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Abstract. Let B(H ) denote the C∗ -algebra of all bounded linear operators acting on a complex
Hilbert space H . For A,B ∈ B(H ) , define the bimultiplication operator M2,A,B on the class
of Hilbert-Schmidt operators by M2,A,B(X) = AXB . It is known [5] that if either A or B is
hyponormal, then

W(M2,A,B) = co
(
W(A)W(B)

)
,

where the bar and co stand for the closure and the convex hull, respectively and W(·) denotes
the numerical range. In this paper, we give some conditions satisfied by A and B to have the
following equality

W0(M2,A,B) = co
(
W0(A)W0(B)

)
,

where W0(·) denotes the maximal numerical range.

1. Introduction

Let H be a Hilbert space over the complex field C with inner product 〈·, ·〉 and
its induced norm ‖x‖ = 〈x,x〉1/2 . Denote by B(H ) the C∗ -algebra of all bounded
linear operators acting on H . For A ∈ B(H ) , the numerical range of A is defined as
the set

W (A) = {〈Ax,x〉 : x ∈ H , ‖x‖ = 1}.
It is a celebrated result due to Toeplitz-Hausdorff that W (A) is a convex subset in the
complex plane and it is known that co((A)) ⊆ W(A) , where (A) , co , and bar stand
for the spectrum of A , the convex hull and the closure, respectively. The numerical
range of an operator in B(H ) is closed if dim(H ) <  , but it is not always closed
when dim(H ) = . Let w(A) denote the numerical radius of A∈B(H ) , i.e., w(A) =
sup{| | :  ∈W (A)} . It is well-known that w(·) defines a norm on B(H ) , which is
equivalent to the operator norm, denoted ‖ · ‖ . In fact, the following inequalities are
well-known

1
2
‖A‖ � w(A) � ‖A‖.
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For more details about the theory of numerical ranges, the reader is referred to [2, 3,
10, 11] and references therein.

A compact operator A∈B(H ) is said to be a Hilbert-Schmidt operator if tr(AA∗)
<  , where tr and A∗ stand for the usual trace functional and the adjoint operator of
A , respectively. Let C2(H ) denote the class of Hilbert-Schmidt operators on H . Re-
call that C2(H ) is a complex Hilbert space with the inner product 〈A,B〉2 = tr(AB∗)
and norm ‖A‖2

2 = tr(AA∗) . For A ∈ B(H ) , the left and right multiplications L2,A

and R2,A are defined on C2(H ) by L2,A(X) = AX and R2,A(X) = XA , respectively.
For A,B ∈ B(H ) , the bimultiplication M2,A,B is defined on C2(H ) by M2,A,B(X) =
(L2,AR2,B)X = AXB. The operators L2,A and R2,A are then particular bimultiplications
since L2,A = M2,A,I and R2,A = M2,I,A , where I is the identity operator on H . Some
results concerning the norm, spectrum and numerical range of M2,A,B can be found in
[4, 5, 7, 13, 14]. It is proved in [7] that

‖M2,A,B‖ = ‖A‖‖B‖. (1.1)

In particular, ‖L2,A‖ = ‖R2,A‖ = ‖A‖ . In [14], it is proved that

(M2,A,B) = (A)(B). (1.2)

In [4], it is proved that if A is a nonnegative operator and AB = BA , then W (AB) ⊆
W (A)W (B) . In this case, as a consequence of the previous result, since L2,A is nonneg-
ative, L2,AR2,B = R2,BL2,A , W (L2,A) = W(A) and W (R2,B) = W(B) , we have

W (M2,A,B) ⊆ W(A)W(B). (1.3)

But in the general case the inclusion (1.3) does not hold. However, we have

W (M2,A,B) ⊆ co
(
W(A)W(B)

)
+D

(
0,d(A)

)
D

(
0,d(B)

)
, (1.4)

see, [13]. In particular

w(M2,A,B) � w(A)w(B)+d(A)d(B).

Here D(0,) is the disk centred at the origin and of radius  � 0 and

d(T ) = inf
∈C

‖T −‖

for any T ∈ B(H ) . Recently, in [5] the authors proved that if either A or B is hy-
ponormal, then

W (M2,A,B) = co
(
W(A)W(B)

)
. (1.5)

Recall that an operator A ∈ B(H ) is said to be hyponormal if A∗A−AA∗ � 0 (i.e.,
‖Ax‖ � ‖A∗x‖ for all x ∈ H ). Familiar examples of hyponormal operators are normal
operators, those A for which A∗A = AA∗ .

The notion of the numerical range has been generalized in different directions.
One such a direction is the maximal numerical range. It is a relatively new concept in
operator theory, having been introduced only in 1970 by Stampfli [16] and defined as
follows.
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DEFINITION 1.1. For A ∈ B(H ) , the maximal numerical range W0(A) of A is
given by

W0(A) = {lim
n
〈Axn,xn〉 : xn ∈ H , ‖xn‖ = 1, lim

n
‖Axn‖ = ‖A‖}.

It was shown in [16] that W0(A) is nonempty, closed, convex and contained in
the closure of the numerical range; W0(A) ⊆ W (A) . In the case of finite-dimensional
spaces, the maximal numerical range is produced by maximal vectors for A (vectors
x ∈ H such that ‖x‖ = 1 and ‖Ax‖ = ‖A‖ ). Note that the notion of the maximal
numerical range was introduced in [16] for the purpose of calculating the norm of the
inner derivation on B(H ) . Recall that the inner derivation A associated with A ∈
B(H ) is defined by

A : B(H ) −→ B(H ), X 	−→ AX −XA.

Indeed, the author of [16] established the following. For any A ∈ B(H )

‖A‖ = 2d(A).

Recently, considerable interests have been given to the maximal numerical range, see,
for instance, [1, 12, 15]. The following is proved in [12].

PROPOSITION 1.2. ([12]) Let A ∈ B(H ) . Then

W0(A∗) = W0(A)∗,

where L∗ := {z : z ∈ L} for any subset L ⊂ C .

In [15], the author gives a description of the maximal numerical range of a normal
operator and in [1] the result is generalized to a hyponormal one as follows.

THEOREM 1.3. ([1]) Let A ∈ B(H ) be a hyponormal operator. Then

W0(A) = co
(
n(A)

)
,

where n(A) := { ∈ (A) : | | = ‖A‖} .

In this paper, we are interested in the equality (1.5) when replacing the numerical
range by the maximal numerical range. In Section 2, we begin by showing that for any
A,B ∈ B(H )

co
(
W0(A)W0(B)

) ⊆W0(M2,A,B).

An inclusion analogous to (1.4) is also given for the maximal numerical range. Next,
we give some conditions satisfied by the operators A,B ∈ B(H ) to have

W0(M2,A,B) = co
(
W0(A)W0(B)

)
. (1.6)

Indeed, we show that if A has a normal dilation N on some complex Hilbert space
K with (N) ⊆ (A) and B is hyponormal, then the equality (1.6) holds. Recall



320 E. H. BENABDI, M. K. CHRAIBI AND A. BAGHDAD

that if S and T are bounded linear operators on complex Hilbert spaces H and K ,
respectively, the operator T is said to be a dilation of the operator S (or S is dilated to
T ) if there is an isometry V from H to K such that S = V ∗TV . Using the fact that
any hyponormal operator A∈B(H ) has a normal dilation N on some complex Hilbert
space K with (N) ⊆ (A) (see, [9]), we deduce that the equality (1.6) remains true
if either A or A∗ is hyponormal and either B or B∗ is hyponormal.

2. Main results

Before stating our results, for the sake of completeness and for the convenience of
the reader, we shall show here that M∗

2,A,B = M2,A∗,B∗ for any operators A,B ∈ B(H ) .
Let X ,Y ∈ C2(H ) , we have

〈M2,A,BX ,Y 〉2 = 〈AXB,Y 〉2 = tr(AXBY ∗).

Since X , BY ∗ ∈ C2(H ) , by [6, Proposition 18.8 ], the operator XBY∗ is trace class.
So, by [6, Theorem 18.11], tr(AXBY∗) = tr(XBY ∗A) . Therefore

〈M2,A,BX ,Y 〉2 = tr(XBY ∗A)
= tr(X(A∗YB∗)∗)
= 〈X ,A∗YB∗〉2
= 〈X ,M2,A∗,B∗Y 〉2.

We start with the following.

THEOREM 2.1. Let A,B ∈ B(H ) , then

co
(
W0(A)W0(B)

) ⊆W0 (M2,A,B) .

Proof. Let  ∈W0(A) , then there exists a sequence of unit vectors xn ∈ H such
that

 = lim
n
〈Axn,xn〉 and lim

n
‖Axn‖ = ‖A‖.

Let  ∈W0(B) , then Proposition 1.2 implies that  ∈W0(B∗) . Therefore, there exists
a sequence of unit vectors yn ∈ H such that

 = lim
n
〈B∗yn,yn〉 and lim

n
‖B∗yn‖ = ‖B∗‖ = ‖B‖.

Recall that for all n , xn⊗ yn ∈ C2(H ) and ‖xn⊗ yn‖2 = 1. We have

lim
n
〈M2,A,B (xn⊗ yn) ,xn⊗ yn〉2 = lim

n
〈Axn,xn〉〈Byn,yn〉 =  .
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On the other hand,

lim
n
‖M2,A,Bxn⊗ yn‖2

2 = lim
n
〈M2,A,B (xn⊗ yn) ,M2,A,B (xn ⊗ yn)〉2

= lim
n

〈
M∗

2,A,BM2,A,B (xn ⊗ yn) ,xn⊗ yn
〉
2

= lim
n
〈M2,A∗,B∗M2,A,B (xn ⊗ yn) ,xn⊗ yn〉2

= lim
n
〈M2,A∗A,BB∗ (xn ⊗ yn) ,xn⊗ yn〉2

= lim
n
〈A∗Axn,xn〉〈BB∗yn,yn〉

= lim
n
‖Axn‖2 ‖B∗yn‖2

= ‖A‖2‖B‖2

= ‖M2,A,B‖2 (by the equality (1.1)).

Thus  ∈W0 (M2,A,B) and so co(W0(A)W0(B)) ⊆W0 (M2,A,B) . �
Let A ∈ B(H ) . A linear functional f on B(H ) is said to be maximal for A if

f (I) = ‖ f‖ = 1 and f (A∗A) = ‖A‖2 . Let Smax(A) denote the set of all maximal linear
functionals for A . The following result, which is from [8], asserts that if A ∈ B(H ) ,
then

W0(A) = { f (A) : f ∈ Smax(A)}.
Using Theorem 2.1 and the preceding result, we have the following.

COROLLARY 2.2. For any A ∈ B(H ) , W0(L2,A) = W0(R2,A) = W0(A) .

Proof. Theorem 2.1 implies that W0(A)⊆W0(M2,A,I) =W0(L2,A). Now, we show
that W0(L2,A) ⊆ W0(A) . Therefore, let  ∈ W0(L2,A) , then there is f ∈ Smax(L2,A)
such that  = f (L2,A) . Define the map h on B(H ) by h(T ) = f (L2,T ) . We claim that
h ∈ Smax(A) . Everything but h(A∗A) = ‖A‖2 is obvious. So, h(A∗A) = f (L2,A∗A) =
f (L2,A∗L2,A) = f (L∗

2,AL2,A) = ‖L2,A‖2 = ‖A‖2 . Since  = f (L2,A) = h(A) , it follows
that  ∈ W0(A) and hence W0(L2,A) ⊆ W0(A) .

Similarly, we only have to show that W0(R2,A)⊆W0(A) . For this, let  ∈W0(R2,A) .
Then, by Proposition 1.2,  ∈ W0(R2,A)∗ = W0(R2,A∗) . So, there is g ∈ Smax(R2,A∗)
such that  = g(R2,A∗) . Define the map k on B(H ) by k(T ) = g(R2,T ) . By a similar
argument as in the first part, we show that k ∈ Smax(A) and k(A) =  . Therefore,
 ∈ W0(A) and hence W0(R2,A) ⊆W0(A) as desired. �

PROPOSITION 2.3. Let A,B∈B(H ) with ‖AB‖= ‖A‖‖B‖ and AB = BA. Then

W0(AB) ⊆W0(A)W0(B)+D
(
0,d(A)

)
D

(
0,d(B)

)
.

Proof. Let  ∈ W0(AB) , then  = lim
n
〈ABxn,xn〉 and lim

n
‖ABxn‖ = ‖AB‖ for

some sequence of unit vectors xn ∈ H . Let yn ∈ H be unit vectors with xn ⊥ yn for
all n and such that

Bxn = 〈Bxn,xn〉xn + 〈Bxn,yn〉yn.
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Then
 = lim

n
〈Axn,xn〉〈Bxn,xn〉+ lim

n
〈Ayn,xn〉 〈Bxn,yn〉 .

We have ‖A‖‖B‖= lim
n
‖ABxn‖� ‖A‖ lim

n
‖Bxn‖� ‖A‖‖B‖ . This implies that lim

n
‖Bxn‖

= ‖B‖ and so lim
n
〈Bxn,xn〉 ∈W0(B) . Similarly, lim

n
〈Axn,xn〉 ∈W0(A) . According to

[13, Lemma 7], lim
n
〈Ayn,xn〉 ∈D(0,d(A)) and lim

n
〈Bxn,yn〉 ∈ D(0,d(B)) . The desired

result follows. �

REMARK 2.4. In the previous proposition, the condition ‖AB‖= ‖A‖‖B‖ is nec-

essary as is shown in the following example. Let A =
[

1 0
0 0

]
and B =

[
0 0
0 1

]
. We have

W0(AB)= {0} , W0(A) =W0(B) = {1} and d(A)= d(B) =
1
2

. Then 0 /∈W0(A)W0(B)+

D
(
0,d(A)

)
D

(
0,d(B)

)
= D

(
1,

1
4

)
.

COROLLARY 2.5. Let A,B ∈ B(H ) . Then

W0 (M2,A,B) ⊆W0(A)W0(B)+D
(
0,d(A)

)
D

(
0,d(B)

)
.

Proof. First, note that d (L2,A) = inf
∈C

‖L2,A −‖= inf
∈C

∥∥L2,A−
∥∥ = inf

∈C

‖A−‖=

d(A) and similarly d (R2,A) = d(A) . Since L2,AR2,B = R2,BL2,A and ‖L2,AR2,B‖ =
‖L2,A‖‖R2,B‖ , the result follows from the previous proposition. �

Note that from Corollary 2.2, we have for any A,B ∈ B(H )

W0(M2,A,I) = W0(A)W0(I)

and
W0(M2,I,B) = W0(I)W0(B).

Then the following question arises. When is the equality (1.6) true? In the follow-
ing, we give some conditions satisfied by the operators A,B ∈ B(H ) to answer this
question.

THEOREM 2.6. Let A,B ∈ B(H ) with dim H = m and A is normal. Then

W0 (M2,A,B) = co
(
W0(A)W0(B)

)
.

Proof. Let  ∈ W0 (M2,A,B) . Then, as in the proof of Theorem 2.1, there is X ∈
C2(H ) (= B(H )) with ‖X‖2 = 1,  = 〈M2,A,BX ,X〉2 and ‖M∗

2,A,BX‖2 = ‖A‖‖B‖ .
We know that

{
ei⊗ e j : i, j = 1, . . . ,m

}
is a basis of C2(H ) where {ei : i = 1, . . . ,m}

is an orthonormal basis of H such that
〈
Aei,e j

〉
= aii, j , where ai are the eigenvalues
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of A and the symbol i, j stands for the Kronecker delta. Write X = m
i, j=1 bi, jei ⊗ e j

with m
i, j=1

∣∣bi, j
∣∣2 = 1 and set i :=

[
m

k=1

∣∣bi,k
∣∣2]1/2

. Define

yi :=

⎧⎪⎨
⎪⎩

m


j=1

bi j

i
e j, if i 
= 0,

ei, otherwise.

Then X =
m


i=1

iei⊗ yi with ‖yi‖ = 1 and
m


i=1

2
i = 1. Therefore, we get

 = 〈M2,A,BX ,X〉 =
m


i=1

2
i 〈Aei,ei〉〈Byi,yi〉

and

‖A‖2‖B‖2 =
〈
M∗

2,A,BX ,M∗
2,A,BX

〉
2
= 〈M2,AA∗,B∗BX ,X〉2
= 〈M2,A∗A,B∗BX ,X〉2
=

m


i=1

2
i 〈A∗Aei,ei〉 〈B∗Byi,yi〉

=
m


i=1

2
i ‖Aei‖2 ‖Byi‖2 .

From this, since
m


i=1

2
i = 1, we get ‖Aei‖ = ‖A‖ and ‖Byi‖ = ‖B‖ for all i such

that i 
= 0. Hence 〈Aei,ei〉 ∈ W0(A) and 〈Byi,yi〉 ∈ W0(B) . It results that  ∈
co

(
W0(A)W0(B)

)
and so, W0(M2,A,B)⊆ co

(
W0(A)W0(B)

)
. The other inclusion is given

by Theorem 2.1. �

THEOREM 2.7. Let A,B∈B(H ) such that B is hyponormal. If A has a normal
dilation N on some complex Hilbert space K with (N) ⊆ (A) , then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
.

To prove this theorem, we need the following auxiliary lemmas.

LEMMA 2.8. Let A ∈ B(H ) . Then

co
(
n(A)

) ⊆ W0(A). (2.1)

Proof. Let  ∈ n(A) , then  ∈ W(A) . So, there is a sequence of unit vectors

xn ∈ H such that  = lim
n
〈Axn,xn〉 . But, ‖A‖ = | | =

∣∣∣lim
n
〈Axn,xn〉

∣∣∣ � lim
n
‖Axn‖ �

‖A‖ , then lim
n
‖Axn‖ = ‖A‖ . Consequently,  ∈ W0(A) and so n(A) ⊆ W0(A) . The

desired result follows by the convexity of W0(A) . �



324 E. H. BENABDI, M. K. CHRAIBI AND A. BAGHDAD

LEMMA 2.9. Let A ∈ B(H ) . If there exists a hyponormal operator H on some
complex Hilbert space K and an isometry V from H to K such that A = V ∗HV
and (H) ⊆ (A) , then

W0(A) ⊆W0(H).

Proof. The proof is similar to the one of [1, Lemma 3.1]. �
Now, we are ready to prove the theorem.

Proof of Theorem 2.7. By hypothesis, there is an isometry V from H to K such
that A =V ∗NV . It is easy to see that M∗

2,A,B = L∗
2,VM∗

2,N,BL2,V . We have

M2,N,BM∗
2,N,B −M∗

2,N,BM2,N,B = M2,N∗N,B∗B−BB∗ .

Note that N∗N and B∗B−BB∗ are positive, then by the equality (1.5),

W (M2,N∗N,B∗B−BB∗) ⊆ co
(
W (N∗N)W (B∗B−BB∗)

)
.

From this, we derive that M2,N∗N,B∗B−BB∗ is positive, that is, M∗
2,N,B is hyponormal.

Moreover, L2,V is an isometry and (M2,N,B) = (N)(B) ⊆ (A)(B) = (M2,A,B) ,
that is, (M∗

2,N,B) ⊆ (M∗
2,A,B) . Then, according to Lemma 2.9, we get W0(M∗

2,A,B) ⊆
W0(M∗

2,N,B) . Therefore,

W0(M2,A,B)∗ = W0(M∗
2,A,B)

⊆W0(M∗
2,N,B)

= co
(
n(M∗

2,N,B)
)

(by Theorem 1.3)

= co
(
n(M2,N∗,B∗)

)
= co

(
n(N∗)n(B∗)

)
(by the equality (1.2))

⊆ co
(
n(A∗)n(B∗)

)
(since ‖A‖ = ‖N‖ and (N) ⊆ (A))

⊆ co
(
W0(A∗)W0(B∗)

)
(by Lemma 2.8)

=
(

co
(
W0(A)W0(B)

))∗
(by Proposition 1.2).

Note that in the last equality we use the fact that co(L∗) =
(
co(L)

)∗
for any subset

L ⊂ C . We derive that W0(M2,A,B) ⊆ co
(
W0(A)W0(B)

)
and we conclude by Theorem

2.1. �

Let A∈B(H ) be a hyponormal operator. Then, according to [9], A has a normal
dilation N on some complex Hilbert space K with (N) ⊆ (A) . Note that A∗ has
N∗ as a dilation on K with (N∗) ⊆ (A∗) . From this and the previous theorem, we
have the following.

COROLLARY 2.10. Let A,B ∈ B(H ) . If either A or A∗ is hyponormal and
either B or B∗ is hyponormal, then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
.
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Proof. Let us prove the result in the the case where A and B∗ are hyponormal. So,
according to [9], A has a normal dilation N on some complex Hilbert space K with
(N) ⊆ (A) . Then N∗ is a normal dilation of A∗ on K with (N∗) ⊆ (A∗) . By
Theorem 2.7, W0(M2,A∗,B∗) = co

(
W0(A∗)W0(B∗)

)
and we conclude as above. For the

other cases, we use the same argument. �

RE F ER EN C ES

[1] A. BAGHDAD AND M. C. KAADOUD, On the maximal numerical range of a hyponormal operator,
Oper. Matrices 13 (4) (2019), 1163–1171.

[2] F. F. BONSALL AND J. DUNCAN, Numerical ranges of operators on normed spaces and of elements
of normed algebras, London-New York: Cambridge University Press; (London mathematical society
lecture note series; 2), (1971).

[3] F. F. BONSALL AND J. DUNCAN, Numerical ranges II, New York-London, Cambridge University
Press; (London mathematical society lecture notes series; 10), (1973).

[4] R. BOULDIN, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467.
[5] M. BOUMAZGOUR, H. A. NABWEY, A note concerning the numerical range of a basic elementary

operator, Ann. Funct. Ann. 7 (3) (2016), 434–441.
[6] J. B. CONWAY, A Course In Operator Theory, American Mathematical Society, (2000).
[7] L. FIALKOW, Structural properties of elementary operators, Proc. Inter. Workshop, (1991).
[8] C. K. FONG, On the essential maximal numerical range, Acta Sci. Math. 41 (1979), 307–315.
[9] H. L. GAU, K. Z. WANG, P. Y. WU, Numerical radii for tensor products of operators, Integral Equ

Oper Theory 78 (3) (2014), 375–382.
[10] K. E. GUSTAFSON AND D. K. M. RAO, Numerical range: The field of values of linear operators and

matrices, Springer, New York, Inc, (1997).
[11] P. R. HALMOS, A Hilbert space problem book, New York: Van Nostrand, (1967).
[12] G. JI, N. LIU AND Z. E. LI, Essential numerical range and maximal numerical range of the Aluthge

transform, Linear Multilinear Algebra 55 (4) (2007), 315–322.
[13] M. C. KAADOUD, Domaine numérique de l’opérateur produit M2,A,B et de la dérivation généralisée

2,A,B , Extracta Mathematicae 17 (1) (2002), 59–68.
[14] M. MATHIEU, Spectral theory for multiplication operators on C∗ -algebras, Proc. Royal Irish Acad.

83 A (2) (1983), 231–249.
[15] I. M. SPITKOVSKY, A note on the maximal numerical range, Oper. Matrices 13 (3) (2019), 601–605.
[16] J. G. STAMPFLI, The norm of derivation, Pacific J. Math. 33 (1970), 737–747.

(Received May 9, 2022) El Hassan Benabdi
Department of Mathematics, Laboratory of Mathematics

Statistics and Applications, Faculty of Sciences
Mohammed V University in Rabat, Rabat, Morocco

e-mail: elhassan.benabdi@gmail.com

Mohamed Kaadoud Chraibi
Department of Mathematics, FSSM

Cadi Ayyad University, Marrakesh-Morocco
e-mail: chraibik@uca.ac.ma

Abderrahim Baghdad
Department of Mathematics, FSSM

Cadi Ayyad University, Marrakesh-Morocco
e-mail: bagabd66@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


