}\right|_{\operatorname{ker}(T-\lambda)}=\left.F^{n}\right|_{\operatorname{ker}(T-\lambda)}$ has finite-dimension range and kernel, it is easy to obtain that $\alpha(\lambda-T)<\infty$, i.e., $\lambda \in E^{0}(T)$. We have $\lambda \in \pi^{0}(T)$ by Theorem 2.7, then $\lambda-T$ is Browder. It follows that $\lambda-(T+F)$ is also Browder, hence $\lambda \in \sigma(T+F) \backslash \sigma_{b}(T+F)=\pi^{0}(T+F)$, i.e., $T+F$ satisfies property $(g t)$.

The following example shows that Theorem 3.7 fails if we do not assume that T is isoloid.

Example 3.8. Let T be defined as in Example 3.5. Then $\sigma(T)=\sigma_{S B F_{+}^{-}}(T)=$ $\left\{0, \frac{1}{2}\right\}$ and $E(T)=\emptyset$, it follows that $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$, i.e., T obeys property $(g t)$. On the other hand, since $\sigma(T+F)=\sigma_{S B F_{+}^{-}}(T+F)=\left\{0, \frac{1}{2}\right\}$ and $E(T+F)=$ $\{0\}$, then $\sigma(T+F) \backslash \sigma_{S B F_{+}^{-}}(T+F)=\emptyset \neq E(T+F)$, i.e., $T+F$ does not obey property $(g t)$. It is easy to verify that F^{n} is a finite rank operator commuting with T and T is not isoloid.

Corollary 3.9. Suppose that $T \in \mathscr{B}(\mathscr{X})$ is isoloid, F is a finite rank operator that commutes with T. If T satisfies property $(g t)$, then $T+F$ satisfies property $(g t)$.

Theorem 3.10. Suppose $T \in \mathscr{B}(\mathscr{X})$ and iso $\sigma_{a}(T)=\emptyset$. If T obeys property $(g t)$ and F is a finite rank operator commuting with T, then $T+F$ obeys property ($g t$).

Proof. Suppose that T obeys property $(g t)$. It follows from Theorem 2.7 that T satisfies generalized Browder's theorem, $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$ and $\pi(T)=E(T)$ and hence $T+F$ satisfies generalized Browder's theorem and so

$$
\begin{aligned}
\sigma_{B W}(T+F) & =\sigma_{D}(T+F)=\sigma_{D}(T)=\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T) \\
& =\sigma_{L D}(T)=\sigma_{L D}(T+F)=\sigma_{S B F_{+}^{-}}(T+F)
\end{aligned}
$$

i.e., $\sigma_{B W}(T+F)=\sigma_{S B F_{+}^{-}}(T+F)$. In order to show that $T+F$ obeys property ($g t$), we need only to show $\pi(T+F)=E(T+F)$. Since $\pi(T+F) \subseteq E(T+F)$ holds for every operator, it is sufficient to prove $E(T+F) \subseteq \pi(T+F)$. Since iso $\sigma_{a}(T)=\emptyset$ and F is a finite rank operator commuting with T, by [5, Theorem 2.8] that $\sigma_{a}(T)=\sigma_{a}(T+F)$, then iso $\sigma_{a}(T+F)=\emptyset$. Since iso $\sigma(T+F) \subseteq$ iso $\sigma_{a}(T+F)$, iso $\sigma(T+F)=\emptyset$. It follows that $E(T+F)=\emptyset$ and so $E(T+F) \subseteq \pi(T+F)$, i.e., $T+F$ obeys property ($g t$).

Recall that $T \in \mathscr{B}(\mathscr{X})$ is said to be a Riesz operator if $T-\lambda \in \mathfrak{F}$ for all $\lambda \in \mathbb{C} \backslash$ $\{0\}$. Evidently, quasi-nilpotent operators and compact operators are Riesz operators.

EXAMPLE 3.11. In general property $(g t)$ is not transmitted from an operator to a commuting quasinilpotent perturbation as the following example shows.

If we consider on the Hilbert space $\ell^{2}(\mathbb{N})$ the operators $T=0$ and Q defined by

$$
Q\left(x_{1}, x_{2}, \cdots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all } x_{n} \in \ell^{2}(\mathbb{N})
$$

Then Q is quasinilpotent operator commuting with T. Moreover, we have $\sigma(T)=$ $\{0\}, \sigma_{S B F_{+}^{-}}(T)=\emptyset, E(T)=\{0\}$. Hence T obeys property $(g t)$. But property ($g t$) fails for $T+Q=Q$. Indeed, $\sigma_{S B F_{+}^{-}}(T+Q)=\{0\}, E(T+Q)=E(T)=\{0\}$ and $\sigma(T+Q)=$ $\{0\}$.

REMARK 3.12. It is well-known that if Q is a quasi-nilpotent operator commuting with T then

$$
\sigma(T+Q)=\sigma(T) \quad \text { and } \quad \sigma_{a}(T+Q)=\sigma_{a}(T)
$$

ThEOREM 3.13. Let $T \in \mathscr{B}(\mathscr{X})$ and Q is a quasinilpotent which is commutes with T. If T obeys property $(g t)$ and has the SVEP, then $T+Q$ obeys property $(g t)$.

Proof. It follows from [10, Lemma 2.5, Lemma 2.7] that $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+$ $Q)$ and $E(T)=E(T+Q)$. As T obeys property $(g t)$ we have $\Delta_{+}^{g}(T)=E(T)$. Hence $E(T+Q)=E(T)=\Delta_{+}^{g}(T)=\Delta_{+}^{g}(T+Q)$. That is, $T+Q$ obeys property $(g t)$.

THEOREM 3.14. Let $T \in \mathscr{B}(\mathscr{X})$ and $F \in \mathscr{B}(\mathscr{X})$ be a finite rank operator commuting with T. If T obeys property $(g t)$, then the following assertions are equivalent.
(a) $T+F$ obeys property $(g t)$;
(b) $E(T+F)=\pi_{a}(T+F)$;
(c) $E(T+F) \cap \sigma(T) \subset E(T)$.

Proof. (a) \Leftrightarrow (b) If $T+F$ obeys property ($g t$), then from [39, Proposition 2.8], $E(T+F)=\pi_{a}(T+F)$. Conversely, assume that $E(T+F)=\pi_{a}(T+F)$, since T obeys property $(g t)$, then by [39, Proposition 2.8], T satisfies generalized a-Browder's theorem and hence $\sigma_{L D}(T)=\sigma_{S B F_{+}^{-}}(T)$. Since F is a finite rank, from [16, Lemma 2.3] we have $\sigma_{L D}(T+F)=\sigma_{B F}(T+F)$. As T commutes with F, from [17, Theorem 2.1] we have $\sigma_{L D}(T)=\sigma_{L D}(T+F)$. So $\sigma_{L D}(T+F)=\sigma_{S B F_{+}^{-}}(T+F)$. As $E(T+F)=$ $\pi_{a}(T+F)$, then from [7, Theorem 2.6], $T+F$ satisfies property $(g w)$. Since $\sigma(T)=$ $\sigma(T+F)$, it then follows by [39, Theorem 2.4] that $T+F$ obeys property $(g t)$.
(c) \Rightarrow (b) Assume that $E(T+F) \cap \sigma(T) \subset E(T)$. Let $\lambda \in E(T+F)$. If $\lambda \notin$ $\sigma(T)$, then $\lambda \notin \sigma_{L D}(T)$. Since F commutes with T, from [14, Theorem 4.2] we have $\sigma_{L D}(T)=\sigma_{L D}(T+F)$. As $\lambda \in \sigma(T+F)$, then $\lambda \in \pi_{a}(T+F)$. If $\lambda \in \sigma(T)$, then $\lambda \in E(T+F) \cap \sigma(T)$ and by hypothesis we have $\lambda \in E(T)$. As T obeys property $(g t)$, it follows that $\lambda \in \pi_{a}(T)$. As $\sigma_{L D}(T)=\sigma_{L D}(T+F)$ and $\lambda \in \sigma(T+F)$ then $\lambda \in \pi_{a}(T+F)$. Finally we have $E(T+F) \subseteq \pi_{a}(T+F)$. Conversely, assume that $\lambda \in \pi_{a}(T+F)$, then $\lambda \notin \sigma_{L D}(T+F)=\sigma_{L D}(T)$. As T obeys property $(g t)$ then $\lambda \notin \sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+F)$. and $E(T)=\pi_{a}(T)$ Hence λ is an isolated point of $\sigma(T)=\sigma\left(T^{*}\right)$ and therefore, both T and T^{*} have SVEP at λ. Since $T-\lambda I \in g a \mathfrak{B}$ it then follows that $0<m=a(T-\lambda I)=d(T-\lambda I)<\infty$. Furthermore, since $\lambda \in E(T)$ we also have $\alpha(T-\lambda I)>0$, thus $T-\lambda I \in g a \mathfrak{B}$ and hence also $T+Q-\lambda I \in g a \mathfrak{B}$, by [26, Theorem 2.1]. Hence λ is an isolated point of $\sigma(T+Q)$ and $\alpha(T+Q-\lambda I)>0$. On the other hand, $(T+Q-\lambda I)^{m+1}$ has closed range and since $\lambda \in \sigma_{a}(T+Q)$ it then follows that $\alpha(T+Q-\lambda I)>0$. Thus $\lambda \in E(T+Q)$.
(b) \Rightarrow (c) Assume that $E(T+F)=\pi_{a}(T+F)$ and let $\lambda \in \pi_{a}(T+F) \cap \sigma(T)$, then $\lambda \in E(T+F) \cap \sigma(T)$. Therefore $\lambda \notin \sigma_{L D}(T+F)$. As $\sigma_{L D}(T+F)=\sigma_{L D}(T)$ and $\lambda \in \sigma(T)$, then $\lambda \in \pi_{a}(T)$. As T obeys property $(g t)$ we have $\lambda \in E(T)$.

In the next theorem, we consider an operator $T \in \mathscr{B}(\mathscr{X})$ obeying property $(g t)$, a nilpotent operator commuting with T, and we give a necessary and sufficient condition for $T+N$ to obey property $(g t)$.

THEOREM 3.15. Let $T \in \mathscr{B}(\mathscr{X})$ and $N \in \mathscr{B}(\mathscr{X})$ be a nilpotent operator commuting with T. If T obeys property $(g t)$, then the following assertions are equivalent.
(a) $T+N$ obeys property $(g t)$;
(b) $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$;
(c) $E(T)=\pi_{a}(T+N)$ and $\sigma_{a}(T+N)=\sigma(T+N)$.

Proof. (a) \Leftrightarrow (b) Assume that $T+N$ obeys property $(g t)$, then

$$
\sigma(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E(T+N)
$$

As $\sigma(T+N)=\sigma(T)$ and $E(T)=E(T+N)$, then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E(T)$. Since T obeys property $(g t)$, then $\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$. So $\sigma_{S B F_{+}^{-}}(T+N)=$ $\sigma_{S B F_{+}^{-}}(T)$. Conversely, assume that $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$, then as T obeys property $(g t)$ it follows that $T+N$ obeys property $(g t)$.
(a) \Leftrightarrow (c) Assume that $T+N$ obeys property ($g t$), then from [39, Proposition 2.8] that $E(T+N)=\pi_{a}(T+N)$. Hence $E(T)=\pi_{a}(T+N)$. By [39, Theorem 2.6], we give $\sigma(T+N)=\sigma_{a}(T+N)$. Conversely, assume that $E(T)=\pi_{a}(T+N)$. Since T obeys property $(g t)$, then by [39, Theorem 2.4] that T obeys property $(g w)$. By [43, Theorem 3.1] we have $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$. Hence

$$
\begin{aligned}
E(T+N) & =E(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N) \\
& =\sigma(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)
\end{aligned}
$$

That is $T+N$ obeys property $(g t)$.
DEFINITION 3.16. A bounded linear operator T is said to be algebraic if there exists a non-trivial polynomial h such that $h(T)=0$.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K are algebraic; more generally, if K^{n} is a finite rank operator for some $n \in \mathbb{N}$ then K is algebraic. Clearly, if T is algebraic then its dual T^{*} is algebraic, as well as T^{\prime} in the case of Hilbert space operators.

THEOREM 3.17. Suppose that $T \in \mathscr{B}(\mathscr{X})$ and $K \in \mathscr{B}(\mathscr{X})$ is an algebraic operator which commutes with T.
(i) If T^{*} is hereditarily polaroid and has SVEP, then $T+K$ obeys property ($g t$).
(ii) If T is hereditarily polaroid and has SVEP, then $T^{*}+K^{*}$ obeys property $(g t)$.

Proof. (i) Obviously, K^{*} is algebraic and commutes with T^{*}. Moreover, by [5, Theorem 2.15], we have $T^{*}+K^{*}$ is polaroid, or equivalently, $T+K$ is polaroid. Since T^{*} has SVEP then by [3, Theorem 2.14], we have $T^{*}+K^{*}$ has SVEP. Therefore, $T+K$ obeys property $(g t)$ by [39, Theorem 3.5 (i)].
(ii) It follows from the proof of Theorem 2.15 of [5] that $T+K$ is polaroid and hence by duality $T^{*}+K^{*}$ is polaroid. Since T has SVEP then it follows from [3, Theorem 2.14] that $T+K$ has SVEP. Therefore, $T^{*}+K^{*}$ obeys property $(g t)$ by [39, Theorem 3.5 (ii)].

THEOREM 3.18. Suppose that $T \in \mathscr{B}(\mathscr{X})$ and $K \in \mathscr{B}(\mathscr{X})$ is an algebraic operator which commutes with T.
(i) If T^{*} is hereditarily polaroid and has SVEP, then $f(T+K)$ obeys property ($g t$) for all $f \in H_{n c}(\sigma(T))$.
(ii) If T is hereditarily polaroid and has SVEP, then $f\left(T^{*}+K^{*}\right)$ obeys property ($g t$) for all $f \in H_{n c}(\sigma(T))$.

Proof. (i) We conclude from [5, Theorem 2.15] that $T+K$ is polaroid and hence by [4, Lemma 3.11], we have $f(T+K)$ is polaroid and from [3, Theorem 2.14] that $T^{*}+K^{*}$ has SVEP. The SVEP of $T^{*}+K^{*}$ entails the SVEP for $f\left(T^{*}+K^{*}\right)$ by $[1$, Theorem 2.40]. So, $f(T+K)$ obeys property ($g t$) by [39, Theorem 3.7 (i)].
(ii) The proof of part (ii) is analogous.

4. Property $(g t)$ and tensor products

Let $\sigma_{s}(S)=\{\lambda \in \sigma(S): S-\lambda$ is not surjective $\}$ denote, the surjectivity spectrum. Let $\Psi_{-}(\mathscr{X})$ be the class of all lower semi B-Fredholm operators, $\Psi_{-}^{+}(\mathscr{X})=\{S \in$ $\left.\Psi_{-}(\mathscr{X}): \operatorname{ind}(S-\lambda) \geqslant 0\right\}$. The lower semi B-Weyl spectrum of S is defined by $\sigma_{S B F_{-}^{+}}(S)=\left\{\lambda \in \mathbb{C}: S-\lambda \notin \Psi_{-}^{+}(\mathscr{X})\right\}$. Define $R D(\mathscr{X})=\{S \in \mathscr{B}(\mathscr{X}): d s c(S)=$ $d<\infty$ and $\Re\left(S^{d+1}\right)$ is closed $\}$. The right Drazin spectrum is defined by $\sigma_{R D}(S)=$ $\{\lambda \in \mathbb{C}: S-\lambda \notin R D(\mathscr{X})\}$. It is not difficult to see that $\sigma_{D}(S)=\sigma_{L D}(S) \cup \sigma_{R D}(S)$. Moreover, $\sigma_{L D}(S)=\sigma_{R D}\left(S^{*}\right)$ [8]. Then S satisfies generalized s-Browder's theorem if $\sigma_{S B F_{-}^{+}}(S)=\sigma_{R D}(S)$. Apparently, S satisfies generalized s-Browder's theorem if and only if S^{*} satisfies generalized a-Browder's theorem. A necessary and sufficient condition for S to satisfy generalized a-Browder's theorem is that S has SVEP at every $\lambda \in \Delta_{a}^{g}(S)$ [20, Theorem 3.1]; by duality, S satisfies generalized s-Browder's theorem if and only if S^{*} has SVEP at every $\lambda \in \sigma_{s}(S) \backslash \sigma_{S B F_{-}^{+}}(S)$. More generally, if either of S and S^{*} has SVEP, then S and S^{*} satisfy both generalized a-Browder's theorem and generalized s-Browder's theorem. Either of generalized a-Browder's theorem and generalized s-Browder's theorem implies generalized Browder's theorem, but the converse is false. generalized a-Browder's theorem fails to transfer from A and B to $A \otimes B$ [21, Example 1].

The problem of transferring property $(B b)$, property $(S w)$, generalized Weyl's theorem and Property $(g w)$ from operators T and S to their tensor product $T \otimes S$ was considered in [41], [40], [42]. The main objective of this section is to study the transfer of property $(g t)$ from a bounded linear operator T acting on a Banach space \mathscr{X} and a bounded linear operator S acting on a Banach space \mathscr{Y} to their tensor product $T \otimes S$.

Theorem 4.1. Let $T \in \mathscr{B}(\mathscr{X})$ and $S \in \mathscr{B}(\mathscr{Y})$ such that T and S are isoloid and $0 \notin$ iso $\sigma(T \otimes S)$. If property ($g t)$ holds for T and S, then the following statements are equivalent.
(a) $T \otimes S$ satisfies property $(g t)$.
(b) $\sigma_{S B F_{+}^{-}}(T \otimes S)=\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S)$.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: Assume that $T \otimes S$ satisfies property $(g t)$. Let

$$
\lambda \in E(T \otimes S)=\sigma(T) \sigma_{S B F_{+}^{-}}(S) \cup \sigma_{S B F_{+}^{-}}(T) \sigma(S)
$$

Since $0 \notin$ iso $\sigma(T \otimes S)$, then $\lambda \neq 0$. Hence $\lambda \in$ iso $\sigma(T \otimes S)=$ iso $\sigma(T)$ iso $\sigma(S)$. That is, $\lambda=\mu \nu$ with $\mu \in$ iso $\sigma(T)$ and $v \in$ iso $\sigma(S)$. Since T and S are isoloid, then $\mu \in E(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$ and $v \in E(S)=\sigma(S) \backslash \sigma_{S B F_{+}^{-}}(S)$, and hence $\lambda=\mu v \notin$ $\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S)$. Thus

$$
\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S) \subseteq \sigma_{S B F_{+}^{-}}(T \otimes S)
$$

Conversely, let $\lambda \in \sigma(T \otimes S) \backslash\left(\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S)\right)$, then for $\lambda=\mu \nu$ we have that $\mu \in \sigma(T)$ and $v \in \sigma(S)$, hence $\mu \in E(T)$ and $v \in E(S)$. Thus $\lambda=\mu v \in$ $E(T \otimes S)=\sigma(T \otimes S) \backslash \sigma_{S B F_{+}^{-}}(T \otimes S)$. Therefore,

$$
\sigma_{S B F_{+}^{-}}(T \otimes S)=\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S)
$$

$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: Since T and S obey property $(g t)$, then

$$
\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T) \text { and } \sigma(S) \backslash \sigma_{S B F_{+}^{-}}(S)=E(S)
$$

Assume that

$$
\sigma_{S B F_{+}^{-}}(T \otimes S)=\sigma_{S B F_{+}^{-}}(T) \sigma(S) \cup \sigma(T) \sigma_{S B F_{+}^{-}}(S)
$$

Let $\lambda \in E(T \otimes S)$. Then there exists $\mu \in$ iso $\sigma(T)$ and $v \in$ iso $\sigma(S)$ such that $\lambda=\mu \nu$. Since T and S are isoloid, then $\mu \in E(T)$ and $v \in E(S)$. Hence $\mu \notin \sigma_{S B F_{+}^{-}}(T)$ and $v \notin \sigma_{S B F_{+}^{-}}(S)$. Then $\lambda \notin \sigma_{S B F_{+}^{-}}(T \otimes S)$. Thus

$$
E(T \otimes S) \subseteq \sigma(T \otimes S) \backslash \sigma_{S B F_{+}^{-}}(T \otimes S)
$$

Conversely, assume that $\lambda \notin \sigma(T \otimes S) \backslash \sigma_{S B F_{+}^{-}}(T \otimes S)$, then there exists $\mu \in \sigma(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)$ and $v \in \sigma(S) \backslash \sigma_{S B F_{+}^{-}}(S)$ such that $\lambda=\mu v$. Since

$$
T \otimes S=(T-\mu) \otimes S+\mu I \otimes(S-v)
$$

then we can see that $\lambda \in E(T \otimes S)$. Hence $T \otimes S$ obeys property $(g t)$.

Example 4.2. Let T be a non-zero nilpotent operator and let S be a quasinilpotent which is not nilpotent. Then it is easy to see that

$$
\sigma(T)=\{0\}=E(T), \sigma_{S B F_{+}^{-}}(T)=\emptyset \quad \text { and } \quad \sigma(S)=\sigma_{S B F_{+}^{-}}(S)=\{0\}, E(S)=\emptyset
$$

Hence T and S satisfy property $(g t)$. Since $T \otimes S$ is nilpotent then 0 is a pole and then $\sigma_{S B F_{+}^{-}}(T \otimes S)=\emptyset$. Hence $T \otimes S$ satisfies property $(g t)$. However

$$
\sigma(T) \sigma_{S B F_{+}^{-}}(S) \cup \sigma(S) \sigma_{S B F_{+}^{-}}(T)=\{0\} \neq \sigma_{S B F_{+}^{-}}(T \otimes S)
$$

Here $0 \in$ iso $\sigma(T \otimes S)$.
The following example show that there exist two operators $T, S \in \mathscr{B}(\mathscr{X})$ such that $T \otimes S$ obeys property $(g t)$ but T and S do not obey the property $(g t)$.

EXAMPLE 4.3. Let $S=U+U^{*}$, where U is the unilateral shift on ℓ^{2}. Since S is self-adjoint, then

$$
\sigma(S)=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\}
$$

and hence from [1] that

$$
\sigma_{B W}(S)=\sigma_{S B F_{+}^{-}}(S)=\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

Hence

$$
\sigma(S) \backslash \sigma_{S B F_{+}^{-}}(S)=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\} \backslash\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

Since $E(S)=\emptyset$, then property $(g t)$ fails for S. In the other hand, if I is the identity acting on ℓ^{2}, then $I \otimes S$ is self-adjoint, hence

$$
\sigma(I \otimes S)=\sigma_{S B F_{+}^{-}}(I \otimes S)=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\}
$$

Therefore,

$$
\sigma(I \otimes S) \backslash \sigma_{S B F_{+}^{-}}(I \otimes S)=\emptyset=E(I \otimes S)
$$

Thus $I \otimes S$ obeys property $(g t)$.
$T \in \mathscr{B}(\mathscr{X})$ is polaroid implies T^{*} polaroid. It is well known that if T or T^{*} has SVEP and T is polaroid, then T and T^{*} satisfy generalized Weyl's theorem. Note the well known fact, [39, Theorem 3.5], that if T is polaroid and T^{*} (resp., T) has SVEP, then T (resp., T^{*}) satisfies property $(g t)$. The following theorem is the tensor product analogue of this result.

THEOREM 4.4. Suppose that operators $T \in \mathscr{B}(\mathscr{X})$ and $S \in \mathscr{B}(\mathscr{Y})$ are polaroid.
(i) If T^{*} and S^{*} have $S V E P$, then $T \otimes S$ satisfies property $(g t)$.
(ii) If T and S have $S V E P$, then $T^{*} \otimes S^{*}$ satisfies property $(g t)$.

Proof. (i) The hypotheses T^{*} and S^{*} have SVEP implies
$\sigma(T)=\sigma_{a}(T), \quad \sigma(S)=\sigma_{a}(S), \quad \sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T), \quad \sigma_{S B F_{+}^{-}}(S)=\sigma_{B W}(S)$
and

$$
T^{*}, S^{*} \quad \text { and } T^{*} \otimes S^{*} \text { satisfy generalized } s \text {-Browder's theorem. }
$$

Thus generalized s-Browder's theorem and generalized Browder's theorem (generalized s-Browder's theorem \Longrightarrow generalized Browder's theorem) transfer from T^{*} and S^{*} to $T^{*} \otimes S^{*}$ [40]. Hence

$$
\begin{aligned}
\sigma_{S B F_{+}^{-}}(T \otimes S) & =\sigma_{S B F_{-}^{+}}\left(T^{*} \otimes S^{*}\right)=\sigma_{s}\left(T^{*}\right) \sigma_{S B F_{-}^{+}}\left(S^{*}\right) \cup \sigma_{S B F_{-}^{+}}\left(T^{*}\right) \sigma_{s}\left(S^{*}\right) \\
& =\sigma_{a}(T) \sigma_{S B F_{+}^{-}}(S) \cup \sigma_{S B F_{+}^{-}}(T) \sigma_{a}(S)=\sigma(T) \sigma_{B W}(S) \cup \sigma_{B W}(T) \sigma(S),
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{B W}(T \otimes S) & =\sigma_{B W}\left(T^{*} \otimes S^{*}\right)=\sigma_{B W}\left(T^{*}\right) \sigma\left(S^{*}\right) \cup \sigma_{B W}\left(S^{*}\right) \sigma\left(T^{*}\right) \\
& =\sigma(T) \sigma_{B W}(S) \cup \sigma(S) \sigma_{B W}(T)
\end{aligned}
$$

Consequently,

$$
\sigma_{S B F_{+}^{-}}(T \otimes S)=\sigma_{B W}(T \otimes S)
$$

Evidently, $T \otimes S$ is polaroid [22, Lemma 2]; combining this with $T \otimes S$ satisfies generalized Browder's theorem, it follows that $T \otimes S$ satisfies generalized Weyl's theorem, i.e., $\sigma(T \otimes S) \backslash \sigma_{B W}(T \otimes S)=E(T \otimes S)$. But then

$$
\sigma(T \otimes S) \backslash \sigma_{S B F_{+}^{-}}(T \otimes S)=\sigma(T \otimes S) \backslash \sigma_{B W}(T \otimes S)=E(T \otimes S)
$$

i.e., $T \otimes S$ satisfies property $(g t)$.
(ii) In this case $\sigma(T)=\sigma_{a}\left(T^{*}\right), \sigma(S)=\sigma_{a}\left(S^{*}\right), \sigma_{B W}\left(T^{*}\right)=\sigma_{S B F_{+}^{-}}\left(T^{*}\right), \sigma_{B W}\left(S^{*}\right)$ $=\sigma_{S B F_{+}^{-}}\left(S^{*}\right), \sigma\left(T^{*} \otimes S^{*}\right)=\sigma_{a}\left(T^{*} \otimes S^{*}\right)$, polaroid property transfer from T and S to $T^{*} \otimes S^{*}$, and both generalized s-Browder's theorem and generalized Browder's theorem transfer from T and S to $T \otimes S$. Hence

$$
\begin{aligned}
\sigma_{S B F_{+}^{-}}\left(T^{*} \otimes S^{*}\right) & =\sigma_{S B F_{-}^{+}}(T \otimes S)=\sigma_{s}(T) \sigma_{S B F_{-}^{+}}(S) \cup \sigma_{S B F_{-}^{+}}(T) \sigma_{s}(S) \\
& =\sigma_{a}\left(T^{*}\right) \sigma_{S B F_{+}^{-}}\left(S^{*}\right) \cup \sigma_{S B F_{+}^{-}}\left(T^{*}\right) \sigma_{a}\left(S^{*}\right) \\
& =\sigma(T) \sigma_{B W}(S) \cup \sigma_{B W}(T) \sigma(S) \\
& =\sigma_{B W}(T \otimes S)=\sigma_{B W}\left(T^{*} \otimes S^{*}\right)
\end{aligned}
$$

Thus, since $T^{*} \otimes S^{*}$ polaroid and $T \otimes S$ satisfies generalized Browder's theorem imply $T^{*} \otimes S^{*}$ satisfies generalized Weyl's theorem,

$$
\sigma\left(T^{*} \otimes S^{*}\right) \backslash \sigma_{S B F_{+}^{-}}\left(T^{*} \otimes S^{*}\right)=\sigma\left(T^{*} \otimes S^{*}\right) \backslash \sigma_{B W}\left(T^{*} \otimes S^{*}\right)=E\left(T^{*} \otimes S^{*}\right)
$$

i.e., $T^{*} \otimes S^{*}$ satisfies property $(g t)$.

REFERENCES

[1] P. AIENA, Fredholm and local spectral theory with applications to multipliers, Kluwer Acad. Publishers, Dordrecht, 2004.
[2] P. Aiena, C. Carpintero, Weyl's theorem, a-Weyl's theorem and single-valued extension property, Extracta Math. 20 (2005) 25-41.
[3] P. Aiena, J. R. Guillen and P. Peña, Property (w) for perturbations of polaroid operators, Linear Alg. Appl. 428 (2008), 1791-1802.
[4] P. Aiena, E. Aponte, Polaroid type operators under perturbations, Studia Math. 214, (2), (2013), 121-136.
[5] P. Aiena, E. Aponte, J. R. Guillen and P. Peña, Property (R) under perturbations, Mediterr. J. Math. 10 (1) (2013), 367-382.
[6] M. Amouch, H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), 179-?85.
[7] M. Amouch, M. Berkani, on the property ($g w$), Mediterr. J. Math. 5 (2008), 371-378.
[8] M. Amouch, H. Zguitti, B-Fredholm and Drazin invertible operators through localized SVEP, Math. Bohemica 136 (2011) 39-49.
[9] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations and Operator Theory. 34 (1999), no. 2, 244-249.
[10] M. Amouch, Polaroid operators with SVEP and perturbations of Property ($\mathrm{g} w)$, Mediterr. J. Math. 6 (2009), 461-?70.
[11] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457-465.
[12] M. Berkani, Index of B-Fredholm operators and gereralization of a Weyl Theorem, Proc. Amer. Math. Soc. 130 (2001), 1717-1723.
[13] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596-603.
[14] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), 359-376.
[15] M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sinica 272 (2007), 103-110.
[16] M. Berkani, M. Amouch, Preservation of property ($g w$) under perturbations, Acta Sci. Math. (Szeged) 74 (2008), 767-779.
[17] M. Berkani and H. Zariouh, Generalized a-Weyl's theorem and perturbations, Functional Analysis, Approximation and computation 2 (1) (2010), 7-18.
[18] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[19] H. R. Dowson, Spectral theory of linear operator, Academic press, London, 1978.
[20] B. P. Duggal, SVEP and generalized Weyl's theorem, Mediterr. J. Math. 4 (2007) 309-320.
[21] B. P. Duggal, S. V. Djordjevic̀, C. S. Kubrusly, On the a-Browder and a-Weyl spectra of tensor products, Rend. Circ. Mat. Palermo 59 (2010), 473-481.
[22] B. P. Duggal,, Tensor product and property (w), Rend. Circ. Mat. Palermo, doi:10.1007/s12215-011-0023-9.
[23] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
[24] H. Heuser, Functional analysis, Marcel Dekker, New York, 1982.
[25] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323-336.
[26] M. Lahrouz, M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin 55 (2005) 41-51.
[27] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon, 2000.
[28] M. Mbekhta, Sur la th'eorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc. 3 (1990), 621-631.
[29] M. Oudghiri, Weyl's and Browder's theorem for operators satysfying the SVEP, Studia Math. 163 (2004), 85-101.
[30] M. Oudghiri, Weyl's theorem and perturbations, Integr. Equ. Oper. Theory 70 (2011), 561-568.
[31] V. RAKOČEVIĆ, On a class of operators, Math. Vesnik 37 (1985), 423-426.
[32] V. RaKočEVIĆ, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10 (1986), 915-919.
[33] M. H. M. Rashid, Property (w) and quasi-class (A, k) operators, Revista De Le Unión Math. Argentina 52 (2011), 133-142.
[34] M. H. M. Rashid and M. S. M. Noorani, Weyl's type theorems for algebraically w-hyponormal operators, Arab. J. Sci. Eng. 35 (2010), 103-116.
[35] M. H. M Rashid, Property (gb) and perturbations, J. Math. Anal. Appl. 383 (2011), 82-94.
[36] M. H. M. Rashid, Property ($g w$) and perturbations, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 635-654.
[37] M. H. M. Rashid, Weyl's theorem for algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geqslant 1$, Ukrainian Math. J. 63 (8) (2011), 1256-1267.
[38] M. H. M. Rashid, Weyl's type theorems and hypercyclic operators, Acta Math. Sci. 32 (2) (2012), 539-551.
[39] M. H. M. Rashid, Properties (t) and (gt) For Bounded Linear Operators, Mediterr. J. Math. (2014) 11: 729, doi:10.1007/s00009-013-0313-x.
[40] M. H. M. Rashid, Generalized Weyl's theorem and tensor product, Ukrainian Math. J. 64 (9) (2013), 1289-1296.
[41] M. H. M. Rashid and T. Prasad, Property (Bb) and Tensor product, Filomat 27 (7) (2013), 1297-1303.
[42] M. H. M. Rashid and T. Prasad, The stability of variants of weyl type theorems under tensor product, Ukrainian Math. J. 68 (4) (2016), 612-624.
[43] Q. Zeng, Q. Jiang, and H. Zhong, Spectra originated from semi- B-Fredholm theory and commuting perturbations, arXiv:1203.2442vl[math. FA] 12 Mar 2012.
(Received March 5, 2021)
Mohammad H. M. Rashid
Department of Mathematics \& Statistics Faculty of Science P. O Box (7), Mu'tah University

Al-Karak-Jordan
e-mail: malik_okasha@yahoo.com
Mипео Chō
Department of Mathematics Faculty of Science, Kanagawa University

Hiratsuka 259-1293, Japan
e-mail: chiyom01@kanagawa-u.ac.jp

[^0]: Mathematics subject classification (2020): 47A10, 47A11, 47A53.
 Keywords and phrases: Weyl's theorem, Weyl spectrum, polaroid operators, property (gt).

