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REMARKS ON SCALABLE FRAMES

PETER G. CASAZZA, LAURA DE CARLI AND TIN T. TRAN

(Communicated by D. Han)

Abstract. This paper investigates scalable frame in R
n . We define the reduced diagram matrix

of a frame and use it to classify scalability of the frame under some conditions. We give a new
approach to the scaling problem by breaking the problem into two smaller ones, each of which
is easier to solve, giving a simpler way to check scaling. Finally, we study the scalability of dual
frames.

1. Introduction

A Parseval frame X = {xi}m
i=1 for R

n is a set of vectors in R
n which has a prop-

erty that every vector x ∈ R
n can be recovered via the painless reconstruction formula:

x =m
i=1〈x,xi〉xi (see Section 2 for the definitions). This property shared with orthonor-

mal bases, among others, makes them very desirable in applications. When a frame is
not Parseval, the reconstruction formula depends on the inverse of the frame operator,
which may be difficult or impossible to calculate. Thus, a key question in frame the-
ory is the following: given a frame X = {xi}m

i=1 for R
n , can the frame vectors be

modified so that the resulting system forms a Parseval frame? Since a frame is typically
designed to accommodate certain requirements of an application, this modification pro-
cess should be done in such a way as to not change the basic properties of the system.
One way to do so is by scaling each frame vector in such a way to obtain a Parseval
frame. Frame scaling is a noninvasive procedure, and properties such as erasure re-
silience or sparse expansions are left untouched by this modification. Unfortunately
frame scaling is a very challenging problem in frame theory. Much work has been done
on this problem [1, 2, 5, 6, 7, 8, 9, 10, 11].

In this paper we find new necessary and sufficient conditions which ensure the
scalability of frames in R

n . Specifically, in Section 3 we define the reduced diagram
matrix of a given frame and use it to classify the scalability of the frame under some
conditions. In Section 4, we break up the scaling problem into two smaller ones: nor-
malized scaling and mixed scaling. This gives a simpler way for checking scalability.
Finally, in Section 5, we present some results about the scalability of dual frames.

Mathematics subject classification (2020): 42C15.
Keywords and phrases: Finite frames, scalable frames.
The first author was supported by NSF DMS 1609760.

c© � � , Zagreb
Paper OaM-17-23

327

http://dx.doi.org/10.7153/oam-2023-17-23


328 P. G. CASAZZA, L. DE CARLI AND T. T. TRAN

2. Preliminaries

In this section, we recall some basic facts about finite frame theory. For more
information on the subject, see the books [4, 12] and references therein.

DEFINITION 2.1. A sequence of vectors X = {xi}m
i=1 in R

n is a frame for R
n if

there are constants 0 < A � B <  such that

A‖x‖2 �
m


i=1

|〈x,xi〉|2 � B‖x‖2, for all x ∈ R
n.

The constants A and B are called the lower and upper frame bounds, respectively.
X is said to be a tight frame or an A-tight frame if A = B , and if A = B = 1, it is
called a Parseval frame. If all the frame elements have the same norm, this is an equal-
norm frame and if the frame elements have norm one, we call it a unit-norm frame. The
numbers {〈x,xi〉}m

i=1 are the frame coefficients of the vector x ∈ R
n . It is well known

that X is a frame for R
n if and only if it spans the space.

Given a frame X = {xi}m
i=1 for R

n , the corresponding synthesis operator, also
denoted by X , is the n×m matrix whose the i-th column is xi . The adjoint matrix
X ∗ is called the analysis operator, and the frame operator of X is then S := X X ∗ .
It is known that S is a positive, self-adjoint, invertible operator and satisfies: Sx =
m

i=1〈x,xi〉xi for all x ∈ R
n . We recover vectors by the formula:

x = S−1Sx =
m


i=1

〈x,xi〉S−1xi =
m


i=1

〈x,S−1/2xi〉S−1/2xi.

It follows that {S−1/2xi}m
i=1 is a Parseval frame for R

n .
If the frame is A-tight, then its frame operator is a multiple of the identity operator.

In this case, we have the following useful reconstruction formula:

x =
1
A

m


i=1

〈x,xi〉xi, for all x ∈ R
n.

The following characterization of tight frames is well known [4].

THEOREM 2.2. A frame X for R
n is tight if and only if the row vectors of its

synthesis matrix are orthogonal and have the same norm.

Let us recall the definition of scalable frames from [10].

DEFINITION 2.3. A frame X = {xi}m
i=1 for R

n is scalable if there exist non-
negative constants {ai}m

i=1 for which {aixi}m
i=1 is a tight frame. If all the ai ’s are

positive, we say that the frame is strictly scalable.

Recently, a weakened version of frame scaling was introduced [3] called piecewise
scaling.

Throughout, for any natural number m , we use the notation [m] to denote the set
[m] := {1,2, . . . ,m} , and we write x = (x(1),x(2), . . . ,x(n)) to represent the coordinates
of a vector x ∈ R

n .
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3. Reduced diagram matrices and scaling problem

Given a vector x ∈ R
n , the diagram vector x̃ of x is defined in [8] as follows.

x̃ :=
1√

n−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x(1))2− (x(2))2

...
(x(n−1))2− (x(n))2√

2nx(1)x(2)
...√

2nx(n−1)x(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n(n−1),

where the difference of squares (x(i))2−(x( j))2 and the product x(i)x( j) occur exactly
once for 1 � i < j � n .

The normalization of the components of the diagram vector is chosen to preserve
unit vectors. The following result appeared in [8].

PROPOSITION 3.1. For any x,y ∈ R
n , we have that

(n−1)〈x̃, ỹ〉 = n|〈x,y〉|2−‖x‖2‖y‖2.

DEFINITION 3.2. Given a set X = {xi}m
i=1 in R

n , the diagram matrix X is the
n(n−1)×m matrix whose the i-th column is the diagram vector of xi .

In [8], the authors use the diagram vectors to classify scalable frame. In the follow-
ing, we will show that this can be done by using the reduced diagram vectors. Before
giving the definition, we need a lemma.

LEMMA 3.3. The rank of the diagram matrix X of a set of vectors X = {xi}m
i=1

⊂ R
n is � (n−1)(n+2)

2 .

Proof. The rows n,n+ 1, . . . , n(n−1)
2 of the matrix X can be obtained from the

first n−1 rows. Specifically, if 1 < i < j � n , the rows whose elements are(
(x1(i))2 − (x1( j))2,(x2(i))2 − (x2( j))2, . . . ,(xm(i))2 − (xm( j))2)

is the difference of the ( j−1)-th and the (i−1)-th rows of X . Thus, the rank of X

is � n(n−1)
2 +(n−1) = (n−1)(n+2)

2 . �

DEFINITION 3.4. The reduced diagram matrix of a set of vectors X = {xi}m
i=1

in R
n is the matrix ̃X obtained by removing the rows n,n + 1, . . . , n(n−1)

2 from the
diagram matrix X . The reduced diagram vector of xi , that we still denote with x̃i , is
the i-th column of the reduced diagram matrix ̃X .
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By Lemma 3.3, the rank of ̃X is � min
{

(n−1)(n+2)
2 ,m

}
.

We are now ready to present the following important classification of scalable
frames. The main idea of this theorem is not new (see [8, 11]), but we will restate it
here with our notation.

THEOREM 3.5. Let X = {xi}m
i=1 be a unit-norm frame for R

n and ̃X be the
reduced diagram matrix of X . Then the following are equivalent.

1. X is scalable.

2. There is a non-negative, non-zero vector c = (c1,c2, . . . ,cm) such that c is or-
thogonal to every row of ̃X .

3. There is a non-negative, non-zero vector c = (c1,c2, . . . ,cm) in the null space of
the Gram matrix of ̃X .

Proof. (1)⇔ (2) : By definition, X is scalable if there exist non-negative scalars
a= {ai}m

i=1 so that aX := {aixi}m
i=1 is a tight frame. By Theorem2.2, this is equivalent

to the fact that the rows of the synthesis matrix aX are orthogonal and have the same
norm. Let Rj denote the j -th row of the synthesis matrix aX and let R̃ j denote the
j -th row of the reduced diagram matrix of aX . The rows Rj and R1 have the same
norm if and only if

m


i=1

[aixi( j)]2 =
m


i=1

[aixi(1)]2, j = 2, . . . ,n.

But this is equivalent to 〈c, R̃ j〉 = 0 for all j ∈ [n− 1] , where c = (a2
1, . . . ,a

2
m) . A

similar argument shows that the rows of the synthesis matrix aX are orthogonal if and
only if 〈c, R̃ j〉 = 0 for all j � n .

(2) ⇔ (3) : Let G be the Gram matrix of ̃X . If there exists a non-negative,
non-zero vector c = (c1, . . . ,cm) that is orthogonal to every row of ̃X , then ̃X c = 0.
Thus, Gc = ̃ ∗

X ̃X c = 0, and we have shown that (2) implies (3). Conversely, if
̃ ∗

X ̃X c = 0, then ‖̃X c‖2 = 〈̃X c, ̃X c〉 = 〈̃ ∗
X ̃X c,c〉 = 0. So ̃X c = 0 and (2)

is proved. �

REMARK 3.6. The statement “(1) ⇔ (3)” was stated in [8] for the Gram matrix
of the diagram matrix of X . Also, the statement “(1) ⇔ (2)” appeared in [11] when
they classified k -scalable and strictly k -scalable frames. Recall that a frame {xi}m

i=1
for R

n is said to be k -scalable (resp., strictly k -scalable) if there is a set I ⊂ [m], |I|= k
such that {xi}i∈I is a scalable frame (resp., a strictly scalable frame) for R

n .

The following is a direct consequence of Theorem 3.5.

COROLLARY 3.7. A unit-norm frame X is non-scalable if one of the following
conditions holds.

1. ̃X contains at least one row whose elements are all positive or all negative.
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2. The columns of ̃X are linearly independent.

Condition (1) of the corollary is verified, for instance, when the synthesis matix
X contains two rows with the entries which are all positive or all negative.

The following result also appeared in [11], with a differrent notation. For the
completeness of the paper, we will restate it here without its proof.

Recall that the convex hull of a set X = {xi}m
i=1 in R

n is the set

co(X ) =

{
m


i=1

ixi : i � 0,
m


i=1

i = 1

}
.

THEOREM 3.8. (see also in [11]) Let X = {xi}m
i=1 be a frame for R

n and ̃X

be the reduced diagram matrix of X . The following are equivalent.

1. X is scalable.

2. 0 ∈ co(̃X ) (the convex hull of the column vectors of ̃X ).

3. There is no y ∈ R
(n−1)(n+2)

2 such that 〈x̃i,y〉 > 0 for all i ∈ [m] .

Before we state our next theorem, we recall some standard linear algebra results.
If A = {ai, j}i, j∈[m] is a square matrix, the determinant of the (m− 1)× (m− 1)

sub-matrix obtained from A by deleting the i-th row and j -th column is called the
minor of ai, j . When there is no ambiguity, this number is often denoted by Mi, j . The
cofactor of ai, j is obtained by multiplying Mi, j with (−1)i+ j and can be denoted by
Ai, j .

Note that det(A) =m
j=1 ai, jAi, j , for every i ∈ [m] . The following is a well known

linear algebra result.

LEMMA 3.9. For all i,k ∈ [m] , with i 
= k , we have that m
j=1 ak, jAi, j = 0 . In

other words, for every i ∈ [m] , the vector (Ai,1, . . . ,Ai,m) is orthogonal to all rows of A
with the exception of the i-th row.

THEOREM 3.10. Let X = {xi}m
i=1 be a unit-norm frame for R

n , and let ̃X

be the reduced diagram matrix of X . Assume that ̃X has rank m− 1 and let
R1,R2, . . . ,Rm−1 be the m−1 linearly independent rows of ̃X . Let E = (1,2, . . . ,m)
be a vector of coefficients, and let A be the matrix whose rows are E,R1, . . . ,Rm−1 .
Then X is scalable if and only if the cofactors of the  j ’s in the expansion of det(A)
are all non-negative or non-positive.

Proof. Let c = (c1, . . . ,cm) be the vector of the cofactors of the (1, . . . ,m) .
Then c 
= 0 since the Ri ’s are linearly independent. By Lemma 3.9, c is orthogonal
to all the rows of ̃X . If c′is are all non-negative or non-positive, then X is scalable
by Theorem 3.5. Conversely, if X is scalable, then again by Theorem 3.5, there is a
non-negative, non-zero vector a = (a1, . . . ,am) such that a is orthogonal to all the rows
of ̃X . Note that these rows span a hyperplane in R

m . Therefore, c must be a multiple
of a . This completes the proof. �
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REMARK 3.11. We can apply Gaussian elimination to the reduced matrix ̃X

and use the (m−1) linearly independent rows of the result matrix.

EXAMPLE 3.12. Consider a unit-norm frame X = {xi}3
i=1 of three distinct vec-

tors in R
2 , where

x1 = (1,0), x2 = (cos ,sin ), x3 = (cos ,sin)

with 0 <  <  <  . The diagram matrix of X is the same as the reduced diagram
matrix and is

̃X =
(

1 (x2(1))2− (x2(2))2 (x3(1))2− (x3(2))2

0 2x2(1)x2(2) 2x3(1)x3(2)

)

=
(

1 cos(2 ) cos(2)
0 sin(2 ) sin(2)

)
.

The condition 0 <  <  <  ensures that ̃X has maximum rank. The vector of the
cofactors of the elements  j ’s in the matrix⎛

⎝1 2 3

1 cos(2 ) cos(2)
0 sin(2 ) sin(2)

⎞
⎠

is c = (sin(2( −  )),−sin(2),sin(2 )). We can check that the components of c
cannot be all non-positive. Moreover, they are all non-negative if and only if either
0 <  < /2 �  �  +/2 or  = /2 <  <  . Thus, the given frame is scalable
if the angles  and  satisfy these conditions. The scaling that makes the frame tight
is (
√

sin(2(− )),
√−sin(2),

√
sin(2 )) .

REMARK 3.13. The conditions on  and  are compatible with the fact that the
frame is scalable if and only if the vectors do not lie in the same open quadrant cone,
see [10].

In the following, we will consider the case when the orthogonal complement of
the row space of the reduced diagram matrix has dimension two.

THEOREM 3.14. Let X = {xi}m
i=1 be a frame for R

n . Assume that the reduced
diagram matrix ̃X has rank (m−2) . Let R1, . . . ,Rm−2 be the (m−2) linearly inde-
pendent rows of the matrix ̃X . Let w1,w2 ∈ R

m be such that the set {w1,w2,R1, . . . ,
Rm−2} is linearly independent. Let E = (1, . . . ,m) be a vector of coefficients. Then
X is scalable if and only if there exists t ∈ [0,2) for which the cofactors of the  j ’s in
the expansion of the determinant of the matrix whose rows are (E,(cos t)w1 +(sin t)w2,
R1, . . . ,Rm−2) are all non-positive or non-negative.

Proof. By Theorem 3.5, X is scalable if and only if there exsits a non-negative,
non-zero vector (c1, . . . ,cm) in the orthogonal complement of the row space of ̃X .
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Let  j denote the vector of the cofactors of the (1, . . . ,m) in the matrix Aj =

(E,wj,R1, . . . ,Rm−2) . Clearly,  j ∈
(
span{Ri}m−2

i=1

)⊥
and  j ⊥ wj , j = 1,2.

Let us prove that 1,2 are linearly independent, and so they form a basis for(
span{Ri}m−2

i=1

)⊥
. Assume that 1 + 2 = 0 for some , ∈ R . By the multi-

linear property of the determinant, 1 + 2 is the vector of the cofactors of E =
(1, . . . ,m) in the matrix whose rows are (E,w1 +w2,R1, . . . ,Rm−2) . By assump-
tion, w1 +w2,R1, . . . ,Rm−2 are linearly independent whenever (, ) 
= (0,0) , and
so the vector of the cofactors of E can only be zero if  =  = 0.

We have proved that every non-zero vector  ∈ (span{Ri}m−2
i=1

)⊥
can be written

as  = a1 + b2 for some a,b ∈ R,(a,b) 
= (0,0) . We can let a =  cost and b =
 sin t , with  > 0 and t ∈ [0,2) , and write  =  [(cost)1 + (sin t)2] . Thus, 
has non-negative components if and only if the same is true of (cost)1 + (sin t)2 .
By the multilinear property of the determinant, (cost)1 +(sin t)2 is the vector of the
cofactors of E in the matrix At whose rows are (E,(cost)w1 +(sin t)w2,R1, . . . ,Rm−2) ;
equivalently, with the notation previously introduced, (cost)1 +(sin t)2 is the vector
of the cofactors of the  j ’s in the expansion of detAt = cost detA1 + sin t detA2 . This
concludes the proof of the theorem. �

REMARK 3.15. In Theorem 3.10 and Theorem 3.14, the frame X is strictly scal-
able if and only if the cofactors of the  j ’s are all positive or all negative.

EXAMPLE 3.16. Let X = {xi}4
i=1 be a unit-norm frame of distinct vectors in

R
2 , where

x1 = (1,0), x2 = (cos,sin), x3 = (cos ,sin ), x4 = (cos,sin),

with 0 <  < 
2 �  <  <  . We will find conditions for which the frame is strictly

scalable.
The reduced diagram matrix is

̃X =
(

1 cos(2) cos(2 ) cos(2)
0 sin(2) sin(2 ) sin(2)

)
=
(

R1

R2

)
.

The conditions on  imply that ̃X has rank 2. We observe that the vectors w1 =
(0,0,1,0) and w2 = (0,0,0,1) are linearly independent from R1 , R2 since the deter-
minant of the matrix whose rows are (w1,w2,R1,R2) is sin(2) 
= 0. By Theorem
3.14, the frame is strictly scalable if and only if we can find t ∈ [0,2) for which the
cofactors of the  j ’s in the matrix

⎛
⎜⎜⎝
1 2 3 4

0 0 cost sin t
1 cos(2) cos(2 ) cos(2)
0 sin(2) sin(2 ) sin(2)

⎞
⎟⎟⎠
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are all positive or all negative. The determinant of the matrix above is 1A1 +2A2 +
3A3 +4A4 , where

A1 = sin t sin(2 −2)+ cost sin(2−2);
A2 = cost sin(2)− sint sin(2 );
A3 = sin t sin(2);
A4 = −cost sin(2).

Thus, X is strictly scalable if and only if there exists t ∈ [0,2) such that the Aj ’s are
all positive or all negative. Since we have assumed 0 <  < 

2 , the coefficients A3 and
A4 are both positive if t ∈ (/2,) .

If we assume /2 �  <  <  +/2, it is easy to verify that Ai > 0 for i = 1,2
and for all t ∈ (/2,) . So, X is scalable with positive scalings c = {√Ai}4

i=1 . Since
t is arbitrary in (/2,) , we may have infinitely many ways of choosing a scaling that
makes the given frame tight.

4. A new approach to scaling

In this section, we give a new approach to scaling problem. We are going to break
the scaling problem into two smaller ones, each of which is easier to solve, giving a
simpler way to check scaling. First, we introduce new notation.

NOTATION 4.1. If Z ⊂ �2(m) , we denote

Z+ = {a = (a1,a2, . . . ,am) ∈ Z : ai � 0 for all i ∈ [m]}.

If u = (u1,u2, . . . ,um), v = (v1,v2, . . . ,vm) ∈ �2(m) , we let

u • v = (u1v1,u2v2, . . . ,umvm)

be the Hadamard product of u and v . We let u2 = u • u.
If X = {xi}m

i=1 ⊂ R
n we denote

X̃ = {u j := (x1( j),x2( j), . . . ,xm( j)) : j ∈ [n]},

X̃ 2 = {u2 : u ∈ X̃ },
and

W (�2(m)+,X̃ 2) = {a ∈ �2(m)+ : 〈a,u2〉 = 1 for all u ∈ X̃ }.

DEFINITION 4.2. Let X = {xi}m
i=1 be a frame for R

n . If W (�2(m)+,X̃ 2) 
= /0 ,
we say that X is normalized scalable.

REMARK 4.3. For x,y ∈ �2(m) , 〈x,y〉 = 1 if and only if x = y
‖y‖2 + v for some

v ∈ y⊥ .



REMARKS ON SCALABLE FRAMES 335

The following result is immediate from Remark 4.3.

PROPOSITION 4.4. Let X = {xi}m
i=1 be a frame for R

n and let u j, j ∈ [n] be the
vectors in X̃ . Then

W (�2(m)+,X̃ 2) =
n⋂

j=1

{a ∈ �2(m)+ : 〈a,u2
j〉 = 1}

=
n⋂

j=1

(
u2

j

‖u2
j‖2

+(u2
j)
⊥
)+

.

Note that W (�2(m)+,X̃ 2) is the intersection of convex sets and hence it is convex.

PROPOSITION 4.5. X = {xi}m
i=1 ⊂R

n is normalized scalable if and only if there
are constants {ai}m

i=1 so that the rows of the synthesis matrix [aixi]mi=1 all square sum
to 1.

Proof. The square sum of the j -th row, j ∈ [n] , of the synthesis matrix is:

m


i=1

a2
i xi( j)2 = 〈a2,u2

j〉,

where u j = (x1( j),x2( j), . . . ,xm( j)) ∈ X̃ and a = (a1,a2, . . . ,am) ∈ �2(m) . So this
equals 1 for all j ∈ [n] if and only if a2 ∈W (�2(m)+,X̃ 2) . �

EXAMPLE 4.6. It is possible that W (�2(m)+,X̃ 2) = /0 . To see this, take a Hada-
mard matrix [±1] in R

n and multiply the last row by 2. Let X be the frame whose
frame vectors are the columns of the resulting matrix and denote by u j the j -th row
of this matrix. Then u j = (±1, . . . ,±1) for 1 � j � n−1 and un = (±2,±2, . . . ,±2) .
For any a = (a1,a2 . . . ,an) ∈ �2(n)+ we have

〈a,u2
1〉 =

n


i=1

ai ·1 =
n


i=1

ai,

while

〈a,u2
n〉 =

n


i=1

4ai.

For the second part of this approach, we start with:

NOTATION 4.7. Let X = {xi}m
i=1 be a frame for R

n with the rows of its synthesis
matrix (represented in the standard basis {ei}n

i=1 of R
n ), u j = (x1( j),x2( j), . . . ,xm( j)) ,

j ∈ [n] . We denote
X • = {ui • u j : 1 � i 
= j � n},

V (�2(m)+,X •) = {a ∈ �2(m)+ : 〈a,u〉 = 0 for all u ∈ X •}.



336 P. G. CASAZZA, L. DE CARLI AND T. T. TRAN

DEFINITION 4.8. A frame X = {xi}m
i=1 for R

n is called mixed scalable if
V (�2(m)+,X •) 
= {0}.

REMARK 4.9. 1) If {xi}m
i=1 is a frame for R

n written with respect to the eigen-
basis of its frame operator, then V (�2(m)+,X •) = �2(m)+ . This is because the rows
of the synthesis matrix are orthogonal.

2) ui • u j : 1 � i 
= j � n are the last n(n− 1)/2 rows of the reduced diagram
matrix defined in Section 3.

THEOREM 4.10. If X = {xi}m
i=1 is a frame for R

n , then V (�2(m)+,X •) is a
positive cone in R

n .

Proof. Let a,b ∈ V (�2(m)+,X •) and , � 0. Then a + b ∈ �2(m)+ , and
for all 1 � i 
= j � n we have that

〈a+b,ui • u j〉 = 〈a,ui • u j〉+ 〈b,ui • u j〉 = 0.

The claim is proven. �

Now the following theorem is obvious.

THEOREM 4.11. A frame X = {xi}m
i=1 for R

n is scalable if and only if
W (�2(m)+,X̃ 2)∩V (�2(m)+,X •) 
= /0 . In other words, the convex set intersects the
positive cone.

Theorem 4.11 gives an easier method to check if a frame is scalable. There are
three reasons the theorem may fail:

1. Either W (�2(m)+,X̃ 2) = /0 or V (�2(m)+,X •) = {0} (or both).

2. These two sets contain non-zero vectors but do not intersect.

We will look at examples of all cases. We will work in R
4 since there are simple

complete classifications for scaling in R
2 and R

3 .

EXAMPLE 4.12. Let X = {xi}4
i=1 be the frame in R

4 given by the columns of
the matrix:

X =

⎡
⎢⎢⎣

1 1 0 0
2 −2 0 0
0 0 1 1
0 0 2 −2

⎤
⎥⎥⎦

The row vectors here are already orthogonal and it is easily checked that one cannot
scale these vectors to make the row vectors norm 1.
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EXAMPLE 4.13. Let Y = {yi}4
i=1 be the frame in R

4 given by the columns of
the matrix:

Y =

⎡
⎢⎢⎣

1 −1 1 1
1 1 −1 1
1 1 1 −1
1 1 1 1

⎤
⎥⎥⎦

Clearly,

W (�2(4)+, Ỹ 2) = {(a1,a2,a3,a4) ∈ �2(4)+ :
4


i=1

ai = 1}.

It is easily checked that V (�2(4)+,Y •) = {0}. Let a = (a1,a2,a3,a4)∈V (�2(4)+,Y •)
and let {u j}4

j=1 be the row vectors of Y . Then

〈a,u1 • u4〉 = a1−a2 +a3 +a4 = 0 and 〈a,u2 • u4〉 = a1 +a2−a3 +a4 = 0.

Adding these equations yields a1 +a4 = 0 and so a1 = a4 = 0. Similarly, a2 = a3 = 0.

EXAMPLE 4.14. Consider the frame Z = X ∪Y for R
4 , i.e.,

Z =

⎡
⎢⎢⎣

1 1 0 0 1 −1 1 1
2 −2 0 0 1 1 −1 1
0 0 1 1 1 1 1 −1
0 0 2 −2 1 1 1 1

⎤
⎥⎥⎦

We can check that W (�2(8)+,Z̃ 2) and V (�2(8)+,Z •) contain non-zero vectors but
they don’t intersect. That is,

W (�2(8)+,Z̃ 2) = {(0,0,0,0,a5,a6,a7,a8) ∈ �2(8)+ :
8


i=5

ai = 1}

and V (�2(8)+,Z •) contains (1,1,1,1,0,0,0,0) . So the frame is non-scalable by The-
orem 4.11.

Now we will look at an example of 6 vectors in R
4 . To check if this is scalable,

one has to solve 10 equations in 6 unknowns, which is quite a feat. But we will only
have to solve 4 equations in 6 unknowns and then go to Theorem 4.11.

EXAMPLE 4.15. Let the frame X = {xi}6
i=1 in R

4 be given by:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
10

0 − 2
5 0 0 0

1
3 −

√
2

3
1

3
√

10
1√
6

1
6

1
3
√

2

2
3
√

5
1
3

√
5
2

√
2

15
1

2
√

3
1

6
√

2
− 1

3

0 0 0 1√
2
− 1

2
√

3
0

⎤
⎥⎥⎥⎥⎥⎥⎦
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We want to see if this is scalable. So we consider {aixi}6
i=1 and we are faced with

solving 10 very complicated equations in 6 unknowns. We rely on Theorem 4.11 and let
u j be the row vectors of the matrix. We only have to set up 4 equations in 6 unknowns
〈a,u2

j〉 = 1, for j = 1,2,3,4. Solving these equations yields that

(2,1,5,1,6,3)

are in W (�2(6)+,X̃ 2) . We can check that this vector is also in V (�2(6)+,X •) and so
(
√

2,1,
√

5,1,
√

6,
√

3) scales the frame.

5. Scalability of dual frames

Let X = {xi}m
i=1 be a frame for R

n with the frame operator S . A sequence
Y = {yi}m

i=1 in R
n is called a dual frame for X if Y satisfies the reconstruction

formula:

x =
m


i=1

〈x,xi〉yi =
m


i=1

〈x,yi〉xi, for all x ∈ R
n.

If yi = S−1xi , i ∈ [m] , then Y is called the canonical dual frame, otherwise it is called
an alternate dual frame.

In this section, we will study scalabilty of the dual frames.

THEOREM 5.1. Every scalable frame has a scalable alternate dual frame.

Proof. Let {xi}m
i=1 be a scalable frame for R

n . Then after perhaps dropping those
vectors which are scaled with zero constants, we may assume there are ai > 0 so that
{aixi}m

i=1 is a Parseval frame. So for every x ∈ R
n we have

x =
m


i=1

〈x,aixi〉aixi =
m


i=1

〈x,xi〉a2
i xi.

It follows that {a2
i xi}m

i=1 is a dual frame. But now, if we scale the dual frame by 1
ai

we
get {aixi}m

i=1 which is Parseval. �

COROLLARY 5.2. Let X = {xi}m
i=1 be a frame for R

n . The following are equiv-
alent.

1. {aixi}m
i=1 is Parseval.

2. {a2
i xi}m

i=1 is a dual frame for {xi}m
i=1 .

REMARK 5.3. There are non-scalable frames (for example, non-orthogonal bases
of R

n ) whose all duals are not scalable, and also examples of non-scalable frames
whose canonical dual frame is scalable.
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EXAMPLE 5.4. Let X be a frame for R
2 whose the vectors are the columns of

the following matrix:

X =
[

2 1 1
1 2 1

]
.

This frame is not scalable since all the vectors lie in the first open quadrant. Its frame
operator S is

S = X X ∗ =
[

6 5
5 6

]
,

We have

S−1 =
1
11

[
6 −5
−5 6

]
,

and

S−1X =
1
11

[
7 −4 1
−4 7 1

]
.

The columns of the matrix S−1X form a scalable frame since the vectors do not lie in
the same open quadrant cone.

We will provide a classification of frames whose canonical dual frame is scalable.
First, we consider the scalabilty of frames under invertible operators.

THEOREM 5.5. Let X = {xi}m
i=1 be a frame for R

n and T be an invertible op-
erator on R

n . The following are equivalent:

1. There are constants {ai}m
i=1 so that {aiTxi}m

i=1 is a Parseval frame for R
n .

2. There are constants {ai}m
i=1 so that the frame operator for {aixi}m

i=1 is (T ∗T )−1 .

Proof. Let S1 be the frame operator for {aixi}m
i=1 . For x ∈ R

n we have

m


i=1

〈x,aiTxi〉aiTxi = T

(
m


i=1

〈T ∗x,aixi〉aixi

)
= TS1T

∗x.

So {aiTxi}m
i=1 is a Parseval for R

n if and only if TS1T ∗ = I . That is, S1 = T−1(T ∗)−1 =
(T ∗T )−1 . �

COROLLARY 5.6. Let X = {xi}m
i=1 be a frame for R

n and T be an invertible
operator on R

n . If there are constants {ai}m
i=1 so that {aixi}m

i=1 and {aiTxi}m
i=1 are

Parseval frames for R
n , then T is unitary.

Proof. This is immediate from Theorem 5.5. �

The following theorem classifies when the canonical dual frame is scalable. Note
that we do not require the original frame is scalable.
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THEOREM 5.7. Let X = {xi}m
i=1 be a frame for R

n with frame operator S . The
following are equivalent.

1. There are constants {ai}m
i=1 so that {aiS−1xi}m

i=1 is a Parseval frame for R
n .

2. There are constants {ai}m
i=1 so that the frame operator for {aixi}m

i=1 is S2 .

3. There are constants {ai}m
i=1 so that the frame {aiS−1/2xi}m

i=1 has S as its frame
operator.

Proof. (1) ⇔ (2) : This follows from Theorem 5.5 with T = S−1 .
(2) ⇒ (3) : Given (2), for every x ∈ R

n we have

m


i=1

〈x,aiS
−1/2xi〉aiS

−1/2xi = S−1/2
m


i=1

〈S−1/2x,aixi〉aixi

= S−1/2S2S−1/2x

= Sx.

(3)⇒ (2) : Let S1 be the frame operator for {aixi}m
i=1 . Given (3), for every x∈R

n

we have

Sx =
m


i=1

〈x,aiS
−1/2xi〉aiS

−1/2xi

= S−1/2
m


i=1

〈S−1/2x,aixi〉aixi

= S−1/2S1S
−1/2x.

So S = S−1/2S1S−1/2 and hence S1 = S2 . �

REMARK 5.8. (1) Note that S2 is the frame operator for the frame {S1/2xi}m
i=1 .

(2) If {S−1xi}m
i=1 can be scaled in more than one way, for example if {aiS−1xi}m

i=1
and {biS−1xi}m

i=1 are Parseval frames, then {aixi}m
i=1 and {bixi}m

i=1 have the same
frame operator.

COROLLARY 5.9. Let X = {xi}m
i=1 be a frame for R

n with frame operator S
and let D be the diagonal operator with {a1,a2, . . . ,am} on its diagonal entries. Then
{aiS−1xi}m

i=1 is Parseval if and only if X (D2−G)X ∗ = 0 , where G be the Grammian
operator of X .

Proof. We have S = X X ∗ . By the Theorem 5.7, {aiS−1xi} is Parseval if and
only if S1 = S2 , where S1 is the frame operator of {aixi}m

i=1 .
But

S1 = (X D)(X D)∗ = X D2X ∗

Thus, S1 = S2 is equivalent to X D2X ∗ = (X X ∗)2 = X GX ∗ , or X (D2−G)X ∗ =
0. �
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PROPOSITION 5.10. There are scalable frames whose canonical dual frames are
not scalable.

Proof. Let [xi, j]ni, j=1 be a unitary Hadamard matrix (i.e., entries ±1/
√

n ) with
row vectors {xi}n

i=1 . Let

yi = (xi,1,xi,2, . . . ,xi,n−2,2xi,n−1,3xi,n) for all i ∈ [n].

Then {xi}n
i=1 ∪{yi}n

i=1 is a frame for R
n . Let S be its frame operator. We see that

Sen = 2en for n = 1, . . . ,n− 2, Sen−1 = 5en−1 , and Sen = 10en . So the unit vectors
e′ns are eigenvectors with eignvalues 2,2, . . . ,2,5,10. This frame is scalable since it
contains the Parseval frame {xi}n

i=1 . We proceed by way of contradiction by assum-
ing the canonical dual frame is scalable. Then by Theorem 5.7, there are constants
{ai}n

i=1 ∪ {bi}n
i=1 so that {aixi}n

i=1 ∪ {biyi}n
i=1 is a frame with frame operator S2 . It

follows that this frame has the unit vectors as eigenvectors with eigenvalues:

1
n

(
n


i=1

a2
i +

n


i=1

b2
i

)
= 4, for the first (n−2) eigenvectors

and
1
n

(
n


i=1

a2
i +4

n


i=1

b2
i

)
= 25, for the (n−1)-th eigenvector,

and
1
n

(
n


i=1

a2
i +9

n


i=1

b2
i

)
= 100 for the last eigenvector .

So
n


i=1

a2
i = 4n−

n


i=1

b2
i ,

and substituting this into the next two equations yields:

25n = 4n−
n


i=1

b2
i +4

n


i=1

b2
i and so

n


i=1

b2
i =

21n
3

.

100n = 4n−
n


i=1

b2
i +9

n


i=1

b2
i and so

n


i=1

b2
i =

96n
8

.

This contradiction completes the proof. �

REMARK 5.11. (1) Proposition 5.10 also shows that there are non-scalable frames
whose canonical dual frames are scalable, namely, take the canonial dual frame of the
above frame.

(2) Part (3) in Theorem 5.7 is interesting. Scaling means multiplying the frame
vectors by a constant to get a Parseval frame. Theorem 5.7(3) says that we are to take
the canonical Parseval frame and scale it so that the new frame has the original frame
operator as its frame operator.
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