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Abstract. In this paper, we introduce the weighted A -numerical radius (A,)(·) for semi-Hilber-
tian space operators. Further we obtain some basic properties and inequalities for (A,)(·) ,
which will be matched with earlier results about A(·) . Moreover, we provide a refinement and
generalization for inequalities obtained in [6, 16].

1. Introduction

In this article, we introduce the weighted A-numerical radius (A,)(·) , which
generalizes the A-numerical radius and numerical radius. We present some interesting
properties of (A,)(·) . Meanwhile, we derive upper and lower bounds for this nu-
merical radius. Some inequalities obtained for (A,)(·) will be matched with known
inequalities for A(·) . We first introduce the notions and terminologies.

Let (H ,〈·, ·〉) be a complex Hilbert space equipped with the norm ‖ · ‖ , and let
B(H ) be the algebra of all bounded linear operators on H . We assume A is a positive
operator on H . The positive operator A induces semi-inner product 〈x,y〉A = 〈Ax,y〉
for all x,y ∈ H . Let ‖ · ‖A denote seminorm on H , that is, ‖x‖A =

√〈x,x〉A . About
more, we refer readers to see [8, 11, 16].

For T ∈ B(H ) , the null space of every operator T is denoted by N(T ) , its range
by R(T ) . By R(T ) we denote the norm closure of R(T ) in H . For T ∈ B(H ) ,
A-operator seminorm of T , denoted by ‖T‖A , is defined as

‖T‖A = sup
x∈R(A),x�=0

‖Tx‖A

‖x‖A
.

Here, given T ∈B(H ) , if there exists c > 0 such that ‖Tx‖A � c‖x‖A for all x∈R(A) ,
then ‖T‖A <  . We set BA(H ) = {T ∈ B(H ) : ‖T‖A < } . Let T ∈ B(H ) , an
operator R ∈ B(H ) is called an A-adjoint of T if 〈Tx,y〉A = 〈x,Ry〉A for every x,y ∈
H , that is AR = T ∗A . An operator T ∈ B(H ) is said to be A-selfadjoint if AT is
selfadjoint, that is AT = T ∗A , where T ∗ is the adjoint of T .
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The existence of an A-adjoint of T is not guaranteed. In fact, an operator T ∈
B(H ) may admit none, one or many A-adjoints. The set of all operators that admit
A-adjoints is denoted by BA(H ) . By Douglas theorem [7], it follows that

BA(H ) = {T ∈ B(H ) : R(T ∗A) ⊆ R(A)} .

If T ∈ BA(H ) , then the operator equation AX = T ∗A has a unique solution, denoted
by T �A , satisfying R(T �A) ⊆ R(A) . Note that T �A = A†T ∗A , where A† is the Moore-
Penrose inverse of A and the A-adjoint operator T �A verifies

AT �A = T ∗A, R(T �A) ⊆ R(A) and N(T �A) = N(T ∗A).

Notice that if T ∈BA(H ) , then T �A ∈BA(H ) , (T �A)�A = PTP and ((T �A)�A)�A = T �A ,
the P is the orthogonal projection onto R(A) . For T ∈ BA(H ) , TT �A and T �AT are
A-selfadjoint and A-positive, so we have

‖TT �A‖A = ‖T �AT‖A = ‖T‖2
A = ‖T �A‖2

A.

For more about this class of operators, we refer the interested readers to see [11, 16].

DEFINITION 1.1. Let 0 �  � 1 and T ∈ BA(H ) . The weighted real and imag-
inary parts of T are defined as

(A,)(T ) = T +(1−)T �A and (A,)(T ) = (−iT )+ (1−)iT �A ,

respectively. When  = 1
2 , we can see that (A,)(T ) = A(T ) and (A,)(T ) =

A(T ) .

Some interesting relationships about (A,)(T ) , (A,)(T ) and A(T ) , A(T )
are as follows.

PROPOSITION 1.2. Let 0 �  � 1 and T ∈ BA(H ) . Then

(A,)(T ) = A(T )+ i(2−1)A(T ), (1.1)

(A,)(T ) = A(T )− i(2−1)A(T ) (1.2)

and

(A,)(T )+ i(A,)(T ) = 2T. (1.3)

The A-numerical radius and the A-Crawford number of T ∈ B(H ) are defined
by

A(T ) = sup{|〈Tx,x〉A | : x ∈ H ,‖x‖A = 1}
and

cA(T ) = inf{|〈Tx,x〉A | : x ∈ H ,‖x‖A = 1} .
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For T ∈ BA(H ) , it is well-known that A-numerical radius of T is equivalent to A-
operator seminorm of T , (see [16]), satisfying the following inequality:

1
2
‖T‖A � A(T ) � ‖T‖A. (1.4)

In [16], Zamani proved that

A(T ) = sup
∈R

‖A(eiT )‖A. (1.5)

Recently, this identity (1.5) has been widely used, some novel A-numerical radius in-
equalities improved were found. There are some refinements of the inequalities (1.4) in
references [6, 8, 11, 12, 16]. For example, in [16], let T ∈ BA(H ) , Zamani proved that

A(T ) � 1
2

√
‖TT �A +T �AT‖A +2A(T 2) � ‖T‖A. (1.6)

Another refinement of the inequalities (1.4) has been established in [6], Bhunia com-
puted some inequalities for A-numerical radius of 2 × 2 operator matrices, where

A =
(

A O
O A

)
. Let X ,Y ∈ BA(H ) , some results are as follows,

2
A

(
O X
Y 0

)
� 1

4
max{‖XX �A +Y �AY‖A,‖X �AX +YY �A‖A} (1.7)

and

2
A

(
O X
Y 0

)
� 1

2
max{‖XX �A +Y �AY‖A,‖X �AX +YY �A‖A}. (1.8)

It should be remarked that many mathematicians have developed various inequalities
about A-numerical radius and other results on numerical radius inequalities of 2× 2
operator matrices, see, e.g., [1, 2, 3, 4, 9, 15, 17].

In this paper, motivated by [14], we define the weighted A-numerical radius, de-
velop and generalize inequalities for the A-numerical radius of operators in BA(H ) .
We obtain a generalization for inequality (1.6). Further, we derive the weighted A-
numerical radius inequalities of 2×2 operator matrices that refine the inequalities (1.7)
and (1.8).

2. Weighted A-numerical radius inequalities

DEFINITION 2.1. Let 0 �  � 1 and T ∈ BA(H ) . The weighted A-numerical
radius of T denoted by (A,)(T ) , is defined as

(A,)(T ) = sup
∈R

‖(A,)(e
iT )‖A.

For T ∈ BA(H ) , obviously, (A, 1
2 )(T ) = A(T ) , and (A,0)(T ) = A(1)(T ) = ‖T‖A .
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PROPOSITION 2.2. Let 0 �  � 1 and T ∈ BA(H ) . Then

(A,)(T ) = sup
∈R

‖(A,)(e
iT )‖A.

Proof. To prove this, we first prove that (A,)(T ) = | |(A,)(T ) for all  ∈C .
For every nonzero  ∈ C , there exists  ∈ R such that  = | | ei , we have

(A,)(T ) = sup
∈R

‖(eiT )+ (1−)(e−i)T �A)‖A

= sup
∈R

‖ei | |eiT +(1−)e−i | |e−iT �A)‖A

= | | sup
∈R

‖(ei(+)T )+ (1−)(e−i(+))T �A)‖A

= | | (A,)(T ).

Then by replacing T by iT in (A,)(T ) = sup
∈R

‖(A,)(eiT )‖A , we have

(A,)(T ) = sup
∈R

‖ei iT − (1−)e−i iT �A‖A

= sup
∈R

‖(A,)(e
iT )‖A. �

THEOREM 2.3. Let 0 �  � 1 and T ∈ BA(H ) . Then for , ∈ R ,

(A,)(T ) = sup
2+ 2=1

‖(A,)(T )+(A,)(T )‖A.

Proof. Let  ∈ R . Put  = cos and  = sin . Then

eiT +(1−)e−iT �A = (cos + isin )T +(1−)(cos − isin )T �A

= cos (T +(1−)T �A)− sin (−iT +(1−)iT �A)
= cos(A,)(T )− sin(A,)(T ).

Therefore,

sup
∈R

‖eiT +(1−)e−iT �A‖A = sup
2+ 2=1

‖(A,)(T )+(A,)(T )‖A.

Hence, we obtain the desired result by Definition 2.1. �

PROPOSITION 2.4. Let T ∈ BA(H ) , 0 �  � 1 and  = max{,1−} . Then

(a) (A,)(T ) = (A,)(T �A) ,
(b) (A,)(T ) = (A,1−)(T ) ,
(c)  ‖T‖A � (A,)(T ) � ‖T‖A ,

(d) A(T ) � (A,)(T ) � 2 A(T ) .
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Proof. (a) and (b) can be easily obtained by definition and the properties of the
A-seminorm.

Next, we prove (c), by Definition 2.1 and the triangle inequality, then (A,)(T ) �
‖T‖A . Another, we have

(A,)(T ) = sup
2+ 2=1

‖(A,)(T )+(A,)(T )‖A.

Letting  = 1,  = 0 and  = 0,  = 1, we get that

(A,)(T ) � ‖(A,)(T )‖A and (A,)(T ) � ‖(A,)(T )‖A.

By adding two inequalities, and the triangle inequality, we obtain

2(A,)(T ) � ‖(A,)(T )‖A +‖(A,)(T )‖A � 2‖T‖A.

Then by replacing  by (1−) , we get

(A,)(T ) � (1−)‖T‖A.

We start proving (d), for  ∈ R , let x ∈ H with ‖x‖A = 1 and 1
2 �  � 1, then

‖(A(eiT )+ i(2−1)A(eiT )
)
x‖2

A

= ‖A(eiT )x‖2
A +(2−1)2‖A(eiT )x‖2

A +2(2−1)
(〈

A(eiT )x, iA(eiT )x
〉

A

)

� ‖A(eiT )x‖2
A +(2−1)2‖A(eiT )x‖2

A +2(2−1)|
〈
A(eiT )x,A(eiT )x

〉
A
|

� ‖A(eiT )‖2
A +(2−1)2‖A(eiT )‖2

A +2(2−1)‖A(eiT )‖A‖A(eiT )‖A

� (2A(T ))2.

Taking the supremum over all ‖x‖A = 1 and  ∈ R , together with (1.1), we get

(A,)(T ) � 2A(T ).

If 0 �  � 1
2 , then, 1

2 � 1− � 1, we can get (A,)(T ) � 2(1−)A(T ) . Therefore,
(A,)(T ) � 2 A(T ) .

On the other hand, similar to the method in the literature [14], first we prove that
f () = (A,)(T ) is a convex continuous function on [0,1] . For 0 � 1,2, � 1.
Then

f (1 +(1− )2) = (A,1+(1− )2)(T )

= sup
∈R

‖(1 +(1− )2)eiT +(1−1−2 +2)e−iT �A‖A

�  sup
∈R

‖1e
iT +(1−1)e−iT �A‖A +(1− ) sup

∈R

‖2e
iT +(1−2)e−iT �A‖A

= (A,1)(T )+ (1− )(A,2)(T )

=  f (1)+ (1− ) f (2).
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Therefore, f is convex on [0,1] . By the property of convex function, f is continuous
on (0,1) . According to (c), we have

0 � ‖T‖A −(A,)(T ) � ‖T‖A(1− ).

Hence f is continuous at  = 0 and  = 1, i.e. it is continuous on [0,1] . Also we
know f () = f (1− ) , f is symmetric about  = 1

2 . It means that f is decreasing
on [0, 1

2 ] and increasing on [ 1
2 ,1] . Therefore, we get that the minimum of f is f ( 1

2 )
and the maximum of f is f (1) and f (0) . It shows that A(T ) � (A,)(T ) . This
completes the proof. �

THEOREM 2.5. Let T ∈ BA(H ) , 0 �  � 1 and  = max{,1− } . Then we
have

(A,)(T ) � ‖T‖A + sup
∈R

∣∣‖(A,)(eiT )‖A −‖(A,)(eiT )‖A
∣∣

2
.

Proof. Let  ∈ R . Then

(A,)(T ) � max{‖(A,)(e
iT )‖A,‖(A,)(e

iT )‖A}

=
‖(A,)(eiT )‖A+‖(A,)(eiT )‖A

2
+

∣∣‖(A,)(eiT )‖A−‖(A,)(eiT )‖A
∣∣

2

� ‖T‖A +

∣∣‖(A,)(eiT )‖A −‖(A,)(eiT )‖A
∣∣

2
.

Furthermore, by replacing  by (1−) , we get

(A,)(T ) � (1−)‖T‖A +

∣∣‖A(1−)(eiT )‖A −‖A(1−)(eiT )‖A
∣∣

2
.

We also have

‖(A,1−)(e
iT )‖A = ‖(A,)(e

iT )‖A and ‖(A,1−)(e
iT )‖A = ‖(A,)(e

iT )‖A.

Therefore,

(A,)(T ) � max{,(1−)}‖T‖A +

∣∣‖(A,)(eiT )‖A −‖(A,)(eiT )‖A
∣∣

2
.

This completes the proof. �

COROLLARY 2.6. Let T ∈ BA(H ) , 0 �  � 1 and  = max{,1− } . Then
(A,)(T ) = ‖T‖A if and only if ‖(A,)(eiT )‖A = ‖(A,)(eiT )‖A = ‖T‖A for all
 ∈ R .
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Proof. According to Definition 2.1, the sufficient part is trivial, we only prove
the necessary part. For  ∈ [ 1

2 ,1] , by Theorem 2.5, (A,)(T ) = ‖T‖A , we get
‖(A,)(eiT )‖A = ‖(A,)(eiT )‖A , also

‖(A,)(e
iT )‖A � (A,)(T ) = ‖T‖A = ‖eiT‖A

=
∥∥∥(A,)(eiT )+ i(A,)(eiT )

2

∥∥∥
A

� ‖(A,)(e
iT )‖A

for all  ∈R . For  ∈ [0, 1
2 ] , 1− ∈ [ 1

2 ,1] , similarly, we can prove the conclusion. �

THEOREM 2.7. Let T ∈ BA(H ) and 0 �  � 1 . Then we have

(A,)(T ) � inf
∈R

√
‖(A,)(eiT )‖2

A +‖(A,)(eiT )‖2
A.

Proof. For , ∈ R , replacing T by eiT in Theorem 2.3, then

(A,)(T ) = sup
2+ 2=1

‖(A,)(e
iT )+(A,)(e

iT )‖A

� sup
2+ 2=1

(||‖(A,)(e
iT )‖A + | |‖(A,)(e

iT )‖A
)
.

By the Cauchy-Schwarz inequality, we get that

(A,)(T ) � sup
2+ 2=1

(√
||2 + | |2

√
‖(A,)(eiT )‖2

A +‖(A,)(eiT )‖2
A

)
.

Thus,

(A,)(T ) � inf
∈R

√
‖(A,)(eiT )‖2

A +‖(A,)(eiT )‖2
A. �

THEOREM 2.8. Let T ∈ BA(H ) and 0 �  � 1 . Then we have

2
(A,)(T )

� 1
4
‖T �AT +TT �A‖A +

(2−1)2[c2
A(A(eiT ))+ c2

A(A(eiT ))]
2

+

∣∣‖A(eiT )‖2
A−‖A(eiT )‖2

A+(2−1)2[c2
A(A(eiT ))−c2

A(A(eiT ))]
∣∣

2

for all  ∈ R .

Proof. Let  ∈ R , we first prove the following two inequalities:

2
(A,)(T ) � ‖A(eiT )‖2

A +(2−1)2c2
A(A(eiT )),

2
(A,)(T ) � ‖A(eiT )‖2

A +(2−1)2c2
A(A(eiT )).



350 F. GAO AND X. LIU

Let x ∈ H with ‖x‖A = 1. Then we have

sup
∈R

‖(A,)(e
iT )‖2

A �
∥∥(

ReA(eiT )+ i(2−1)A(eiT )
)
x
∥∥2

A

�
∣∣〈(

A(eiT )+ i(2−1)A(eiT )
)
x,x

〉
A

∣∣2
= |

〈
A(eiT )x,x

〉
A
|2 +(2−1)2|

〈
A(eiT )x,x

〉
A
|2

� |
〈
A(eiT )x,x

〉
A
|2 +(2−1)2c2

A(A(eiT )).

By taking the supremum over x ∈ H with ‖x‖A = 1, implies that

2
(A,)(T ) � ‖A(eiT )‖2

A +(2−1)2c2
A(A(eiT )) = a.

Similarly, by using (1.2), we get that

sup
∈R

‖(A,)(e
iT )‖A �

∥∥(
A(eiT )− i(2−1)A(eiT )

)
x
∥∥

A.

Then

2
(A,)(T ) � ‖A(eiT )‖2

A +(2−1)2c2
A(A(eiT )) = b.

Therefore, we have

2
(A,)(T )

� max{a,b}

=
‖A(eiT )‖2

A+‖A(eiT )‖2
A

2
+

(2−1)2[c2
A(A(eiT ))+c2

A(A(eiT ))]
2

+

∣∣‖A(eiT )‖2
A−‖A(eiT )‖2

A+(2−1)2[c2
A(A(eiT ))−c2

A(A(eiT ))]
∣∣

2

� 1
4
‖T �AT+TT �A‖A+

(2−1)2[c2
A(A(eiT ))+c2

A(A(eiT ))]
2

+

∣∣‖A(eiT )‖2
A−‖A(eiT )‖2

A+(2−1)2[c2
A(A(eiT ))−c2

A(A(eiT ))]
∣∣

2
.

This completes the proof. �

COROLLARY 2.9. Let T ∈ BA(H ) . Then 2
A(T ) = 1

4‖T �AT + TT �A‖A if and
only if ‖A(eiT )‖2

A = ‖A(eiT )‖2
A = 1

4‖T �AT +TT �A‖A for all  ∈ R .

Proof. The sufficient part is trivial, we only prove the necessary part. Taking  =
1
2 in Theorem 2.8, if 2

A(T ) = 1
4‖T �AT +TT �A‖A , then ‖A(eiT )‖2

A = ‖A(eiT )‖2
A
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for all  ∈ R . Also, we have (A(eiT ))2 +(A(eiT ))2 = T �AT+TT �A
2 . Then

1
4
‖T �AT +TT �A‖A =

1
2
‖(A(eiT ))2 +(A(eiT ))2‖A

� 1
2
(‖A(eiT )‖2

A +‖A(eiT )‖2
A)

� 1
2
(2

A(T )+2
A(T ))

=
1
4
‖T �AT +TT �A‖A.

Thus, ‖A(eiT )‖2
A = ‖A(eiT )‖2

A = 1
4‖T �AT +TT �A‖A for all  ∈ R . �

REMARK 2.10. Very recently, as our work in progress, for an arbitrary norm N(·)
on B(H) and 0 �  � 1, Zamani [18] defined the w(N,)(·) as a generalization of the
weighted numerical radius. Mabrouk and Zamani [10] introduced an extension of the
a -numerical radius on C∗ -algebra. Theorem 2.5 (i) in [10] is an extension of Theorem
2.3. Theorem 2.6 in [18] and [10] are extensions of Proposition 2.4, respectively. Our
approach here is different from theirs.

3. Weighted A-numerical radius inequalities for 2×2 operator matrices

To prove our results, we begin with the following results.

LEMMA 3.1. [5, 6] Let T,S,X ,Y ∈ BA(H ) . Then

(i)
(

T X
Y S

)�A

=
(

T �A Y �A

X �A S�A

)
.

(ii)
∥∥∥∥
(

T O
O S

)∥∥∥∥
A

=
∥∥∥∥
(

O T
S O

)∥∥∥∥
A

= max{‖T‖A,‖S‖A}.

LEMMA 3.2. [13] Let X ,Y ∈ BA(H ) . Then

(i) A

(
O X
Y O

)
= A

(
O Y
X O

)
.

(ii) A

(
X Y
Y X

)
= max{A(X +Y), A(X −Y )}.

In particular A

(
O Y
Y O

)
= A(Y ).

THEOREM 3.3. Let X ,Y ∈ BA(H ) . Then we have

2
(A,)

(
O X
Y O

)
� max

{‖2XX �A +(1−)2Y �AY‖A +2(1−)A(XY ),

‖2YY �A +(1−)2X �AX‖A +2(1−)A(YX)
}
.
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In particular, if  = 1
2 , then

2
A

(
O X
Y O

)
� max

{1
4
‖XX �A +Y �AY‖A +

1
2
A(XY ), (3.1)

1
4
‖X �AX +YY �A‖A +

1
2
A(YX)

}
. (3.2)

Proof. Let T =
(

O X
Y O

)
. By Lemma 3.1, we have

2
(A,)

(
O X
Y O

)
= sup

∈R

∥∥∥∥
(

O eiX +(1−)e−iY �A

eiY +(1−)e−iX �A O

)∥∥∥∥
2

A

= sup
∈R

∥∥∥∥
(

P O
O Q

)∥∥∥∥
A
,

where

P = 2XX �A +(1−)2Y �A(Y �A)�A +2(1−)A(e2iX(Y �A)�A),

Q = 2YY �A +(1−)2X �A(X �A)�A +2(1−)A(e2iY (X �A)�A).

Then, we can get

‖P‖A � ‖2XX �A +(1−)2Y �AY‖A +2(1−)‖A(e2iX(Y �A)�A)‖A

� ‖2XX �A +(1−)2Y �AY‖A +2(1−)A(XY ).

‖Q‖A � ‖2YY �A +(1−)2X �AX‖A +2(1−)‖A(e2iY (X �A)�A)‖A

� ‖2YY �A +(1−)2X �AX‖A +2(1−)A(YX).

By using Lemma 3.1, we have

2
(A,)

(
O X
Y O

)
= sup

∈R

max{‖P‖A,‖Q‖A}.

In conclusion, we obtain the desired inequality. �

REMARK 3.4. Letting  = 1
2 and X =Y = T in Theorem 3.3, and by Lemma 3.2,

we get the inequality (1.6) proved by Zamani in [16]. Together with (3.1) and (3.2), we
can see that the bound provided in Theorem 3.3 is sharper than (1.8) given in [6].

THEOREM 3.5. Let X ,Y ∈ BA(H ) . Then we have

2
(A,)

(
O X
Y O

)
� max

{‖2XX �A +(1−)2Y �AY‖A +2(1−)cA(XY ),

‖2YY �A +(1−)2X �AX‖A +2(1−)cA(YX)
}
.
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In particular, if  = 1
2 , then

2
A

(
O X
Y O

)
� max

{1
4
‖XX �A +Y �AY‖A +

1
2
cA(XY ), (3.3)

1
4
‖X �AX +YY �A‖A +

1
2
cA(YX)

}
. (3.4)

Proof. From the proof of Theorem 3.3 we know that

2
(A,)

(
O X
Y O

)
= sup

∈R

max{‖P‖A,‖Q‖A}.

Here, P and Q are the same as Theorem 3.3.
Let x ∈ H with ‖x‖A = 1. For all  ∈ R , we have that

‖P‖A � | 〈Px,x〉A |
= |

〈(
2XX �A +(1−)2Y �A(Y �A)�A +2(1−)A(e2iX(Y �A)�A)

)
x,x

〉
A
|.

We assume that 〈
e2i0X(Y �A)�Ax,x

〉
A

= |
〈
X(Y �A)�Ax,x

〉
A
|.

Thus, by replacing  by 0 in the above formula, we get

‖P‖A � |
〈
2XX �A +(1−)2Y �A(Y �A)�Ax,x

〉
A
|+2(1−)|

〈
X(Y �A)�Ax,x

〉
A
|

� |
〈
2XX �A +(1−)2Y �A(Y �A)�Ax,x

〉
A
|+2(1−)cA(YX).

Taking the supremum over x ∈ H with ‖x‖A = 1 in the above inequality, we get

‖P‖A � ‖2XX �A +(1−)2Y �AY‖A +2(1−)cA(XY ).

In a similar way, we can get

‖Q‖A � ‖2YY �A +(1−)2X �AX‖A +2(1−)cA(YX).

Thus, we complete the proof. �

REMARK 3.6. Taking  = 1
2 in Theorem 3.5, the inequalities (3.3) and (3.4) im-

prove the inequality (1.7) obtained in [6].
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