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Abstract. The problem of characterizing interpolating sequences in a bounded domain  ⊂ Cn

for the Banach algebra H() of bounded holomorphic functions is well-studied in the litera-
ture. For the unit disc D , the bidisc D

2 and the symmetrized bidisc G
2 , there is a way to such

a characterization via the realization formula that the function algebras H() possess in these
cases. Our aim in this article is to present such a characterization of interpolating sequences in
a more general setting for a class of Banach algebras that possess such a realization formula.
The closed unit ball of these Banach algebras are known as the Schur–Agler-class associated to
a class of test functions  on  . We shall also note that the case of D , D2 and G2 are special
cases of our main result. A few other examples of function algebras is also mentioned where our
main result applies leading to a characterization of interpolating sequences.

1. Introduction

1.1. Interpolating sequences: an overview

Let A be a Banach algebra of bounded functions on a domain  in Cn , for some
positive integer n , with the norm || • ||A which has the property that || f ||A � || f || :=
supz∈ | f (z)| for every f ∈ A . Let l(N) denote the Banach algebra of all bounded
sequences with sup-norm. Given a sequence {zi}i∈N ⊂  , we consider the following
linear map

L :
(
A , || • ||A

)−→ l(N), defined by L() := {(zi)}i∈N ∀  ∈ A . (1)

Observe that supi∈N |(zi)| � || || � || ||A , hence L is a bounded linear operator on
A . Consider the following abstract interpolation problem:

(IS) Given a Banach algebra (A , || • ||A ) of bounded functions on  with the prop-
erty that || ||A � || || for every  ∈A . Characterize those sequences {zi}i∈N

⊂ for which the bounded linear map L , as defined above, is a surjective map.
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A sequence {zi}i∈N ⊂ for which the map L is surjective will be called an inter-
polating sequence for the algebra A .

Note, if {zi}i∈N is an interpolating sequence for A it follows from the open map-
ping theorem that there exists a  > 0 such that l1 (N) := the closed unit ball of l(N) ,
is contained in L( A1) , where A1 denotes the closed unit ball of A in its norm.
The smallest of such a  is called the constant of interpolation for the interpolating
sequence {zi}i∈N ⊂  . This, in particular, implies that for each i ∈ N , there exists
i ∈ A with ||i||A � M , such that i(z j) = i, j , where i, j is the Kronecker symbol
and M is the constant of interpolation associated to {zi}i∈N . A sequence {zi}i∈N for
which there exists a sequence {i}i∈N ⊂A that is uniformly bounded and has the prop-
erty that i(z j) = i, j is called a strongly separated sequences. So every interpolating
sequence {zi}i∈N for A is strongly separated. Given a sequence {zi}i∈N , it is called
weakly separated by A if there exists R > 0 such that for each pair i �= j there exists
i, j ∈ A with ||i, j||A � R and i, j(zi) = 1, i, j(z j) = 0.

The problem (IS) originated in the case  = D , where D denotes the open unit
disc in the complex plane C centered at 0, and with A = H(D) := the set of bounded
holomorphic functions in the unit disc with the sup-norm. Carleson in 1958 proved the
following theorem.

RESULT 1. (Carleson, [13]) Let {i}i∈N ⊂ D be a sequence in D . Then the
following are equivalent.

1. {i}i∈N is an interpolating sequence for H(D) .

2. {i}i∈N is weakly separated and the atomic measure i∈N

(
1− |i|2

)
i is a

Carleson measure for the Hardy space H2(D) .

3. {i}i∈N is strongly separated.

The reader is referred to [2, Chapter 9] for the definition of Carleson measure.
What is essential here is that the Carleson measure condition can be equivalently stated
in terms of the boundedness of the Grammian operator on l2 corresponding to the
Szegő kernel on D . For this purpose let us introduce the Grammian associated with a
positive kernel k on  . (See Section 2 for the definition of a positive kernel k and the
reproducing kernel Hilbert space Hk that is associated to it.) Given a positive kernel
k on  and a sequence {zi}i∈N ⊂  , let us denote by ki the kernel function at zi , i.e.,
k(•,zi) and write ki, j := 〈k j, ki〉 . Let gi := ki/||ki|| be the normalized kernel functions.
The Grammian associated to the sequence {zi}i∈N is the infinite matrix G given by

Gi, j := 〈g j, gi〉 =
ki, j

||ki|| ||k j|| .

It is a fact that the Grammian associated to a sequence {zi}i∈N is bounded on l2

if and only if the measure n
i=1 ||ki||−2 i is a Carleson measure for Hk ; see [2, Propo-

sition 9.5]. The Hardy space on the unit disk, H2(D) , is a reproducing kernel Hilbert
space with the kernel k being the Szegő kernel. So the Carleson measure condition in
the above result is equivalent to boundedness of the Grammian matrix associated to the
Szegő kernel and the sequence {i}i∈N .
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Shapiro–Shield in [18] gave an alternative proof of Carleson’s result by replacing
the notions of Carleson measure condition and strong separation by conditions on the
the Grammian matrix associated to a sequence. They also considered interpolating
sequences for many other holomorphic function spaces on the unit disc.

A very important case of the problem (IS) is when A is the multiplier algebra,
denoted by Mult(Hk) , of a reproducing kernel Hilbert space Hk associated to a ker-
nel k , together with the multiplier norm. This was initiated by Marshall–Sundberg [17]
and by C. Bishop [12]. They also introduced a notion of interpolating sequences for Hk

and observed that the set of interpolating sequences for multiplier algebras is contained
in the set of interpolating sequences for the Hilbert space Hk . Moreover, if the ker-
nel satisfies the scalar Pick property, then the two notions of interpolating sequences
coincide; see [2, Theorem 9.19]. This is important since interpolating sequences for
separable reproducing kernel Hilbert spaces are exactly those for which the Grammian
is both bounded from above and below.

A well studied class of positive kernels is the family of complete Nevanlinna–Pick
kernels (see [2] for the definition) that satisfy a stronger form of the Pick property. In
this case, Hk is called a complete Pick space. A characterization of the interpolating
sequences for the multiplier algebra for this class of kernels is now completely known.

RESULT 2. Let {i}i∈N ⊂ be a sequence and let k be an irreducible complete
Nevanlinna–Pick kernel. Then the following are equivalent:

(IM) the sequence is interpolating for Mult(Hk) ,

(IH) the sequence is interpolating for Hk ,

(S+C) the sequence is weakly separated and the Grammian associated to the
sequences is bounded.

As mentioned before the equivalence of (IM) and (IH) above was established by
Marshall-Sundberg and they proved the equivalence under the weaker condition that
k has the scalar Pick property. The implication (IH) =⇒ (S+C) holds, in general, for
any reproducing kernel Hilbert space; see e.g. [2] or [19]. The implication (S+C) =⇒
(IM) for irreducible complete Nevanlinna-Pick kernels is established in a recent arti-
cle by Aleman-Hartz–McCarthy–Richter [5], where they applied Marcus–Spielman–
Srivastava theorem, a path-breaking result that established the Kadison-Singer conjec-
ture.

The condition (S+C) implies strong separation with respect to Mult(Hk) for ker-
nels having the Pick property; see [2, Theorem 9.43]. On the other hand, both Marshall-
Sundberg [17] and Bishop [12] have shown that strong separation does not imply (IM)
in the case of the Dirichlet space of the unit disc which is a complete Pick space.

1.2. Test functions

In this article, we shall address the problem (IS) with A being those Banach
algebras of bounded functions that are obtained by taking intersections of multiplier
algebras of certain reproducing kernel Hilbert spaces associated with a class of test
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functions. These are algebras which are not necessarily multiplier algebras of a repro-
ducing kernel Hilbert spaces and were first introduced by Jim Agler. We begin with the
definition of test functions.

Let  be a bounded domain in C
n and let  be a family of functions on  . We

say  is a collection of test functions on  if the following conditions hold:

1. sup {|(x)| :  ∈} < 1 for each x ∈ .

2. For each finite subset F of  , the collection { |F :  ∈} together with unity
generates the algebra of all C-valued functions on F .

The second condition is not essential part of the definition, but it makes some situations

simpler (see [8] and [15]). The collection  is a natural topological subspace of D


equipped with the product topology. For every x ∈  , there is an element E(x) in
Cb() , the C∗ -algebra of all bounded functions on  , such that E(x)() = (x) .
Clearly, ‖E(x)‖= sup∈|(x)| < 1 for each x ∈ . The functions E(x) will be used
at several places in this paper.

Given  and a collection of test functions  , let us denote by K(C) the set of
all C-valued positive kernels k on  for which the operator M : Hk −→ Hk defined
by M ( f ) := f  , for all f ∈Hk , is a contraction for each  ∈ . Recall, a contraction
on a Hilbert space is a bounded linear operator whose operator norm is atmost 1. We
now introduce the Banach algebra associated to a class of test functions as alluded to in
the first paragraph of this section.

DEFINITION 1.1. Let us denote by H
(C) the collection of such C-valued func-

tions  :−→C for which there exists a constant C > 0 having the following property:

(∗) for each k ∈ K(C) , the bounded linear operator M : Hk −→ Hk defined by
M ( f ) := f  for all f ∈ Hk , is a bounded linear operator with ||M ||Hk � C .

Given  ∈ H
(C) , define:

|| || := inf
{
C : C satisfying the property (∗) above

}
. (2)

It turns out that H
(C) is a Banach algebra with norm || • || . The scalar-valued

-Schur–Agler class, denoted by SA (C) , is defined by SA (C) :=
{
 ∈H

(C) :
|| || � 1

}
. It is easy to see that if  ∈ H

(C) then || || := sup{|(z)| : z ∈ } �
||M ||Hk for all k ∈ K . It follows from this that || || � || || . We now present the
main result of this article concerning the problem (IS) in the case when A = H

(C) .

THEOREM 1.2. Let  be a bounded domain and let  be a family of test func-
tions. Consider the Banach algebra H

(C) consisting of bounded functions with the
norm || • || as above. Let {wj} j∈N ⊂  be a sequence in  . Then the following are
equivalent.

1. The sequence {wj} j∈N is an interpolating sequence for H
(C) .
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2. For all admissible kernels k ∈ K , the normalized Grammians Gk associated
to the sequence {wj} j∈N are uniformly bounded from below, i.e., for all k ∈ K
there exists N > 0 , independent of k , such that Gk � (1/N)I .

3. The sequence {wj} j∈N is strongly separated and for all kernels k ∈ K , the
normalized Grammians Gk associated to the sequence {wj} j∈N are uniformly
bounded, i.e., for all k ∈ K there exists M > 0 , independent of k , such that
Gk � M I .

4. (2) and (3) above holds together.

Here, and elsewhere in the article I shall denote the identity operator.
As noted after Result 2 for reproducing kernel Hilbert spaces with irreducible

complete Nevanlinna–Pick kernel a sequence is interpolating for the multiplier alge-
bra if and only if it is strongly separated and the associated Grammian is bounded. The
equivalence of (1) and (3) above establishes an analogous result for H

(C) .

REMARK. Let k, l ∈ K be such that l = gk for some positive kernel g . Then
if cI−Gk � 0 for some c > 0 then cI−Gl � 0. To see that, note that Gg � 0 and by
the Schur-product theorem we get (cI−Gk) �Gg � 0. Notice now the Schur product
of I and Gg is I and Gl = Gk �Gg whence the conclusion. Proceeding similarly if
Gk −d I � 0 for some d > 0, then Gl −d I � 0, where l, k ∈ K are as before.

When  = D and  = {z} then every k ∈ K is of the form k = sg , where
s denotes the Szegő kernel and g is some positive kernel. It follows from the remark
above that conditions (2) and (3) in Theorem 1.2 have to be satisfied only for the Szegő
kernel. It is a fact that H

(C) is H(D) in this case. This leads to a characterization
of interpolating sequences for H(D) which is equivalent to Result 1 ([2, Section 9.5])
by Carleson.

We shall present the proof of Theorem 1.2 in Section 4. At the heart of our proof
is a result, namely Proposition 3.4 in Section 3, that relates the boundedness of the
Grammian with the existence of vector-valued interpolants. Our proof of this proposi-
tion and our main theorem is inspired from the ideas as in [3]. Later, in Section 5, we
shall provide several other examples where the above theorem is applied in character-
izing interpolating sequences for those algebras that are realized as H

(C) for some
appropriately chosen  .

2. Preliminaries

In this section, we prove a few lemmas and gather certain basic tools that will be
needed in upcoming sections. We begin with the definition of -Schur–Agler class
functions in operator-valued setting. To do that, we need to recall various notions of
positive kernel on a domain  .

A positive kernel k on a set  is a function k : × → C such that for any
n � 1, any n points x1, . . . ,xn in  and any n complex numbers c1, . . . ,cn , we have

n


i=1

n


j=1

cic jk(xi,x j) � 0.
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Let E is a Hilbert space and k : × → B(E ) is a function, then k is called
a positive kernel if for any n � 1, any n points x1, . . . ,xn in  and any n vectors
e1, . . . ,en in E , we have

n


i=1

n


j=1

〈k(xi,x j)ej,ei〉 � 0. (3)

We also recall the notion of completely positive kernels here. Let A and B be two
C∗ -algebras and let  be a function on × taking values in B(A ,B) (space of all
bounded linear operators from A to B ).  is called a completely positive kernel if

n


i, j=1

b∗i (xi,x j)(a∗i a j)b j � 0 (4)

for all n � 1, a1,a2, . . . ,an ∈ A , b1,b2, . . . ,bn ∈ B and x1,x2, . . . ,xn ∈ .

2.1. The -Schur–Agler class: general case

Given a Hilbert space E and a B(E )-valued kernel K (satisfying (3)) on  , there
is a Hilbert space H (K) of E -valued functions on  such that span of the set

{K(·,)e : e ∈ E ,  ∈}

is dense in H (K) and for any e ∈ E ,  ∈ and h ∈ H (K) , we have

〈h,K(·,)e〉H (K) = 〈h(),e〉E .

Given a set of test functions  on  , a kernel K :×→ B(E ) is said to be -
admissible if the map M , sending each element h ∈ H (K) to  ·h , is a contraction
on H (K) . We denote the set of all B(E )-valued -admissible kernels by K(E ) .
For two Hilbert spaces U and Y , we say that S : → B(U ,Y ) is in H

(U ,Y ) if
there is a constant C such that the B(Y ⊗Y )-valued function

(C2IY −S(x)S(y)∗)⊗ k(x,y) (5)

is a positive B(Y ⊗Y )-valued kernel for every k in K(Y ) . If S is in H
(U ,Y ) ,

then we denote by ‖S‖ the smallest C which satisfies (5). The -Schur–Agler class,
denoted by SA (U ,Y ) , is the set of those S∈H

(U ,Y ) for which ‖S‖ � 1. Also
observe when U = C = Y , then H

(U ,Y ) = H
(C) . We begin with the following

lemma.

LEMMA 2.1. Let X ,Y ,H be Hilbert spaces such that either H = C or H =
Y . Let g ∈ SA (X ,Y ) and f ∈ SA (Y ,H ) . Then if we set f g(z) := f (z)g(z)
for all z ∈ then f g ∈ SA (X ,H ) .
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Proof. Notice that for each z ∈ , f g(z) ∈ B(X , H ) . We need to show that for
each k ∈ K(H ) ,

(
IH − f (z)g(z)g(w)∗ f (w)∗

)⊗ k(z, w) is a positive B(H ⊗H )-
valued kernel. Note that(

IH − ( f g)(z)( f g)(w)∗
)⊗ k(z, w) =

(
IH − f (z)g(z)g(w)∗ f (w)∗

)⊗ k(z, w)

=
(
IH − f (z) f (w)∗

)⊗ k(z,w)

+ f (z)
(
IY −g(z)g(w)∗

)
f (w)∗ ⊗ k(z,w). (6)

The expression
(
IH − f (z) f (w)∗

)⊗k(z,w) is positive as f ∈SA (Y ,H ) . We now
consider f (z)

(
IY −g(z)g(w)∗

)
f (w)∗ ⊗ k(z,w) in two cases:

Case 1 . H = C .

In this case, the above expression becomes
(
f (z)(IY −g(z)g(w)∗) f (w)∗

)
k(z,w) .

Now we make the following claim.

Claim. For a C-valued -admissible kernel k , if we let K := k IY then K is a
B(Y )-valued kernel that is -admissible.

To see that K := k IY is a kernel, choose y1, . . . ,yn ∈ Y and z1, . . . ,zn ∈  and
compute

n


i, j=1

〈K(zi,z j)y j,yi〉 =
n


i, j=1

〈k(zi,z j)y j,yi〉 =
n


i, j=1

k(zi,z j)〈y j,yi〉.

Now fix a basis {e} of Y and write yi = y ,i e . If we define yi = y ,i e , then
the last expression above is equal to

n


i, j=1

k(zi,z j)〈y j, yi〉

which is positive. Consequently K above is positive too. We now show that K is
-admissible. Choose  ∈ and z1, . . . ,zn ∈ and y1, . . . ,yn ∈ Y and compute

||
n


j=1

K(•,z j)y j||2 −||M∗
(

n


j=1

K(•,z j)h j)||2

=
n


i, j=1

(〈k(zi,z j)y j,yi〉−(zi)(z j)〈k(zi,z j)y j,yi〉
)

=
n


i, j=1

(
1−(zi)(z j)

)
k(zi,z j)〈h j,hi〉.

The last expression above is nonnegative and hence ||M∗
 || = ||M || � 1. Since the

above holds for any  ∈ , the claim is established.
Coming back to the proof of Case 1 above, using the claim we see that (IY −

g(z)g(w)∗)⊗ (kIY ) is a B(Y ⊗Y )-valued kernel. Choose a basis element e of Y
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and consider ui = f (zi)∗ ⊗ (cie) . Then

0 �
n


i, j=1

〈((
IY −g(zi)g(z j)∗

)⊗ (k(zi,z j)IY
))

u j,ui

〉
=

n


i, j=1

〈(
IY −g(zi)g(z j)

)
f (z j)∗(1), f (zi)∗(1)

〉
k(zi,z j)〈c je,cie〉

=
n


i, j=1

cic j
〈
f (zi)

(
IY −g(zi)g(z j)

)
f (z j)∗(1),1

〉
k(zi,z j)

=
n


i, j=1

cic j

(
f (zi)

(
IY −g(zi)g(z j)∗

)
f (z j)∗

)
k(zi,z j)

Thus f (z)
(
IY − g(z)g(w)∗

)
f (w)∗ k(z,w) is a positive kernel and we are done in this

case.

Case 2. H = Y .

So f ∈ SA (Y ,Y ) and we need to show that f g ∈ SA (X ,Y ) . Consider
any B(Y )-valued -admissible kernel K and consider f (z)

(
IY −g(z)g(w)∗

)
f (w)∗ ⊗

K(z,w) which has to be shown a positive B(Y ⊗Y )-valued kernel. For this purpose
take yi1 ⊗ yi2 ∈ Y ⊗Y , 1 � i � n , and compute:

n


i, j=1

〈
[
(

f (zi)
(
IY −g(zi)g(z j)∗

))
f (z j)⊗K(zi,z j)](y j1 ⊗ y j2),yi1 ⊗ yi2

〉
=

n


i, j=1

〈
f (zi)

(
IY −g(zi)g(z j)∗

)
f (z j)∗y j1, yi1

〉
〈K(zi,z j)y j2,yi2〉

=
n


i, j=1

〈(
IY −g(zi)g(z j)∗

)
Vj, Vi

〉〈K(zi,z j)y j2,yi2〉,

where in the last expression Vi = f (zi)∗yi1 for all i, 1 � i � n . The last expression can
be written as

n


i, j=1

〈[(
IY −g(zi)g(z j)∗

)⊗K(zi,z j)
]
(Vj ⊗ y j2), (Vi⊗ yi2

〉
,

which is non-negative owing to the fact that g ∈ SA (X ,Y ) and K is a B(Y )-
valued -admissible positive kernel. Thus f (z)

(
IY −g(z)g(w)∗

)
f (w)∗ ⊗K(z,w) is a

positive kernel for any K that is -admissible and we are done in this case too. �

2.2. -unitary colligations and realization of -Schur–Agler class functions

When  = Dn and  being the collection of co-ordinate functions on Dn , Agler
[1] showed that the -Schur-Agler class functions are precisely those that admit a
decomposition (now called Agler decoposition). He also showed that this latter class
of functions coincides with those functions that admit a transfer function realization.
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When  has infinitely many test functions, an analogous result holds true. Before we
state such a result, we first introduce, following Ambrozie [4], a -unitary colligation
and the transfer function associated to it.

Given a collection of test functions  and Hilbert spaces X , U , Y , a -unitary
colligation is a pair (U,) where U is a unitary operator from X ⊕U to X ⊕Y
and  : Cb() → B(X ) is a ∗ -representation. If we write U as

U =
(X U

X A B
Y C D

)
,

then we can define a bounded B(U ,Y ) valued function on  , given by

f (x) = D+C(E(x))(IX −A(E(x)))−1B ∀ x ∈, (7)

equivalently,

f (x) = D+C(IX −(E(x))A)−1(E(x))B ∀ x ∈. (8)

This f is called the transfer function associated with (U,) . Since U∗ is also a unitary,
we have that

g(x) = D∗ +B∗(IX −(E(x))A∗)−1(E(x))C∗

is the transfer function of the colligation (U∗,) . We now state the result alluded to as
above that was established in [11]. We must mention that variants of this result exist in
literature; see e.g. [8] and [15].

RESULT 3. Consider a function S0 on some subset 0 of  with values in
B(U ,Y ) . Then the following conditions are equivalent.

1. There exists an S in H
(U ,Y ) with ‖S‖ � 1 such that S|0 = S0 .

2. S0 has an Agler decomposition on 0 , that is, there exists a completely positive
kernel  :0×0 → B(Cb(),B(Y )) so that

IY −S0(z)S0(w)∗ = (z,w)(1−E(z)E(w)∗) for all z,w ∈0.

3. There exists a Hilbert space X , a ∗ -representation  : Cb() → B(X ) and a
-unitary colligation (V,) such that writing V as

V =
(X U

X A B
Y C D

)
,

one has

S0(z) = D+C(IX −(E(z))A)−1(E(z))B for all z ∈0. (9)
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4. There exists a Hilbert space X , a ∗ -representation  : Cb() → B(X ) and a
-unitary colligation (W,) such that writing W as

W =
(X Y

X A1 B1

U C1 D1

)
,

one has

S0(z)∗ = D1 +C1(IX −(E(z))∗A1)−1(E(z))∗B1 for all z ∈0. (10)

The following lemma is proved in [11] which was one of tools in establishing
the Result 3 above. The proof involves a cone separation argument; many of such
arguments are present in the literature, see e.g. [2, Theorem 11.26]. Since it is needed
in the proof of our main theorem, we state it here without its proof.

LEMMA 2.2. Let J :×→ B(Y ) be a self-adjoint function. Suppose

J�K : (z,w) �→ J(z,w)⊗K(z,w) (11)

is a positive kernel for every B(Y )-valued admissible kernel K , then there is a com-
pletely positive kernel  : ×→ B(Cb(),B(Y )) such that

J(z,w) = (z,w)(1−E(z)E(w)∗) for all z,w ∈.

We now end this section with another lemma that shows an application of Result 3
to the interpolation problem of Pick–Nevanlinna type.

LEMMA 2.3. Let w = {wj : j ∈N}⊂ be a sequence in  and let x = {x j :∈N}
be a sequence of complex numbers. Then there exists f ∈H

(C) with || f || �Cw and
f (wj) = x j if and only if for every n ∈ N the matrix((

C2
w − xi x j

)
k(wi,wj)

)n

i, j=1

is positive semi-definite for every k ∈ K .

Proof. First assume that there exists f ∈ H
(C) with || f || � Cw and such that

f (wj) = x j . Then it follows – from the implication (1) =⇒ (2) of Result 3 – that((
C2

w − xi x j
)
k(wi,wj)

)
� 0 for all k ∈ K . Conversely, assume that the functional

(i, j) �→ (
C2

w−xi x j
)
k(wi,wj) is positive semi-definite for all k ∈K . Let us denote by

0 := {wi : i ∈ N} and yi = xi/Cw . Then the function J : 0×0 −→ C defined by
J (wi,wj) = (1− yiy j) satisfies the following:

J (wi,wj)
∗ = J (wj,wi) and J (wi,wj)k(wi,wj) � 0 ∀ k ∈ K .
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Now by Lemma 2.2, by taking Y = C , there exists a completely positive kernel  :
0×0 −→ Cb()∗ such that

J (wi,wj) = (1− yiy j) = (wi,wj)
(
1−E(wi)E(wj)∗

)
, ∀ i, j.

Let S0 : 0 −→ C be defined by S0(wj) := y j . Then from the equivalence of part (1)
and (2) in Result 3, we get that there exists S ∈ H

(C) with ||S|| � 1 and such that
S|0 = S0 . Observe that  = CwS that has the desired properties. �

3. Boundedness of Grammian and existence of vector-valued interpolants

In this section we shall prove a crucial proposition: namely Proposition 3.4 below.
The proposition is an analogue, in our setting, of Lemma 4.1 and Lemma 4.2 in [3] in
the case when = D

2 due to Agler-McCarthy; also see [2, Theorem 9.46]. This propo-
sition is at the heart of our proof of Theorem 1.2. Before we present this proposition,
we need a few lemmas.

LEMMA 3.1. Let U , Y , H be Hilbert spaces with bases {u}, {y}, {h} , re-
spectively. For A ∈ B(U , Y ), B ∈ B(Y , H ), C ∈ B(U , H ) , define At ∈ B(Y , U ),
Bt ∈ B(H , Y ), Ct ∈ B(H , U ) by first setting

〈Aty , u〉 :=〈Au , y 〉
〈Bth , y 〉 :=〈By , h 〉
〈Cth , u〉 :=〈Cu , h 〉

and then extending linearly on linear combinations of basis elements. Then (BA)t =
At Bt with respect to these given bases.

Proof. Note that〈
Atdy ,au

〉
:= 

 ,
d a 〈Au , y〉 =

〈
A
(



au
)
,


dy
〉
.

From this it follows that At is bounded linear operator, and so are Bt , (BA)t . Now

〈(BA)t h , u〉 = 〈(BA)u , h 〉 =
〈
B


〈Au , y 〉y , h

〉
= 


〈Au , y 〉〈By , h 〉.

Also

〈AtBth , u〉 =
〈
At


〈Bth , y 〉y , u

〉
= 


〈Bth , y 〉〈Aty , u〉 =


〈By , h 〉〈Au , y 〉.

Thus (BA)t = At Bt . �
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LEMMA 3.2. Let U , Y be Hilbert spaces with bases {u} and {y} respec-
tively. Then for any  ∈ SA (U , Y ) , there exists t ∈ SA (Y , U ) such that

〈t(z)y , u〉 = 〈(z)u , y 〉 (12)

for all z ∈ and ,  .

Proof. Since ∈SA (U , Y ) , there exist a Hilbert space H (with basis {h} ),
a unital ∗ -representation  : Cb() −→ B(H ) and a unitary V , where if we write

V =
(H U

H A B
Y C D

)
,

then
(z) = D+C(E(z))

(
IH −A(E(z))

)−1
B.

Consider now At , Bt , Ct , Dt and Vt , (E(z))t with respect to the bases above. Observe
Vt is a unitary operator such that

Vt =
(H Y

H At Ct

U Bt Dt

)
,

It is easy to see that  t : Cb() −→ B(H ) is a unital ∗ -representation. Now consider

t(z) := Dt +Bt  t(E(z))
(
IH −At t(E(z))

)−1
Ct .

Since Vt is unitary, we know that t ∈ SA (Y , U ) . The identity (12) follows from
this latter observation. �

LEMMA 3.3. Let {n} ∈ SA (C) be a sequence of C-valued functions. Then
there exists a  ∈ SA (l2, l2) such that

〈(z)ei, e j〉 = i(z)i, j ∀i, j and z ∈ .

Here, {ei : i ∈ N} is the standard orthonormal basis of l2 .

The proof of the above lemma is a routine exercise. Therefore, we omit it here. We
only mention that the function  above is the direct sum of the functions n constructed
via the transfer function realization of each n of an associated -unitary colligation
(Un,n) .

We are now ready to state the principal result of this section.

PROPOSITION 3.4. Let  be a bounded domain in Cn and let  be a family of
test functions and consider the set K of -admissible C-valued kernels on  . Let
{wi}i∈N ⊂ be a sequence. Then
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1. There exists N > 0 such that the Grammian corresponding to {wi}i∈N , Gk �
(1/N)I for all k ∈ K if and only if there exists  ∈ H

(C, l2) such that
(wi)(1) = ei with |||| �

√
N .

2. There exists an M > 0 such that the Grammian corresponding to {wi}i∈N , Gk �
M I for all k∈K if and only there exists  ∈H

(l2, C) such that (wi)(ei) = 1
with || || �

√
M.

Proof. Let us start with establishing part (1) above.

1. Suppose there is an N > 0 such that Gk � 1
N ·I for all k ∈K . This is equivalent

to

(N− i j)k(wi,wj) � 0

for all k ∈ K . By Lemma 2.2 there is a completely positive kernel  : 0 ×
0 → Cb()∗, (0 = {wj : j � 1}) such that

N− i j = (wi,wj)(1−E(wi)E(wj)∗) (13)

Now we follow the standard lurking isometry argument, see e.g. [15]. First,
by [15, Proposition 3.3], there is a Hilbert space E , a function L : 0 −→
B(Cb(),E ) and a unital ∗ -representation  : Cb() −→ B(E ) such that

(x,y)( f g∗) = 〈L(x) f ,L(y)g〉 and L(x)( f g) = ( f )L(x)(g)

for all f ,g ∈ Cb(),x,y ∈0 . So (13) can be rewritten as〈(
(E(wi))L(wi)(1)√

N

)
,

(
(E(wj))L(wj)(1)√

N

)〉
E⊕C

=

〈(
L(wi)(1)

ei

)
,

(
L(wj)(1)

e j

)〉
E⊕ l2

for all i, j where {e j : j � 1} is the standard basis for l2 .

It is easy to see that there is a unitary operator V : E ⊕C→E ⊕ l2 (adding an infi-

nite dimensionalHilbert space to E if necessary) that sends

(
(E(wi))L(wi)(1)√

N

)
to

(
L(wi)(1)

ei

)
for all i � 1. Let us write

V =

( E C

E A B

l2 C D

)
,
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and take F(z) = D+C(IE −(E(z))A)−1(E(z))B . Then F ∈ SA (C, l2) . If
we set  =

√
NF , then  satisfies

|||| �
√

N and (wi)(1) = ei

for all i � 1.

Conversely, let there be an element  ′ ∈ H
(C, l2) such that || ′|| �

√
N and

 ′(wi)(1) = ei for all i � 1. So F ′ =  ′/
√

N ∈ SA (C, l2) and consequently
there is a Hilbert space H , a unital ∗ -representation  : Cb() → B(H ) and a
unitary

U =
(H C

H A′ B′
l2 C′ D′

)
such that F ′(z) = D′ +C′(IH −(E(z))A′)−1(E(z))B′ for all z ∈ . Set hi =
(IH − (E(wi))A′)−1B′√N for all i . Then we have that the unitary U sends(
(E(wi))hi√

N

)
to

(
hi

ei

)
. Using these facts we obtain

N− i j = 〈(1−E(wi)E(wj)∗)hi,h j〉. (14)

It is easy to see that the map ′ : ×→ Cb()∗ defined by

′(z,w)( f ) = 〈( f )h(z),h(w)〉 (15)

where h(z) = (IH − (E(z))A′)−1B′√N , is a completely positive kernel. Now
define ̃ : 0 → B(l2,C) by ̃ (wi)∗ = B∗

i where Bi( liei) = li , li ∈ C . Then
(14) takes the form

1− ̃(wi)√
N

̃(wj)∗√
N

=
1
N
′(1−E(wi)E(wj)∗)

for all i, j . By Result 3 , (the equivalence of part (1) and (2)), ̃/
√

N can be
extended to an element of SA (l2,C) and the definition of SA (l2,C) yields
that

(N− i j)k(wi,wj) � 0

for all admissible kernel k . This completes the proof of the first part.

2. For M > 0 and an admissible kernel k ∈ K , the condition Gk � M · I is equiv-
alent to (Mi j − 1)k(wi,wj) � 0. So when Gk � M · I for every admissible
kernel k , following the same procedure as in part 1 , we can show that there is a
 ′ ∈ H

(l2,C) such that

|| ′|| �
√

M and  ′(wj)(e j) = 1.
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Conversely, let there be a  ∈ H
(l2,C) such that

|| || �
√

M and (wj)(e j) = 1.

So F = /
√

M ∈ SA (l2,C) and consequently, we can find a Hilbert space
H , a unital ∗ -representation  : Cb() → B(H ) and a unitary

V =

(H l2

H A B

C C D

)

such that F(z) = D +C(E(z))(IH −A(E(z)))−1B for all z ∈  . Let h j =

(IH −A(E(wi)))−1B
√

M(ei) . Then the unitary operator V sends

(
(E(wi))hi√

Mei

)
to

(
hi

1

)
. From this we deduce

Mi j −1 = 〈(1−E(wi)E(wj)∗)hi,h j〉. (16)

Define  : 0×0 → Cb()∗ by

(wi,wj)( ) = 〈( )hi,h j〉, ∈ Cb(). (17)

From (15), we know that it is completely positive.

Claim. (Mi j − 1)k(wi,wj) = (wi,wj)(1−E(wi)E(wj)∗)k(wi,wj) is positive
for every admissible kernel k .

Fix a k ∈ K and define k :0×0 → B(Cb()) by

k(wi,wj)( ) = (1−E(wi)E(wj)∗)k(wi,wj) ,  ∈ Cb().

We claim that k is completely positive. To see that, take a1,a2, . . .an,b1,b2, . . .bn

∈ Cb() and consider the expression

n


i, j=1

b∗i k(wi,wj)(a∗i a j)b j =
n


i, j=1

(aibi)∗(a jb j)(1−E(wi)E(wj)∗)k(wi,wj).

It is an element of Cb() . Evaluating it at any  ∈  and using the fact that
k is admissible, we find that n

i, j=1 b∗i k(wi,wj)(a∗i a j)b j is a positive element of
Cb() . This proves the claim that k is completely positive.

Now for k as above and any i, j , define Fk(i, j) = (1−E(wi)E(wj)∗)k(wi,wj) .
Similar argument as above yields that the matrix Fk = (Fk(i, j))1�i, j�n is a posi-
tive matrix with entries in Cb() (see Lemma IV.3.2 in [20]). Again by Lemma
IV.3.1. in [20], Fk can be written as a sum of finitely many matrices of the form
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C = (a∗i a j)1�i, j�n , ai ∈ Cb() . That is, there is a positive integer l such that for
any i and j

Fk(i, j) =
n


m=1

a∗mi
amj

with ami ∈ Cb() . Now if  : 0 ×0 → Cb()∗ is completely positive, then
for w1,w2, . . .wn ∈0 and 1,2, . . .n ∈ C we have

n


i, j=1

i j(wi,wj)(Fk(i, j)) =
l


m=1

{ n


i, j=1

i j(wi,wj)(a∗mi
amj )

}
Since  is completely positive, we get that the last expression is non-negative.
Hence (Mi j − 1)k(wi,wj) = (wi,wj)(1− E(wi)E(wj)∗)k(wi,wj) is positive
and this completes the proof. �

4. Proof of Theorem 1.2

Proof. To see how one (1) implies (4) , start with an interpolating sequence for
H
(C) and then proceeding exactly as in the first half of the proof of [2, Theorem 9.19],

one gets both the conditions (2) and (3) . Now suppose (2) and (3) hold together.
Then for every kernel k ∈ K and a = (ai) ∈ l2 we have

1
N i∈N

|ai|2 � ||
i∈N

aigi ||2 � M
i∈N

|ai|2,

where gi = ki/||ki|| . Given {c j : j ∈ N} ∈ l1 (N) , we have:

||
N


i=1

aicigi||2 � M
N


i=1

|aici|2 � M
N


i=1

|ai|2 � MN ||
N


i=1

aigi||2

whence ||N
i=1 ai cigi|| �

√
MN ||N

i=1 aigi|| . It follows from this that the map R :
span{gi : i ∈ N} −→ span{gi : i ∈ N} that maps gi to cigi is a bounded linear operator
with norm �

√
MN and hence it extends to span{gi : i ∈ N} with norm �

√
MN . This

implies that the expression


i, j∈N

(
MN− c j ci

)
k(wi, wj)

is positive semi-definite for every k ∈ K . By Lemma 2.3, there exists a  ∈ H
(C)

with || || �
√

MN such that (wj) = c j for all j ∈ N . This proves (4) implies (1) .
We shall now show that (2) is equivalent to (3) . By Proposition 3.4, we have to

show the following statements are equivalent.

(i) There is a  ∈H
(C, l2) with || || �

√
N and (wj) = e j for all j � 1, where

{e j : j � 1} is the standard basis for l2 .
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(ii) {wj : j � 1} is strongly separated and there is a ̃ ∈H
(l2,C) such that ||̃ || �√

M and ̃ (wj)(e j) = 1 for all j � 1.

Suppose (i) holds. So with respect to the standard basis of l2 we can write

 =

⎛⎜⎜⎝
1

2

·
·

⎞⎟⎟⎠
such that i(wj) = i j .

Claim. Suppose

f =

⎛⎜⎜⎝
f1
f2
·
·

⎞⎟⎟⎠ ∈ H
(C, l2)

with || f || � D , then each f j ∈ H
(C) with || f j|| � D .

To see this, note that

f (z) f (w)∗ =
(

fi(z) f j(w)
)

is an infinite matrix and for every B(l2)-valued admissible kernel K ,

(D · Il2 − f (z) f (w)∗)⊗K(z,w)

is a positive B(l2 ⊗ l2)-valued kernel. Let k be a C-valued admissible kernel. Then,
by the claim in Lemma 2.1, k · Il2 is a B(l2)-valued admissible kernel. Take K = k · Il2 ,
c1,c2 . . . ,cn ∈ C , z1,z2, . . . ,zn ∈ , ui = em for some m � 1 and vi = cie1 . Then

n


i, j=1

〈
(D2 · Il2 − f (zi) f (z j)∗)⊗K(zi,z j)u j ⊗ v j,ui ⊗ vi

〉
=

n


i, j=1

c jci(D2 − fm(zi) fm(z j))k(z j,zi).

Since f ∈ H
(C, l2) with || f || � D , the expression at the right-hand side above is

non-negative. Hence each fm ∈ H
(C) with || fm|| � D .

So i ∈ H
(C) and ||i|| �

√
N and consequently, {wj : j � 1} is strongly sep-

arated. Also (wj)t(e j) =  j(wj) = 1, where (wj)t is as in Lemma 3.2. Thus there
there is an map ̃ =  t ∈ H

(l2,C) such that ||̃ || �
√

N and ̃ (wj)(e j) = 1 for all
j � 1. So (ii) holds.

Now let (ii) hold. So there is a ̃ ∈ H
(l2,C) such that ||̃ || �

√
M and

̃(wj)(e j) = 1 for all j � 1. Again by Lemma 3.2,

̃ t =

⎛⎜⎜⎝
̃1

̃2

·
·

⎞⎟⎟⎠ ∈ H
(C, l2)
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and ||̃ t || �
√

M . Since {wj : j � 1} is strongly separated, there is an L > 0 and
a sequence { j : j � 1} in H

 such that  j(wj) = i j and || j|| � L for all i, j .
Consider

1 =

⎛⎜⎜⎝
1̃1

2̃2

·
·

⎞⎟⎟⎠= diag(1,2 · · ·) ·

⎛⎜⎜⎝
̃1

̃2

·
·

⎞⎟⎟⎠ .

By Lemma 3.3, diag(1,2 · · ·) ∈ H
(l2, l2) with -norm atmost L . Also ||̃ || �√

M . Hence by Lemma 2.1, 1 ∈ H
(C, l2) with ||1|| � L

√
M . Clearly, t

1 ∈
H
(l2,C) with -norm atmost L

√
M and t

1(wj) = e j . This is (i) and our proof is
complete. �

We also present the following sufficient condition for a sequence to be interpolat-
ing.

PROPOSITION 4.1. Let {wj : j ∈N} be a sequence of points in  . Given  ∈ ,
define z, j = (wj) . If there is an  > 0 (that depends on  ) such that


j �=m

|z, j − zm|
|1− z, jzm| � , for all m � 1, (18)

then {wj : j ∈ N} is an interpolating sequence for H
(C) .

Proof. It is not very difficult to see that the condition (18) above is equivalent to
the condition that the sequence {z, j} in D is strongly separated. Hence by Result 1
of Carleson, we know that the sequence {z, j} is interpolating for H(D) . Now given
an arbitrary sequence {c j : j ∈ N} ∈ l(N) , choose f ∈ H(D) such that f (z, j) = c j

for all j .

Claim. f ◦ ∈ H
(C) .

To see the claim above, assume without loss of generality that || f || � 1. Then
there exists a positive kernel  on D such that

1− f (z) f (w) = (1− zw)(z, w).

Now let k ∈ K be given then(
1− f ((z)) f ((w))

)
k(z,w) = (1−(z)(w))((z), (w))k(z, w)

= (1−(z)(w))k(z, w)((z), (w)).

Note that (1−(z)(w))k(z, w) is positive from the definition that k is a  admis-
sible kernel. Of course ((z), (w)) is positive and hence it follows from this that(
1− f ((z)) f ((w))

)
k(z,w) is positive for every -admissible kernel k from which

the claim follows.
Now notice that f ◦(wj) = c j for all j and since {c j : j ∈ N} is arbitrary, we

are done. �
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5. Examples

In this section, we present several cases where Theorem 1.2 could be applied to
give a characterization of interpolating sequences. A few of the cases that appear below
have already been addressed in the literature.

1. The case of Polydisc. This is the case when  = Dn, n � 1. The class of test
functions that we consider in this case is  = {z1, . . . ,zn} . The case n = 1 has
already been discussed after the statement of Theorem 1.2.

In the case n = 2, due to Ando’s inequality, we know that H
(C) = H(D2) :=

the set of all bounded holomorphic functions on the bidisc, with the norm || • ||
being sup-norm. Therefore, Theorem 1.2 provides a characterization of inter-
polating sequences in the bidisc for the Banach algebra of bounded holomor-
phic functions with the sup-norm. This case was already considered by Agler–
McCarthy in [3]. In general, when n � 3, the Banach algebra H

(C) does not
coincide with the algebra of bounded holomorphic functions on D

n ; see e.g.
[21]. One can still apply Theorem 1.2 to give a characterization of interpolating
sequences in the polydisc for the algebra H

(C) with  = {z1, . . . ,zn} .

2. The case of multiply connected planar domains. Let  be a bounded domain
in the complex plane with boundary consisting of m+1 disjoint smooth Jordan
curves 0,1, . . . ,m where 0 denotes the boundary of the unbounded compo-
nent of the complement of  . Then there exists a collection of test functions
 = {x : x∈ T} , indexed by the so-called -torus T := 0×1× . . .×m

(see [8, Section 4.1] and [14]), such that H
(C) is equal to the set of all bounded

holomorphic functions on  and the norm || • || being equal to the sup-norm.
Using this class of test functions, Theorem 1.2 can be applied to characterize
interpolating sequences for bounded holomorphic functions in  .

3. The case of constrained algebras. Let us denote by A(D) the Banach algebra
of holomorphic functions on D that are continuous upto D . The algebra A(D)
is called the disk algebra. Let B be a finite Blaschke product of degree N � 2
and consider the algebra AB := C+B(z)A(D) . Let us denote by H

B the weak-
closure of AB . In [16], a minimal class of test functions has been constructed
for the algebras H

B . Therefore, one could use Theorem 1.2 to characterize inter-
polating sequences in D for the constrained algebras H

B using this class of test
functions.

4. The case of symmetrized bidisc. In this case  = G2 where G2 is the sym-
metrized bidisc defined by G2 := 2(D2) where 2 : C2 −→ C2 is the sym-
metrization map defined by 2(z1, z2) := (z1 + z2, z1z2) . A point in G2 is also
denoted by a pair (s, p) ∈ C2 . It is a fact due to Agler–Young (see e.g. [6]) that
a point (s, p) ∈ C2 belongs to G2 if and only if for every  ∈ D we have

2 p− s
2−s

∈ D.
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Because of this one could consider the family  := { : (s, p) = (2 p−
s)/(2−s) :  ∈ D} , as a family of test functions for G2 . Then it is a fact
(see [9] and also [7]) that H

(C) = H(G2) , the set of bounded holomorphic
functions on G2 and the norm || • || being equal to sup-norm. Hence one could
apply Theorem 1.2 to characterize interpolating sequences for H(G2) . This
case too has been dealt and is due to Bhattacharyya–Sau [10].
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Birkhäuser, Basel, 1990.

[2] J. AGLER AND J. E. MCCARTHY, Pick Interpolation and Hilbert Function Spaces, Graduate Studies
in Mathematics, vol. 44, American Mathematical Society, Providence, 2002.

[3] J. AGLER AND J. E. MCCARTHY, Interpolating sequences on the bidisk, Internat. J. Math. 12 (2001),
no. 9, 1103–1114.

[4] C. G. AMBROZIE, Remarks on the operator-valued interpolation for multivariable bounded analytic
functions, Indiana Univ. Math. J. 53 (2004), no. 6, 1551–1576.-

[5] A. ALEMAN, M. HARTZ, J. E. MCCARTHY, S. RICHTER, Interpolating sequences in spaces with
the complete Pick property, Int. Math. Res. Not. IMRN (2019), no. 12, 3832-3854.

[6] J. AGLER AND N. J. YOUNG, The hyperbolic geometry of the symmetrized bidisc, J. Geom. Anal. 14
(2004), pp. 375–403.

[7] J. AGLER AND N. J. YOUNG, Realization of functions on the symmetrized bidisc, J. Math. Anal. Appl.
453 (2017), no. 1, pp. 227–240.
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