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TRACE INEQUALITIES RELATED TO 2×2 BLOCK SECTOR MATRICES

HUAN XU, XIAOHUI FU ∗ AND SALARZAY ABDUL HASEEB

(Communicated by I. M. Spitkovsky)

Abstract. We extend several trace inequalities for 2×2 block positive semi-definite matrices to
the class of matrices whose numerical range is contained in a sector. In the meanwhile, some
related results are obtained.

1. Introduction

Let Mn be the set of all n×n complex matrices. For A ∈ Mn , the singular values
and eigenvalues of A are denoted by  j(A) and  j(A) , respectively, j = 1, . . . ,n. The

singular values are always arranged in nonincreasing order ↓
1 (A)� · · ·�↓

n (A). When

A is Hermitian, all eigenvalues of A are real and ordered as  ↓
1 (A) � · · ·�  ↓

n (A). Note

that the singular values of A are the eigenvalues of |A|, where |A| = (A∗A)
1
2 , i.e.,

 j(A) =  j(|A|), j = 1, . . . ,n. Let x = (x1, . . . ,xn) , y = (y1, . . . ,yn) ∈ Rn. Let x↓ =
(x↓1, . . . ,x

↓
n) and y↓ = (y↓1, . . . ,y

↓
n) be the vectors obtained by rearranging the coordinates

of x and y in the nonincreasing order, respectively. Then we can write x↓1 � · · · � x↓n
and y↓1 � · · · � y↓n . If

k


i=1

x↓i �
k


i=1

y↓i , k = 1, . . . ,n,

we say that x is weakly majorized by y , in symbols x ≺ y . If, in addition,

n


i=1

x↓i =
n


i=1

y↓i .

We say that x is majorized by y , written as x ≺ y , see [2, p. 28-29]. Given Hermitian
matrices A,B ∈ Mn , A is positive semi-definite (definite, resp.), which is denoted by
A � 0 (A > 0, resp.). In particular, A � B (A > B , resp.) means that A− B � 0
(A−B > 0, resp.). For A ∈ Mn , we can write

A = A+ iA,
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where

A =
A+A∗

2
, A =

A−A∗

2i
.

The numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

For  ∈ [0, 2 ) , we define a sector on the complex plane

S = {z ∈ C|z > 0, |z| � (z) tan}.
Sector matrices is a class of matrices whose numerical ranges are contained in S
(W (A) ⊆ S ). This class of matrices has been the subject of recent research [3, 9,
11, 12, 13]. Consider M ∈ M2n partitioned as

M =
[

A X
X∗ B

]
∈ M2n

with each block in Mn , its partial transpose is defined by

M =
[

A X∗
X B

]
.

Now we extend the notion to sector matrices. Let

M =
[

A X
Y ∗ B

]
∈ M2n

with each block in Mn and its partial transpose

M =
[

A Y ∗
X B

]
.

M is said to be sectorial partial transpose (i.e., SPT) if W (M) ⊆ S , W (M ) ⊆ S .
Motivated by the subadditivity of q -entropies in the theory of Quantum information,
Besenyei [1] gave the following trace inequality involving positive semi-definite block
matrices:

tr(AB)− tr(X∗X) � tr(A)tr(B)−|tr(X)|2. (1.1)

Kittaneh and Lin [6] presented an improvement and an analogue of (1.1):

|tr(AB)− tr(X∗X)| � tr(A)tr(B)−|tr(X)|2, (1.2)

tr(AB)+ tr(X∗X) � tr(A)tr(B)+ |tr(X)|2. (1.3)

Recently, Fu and Gumus [4, Theorem 3.3] presented the refinements of (1.2) and (1.3):
Let  be the smallest eigenvalue of M . Then,

|tr(AB)− tr(X∗X)| � tr(A)tr(B)−|tr(X)|2 −  (n−1)
2

tr(M), (1.4)
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tr(AB)+ tr(X∗X) � tr(A)tr(B)+ |tr(X)|2 −  (n−1)
2

tr(M). (1.5)

Actually, the authors [4, Theorem 3.4] also gave the corresponding results with the
largest eigenvalue  of M :

|tr(AB)− tr(X∗X)| � (n+1)
2

tr(M)− tr(A)tr(B)+ |tr(X)|2, (1.6)

tr(A)tr(B)+ |tr(X)|2 � (n−1)
2

tr(M)+ tr(AB)+ tr(X∗X). (1.7)

Note that the left side of (1.1) might be negative. But if M is PPT, then

tr(AB)− tr(X∗X) � 0, (1.8)

see [8, Theorem 2.1]. Fu and Gumus [4, Theorem 3.1] derived the sharper inequality
than (1.8) and new upper bound of tr(AB) under the PPT condition: Let  and  be
the smallest and the largest eigenvalues of M , respectively. If M is PPT, then


2
· tr(M)− tr(X∗X) � tr(AB) � tr(X∗X)+


2
· tr(M). (1.9)

When M is positive semi-definite but not PPT, the result becomes

̃
2
· tr(M)− tr(X∗X) � tr(AB) � tr(X∗X)+

̃
2
· tr(M), (1.10)

where ̃ and ̃ are the smallest and the largest eigenvalues of M , respectively.
In this paper, we extend the above trace inequalities to sector matrices. Some

interesting results are included.

2. The trace inequalities of block sector matrices

In this section, we will provide extensions to inequalities (1.2)–(1.10). Before
presenting the main results, we list some well known results as lemmas.

LEMMA 2.1. [2, p. 73] Let M ∈ Mn . Then,

 j(M) �  j(M), j = 1,2, . . . ,n.

LEMMA 2.2. [13, Lemma 3.1] Let M ∈ Mn have W (M) ⊆ S for some  ∈
[0, 2 ). Then,

(M) ≺ sec() (M).

LEMMA 2.3. [5, p. 445] Let P,H ∈ Mn be positive semi-definite. Then,

tr(PH) � 0.
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The next lemma is a special case of [10, Proposition 2.1].

LEMMA 2.4. [10, Proposition 2.1] Let M =
[

A X
Y ∗ B

]
∈ M2n be a sector matrix

with A,B,X ,Y ∈ Mn . Then,

T =

[
tr(A)I−A tr

(
Y ∗+X∗

2

)
I− Y ∗+X∗

2

tr
(

Y+X
2

)
I− Y+X

2 tr(B)I−B

]
� 0. (2.1)

LEMMA 2.5. [7, Proposition 2.2] Let M =
[

A X
Y ∗ B

]
∈ M2n be a sector matrix

with A,B,X ,Y ∈ Mn . Then,

K =

[
tr(A)I +A tr

(
Y ∗+X∗

2

)
I + Y ∗+X∗

2

tr
(

Y+X
2

)
I + Y+X

2 tr(B)I +B

]
� 0. (2.2)

We also need the following unitarily similar transformations of M .

N =
[

0 I
−I 0

][
A Y+X

2
Y ∗+X∗

2 B

][
0 −I
I 0

]
=

[
B −Y ∗+X∗

2
−Y+X

2 A

]
� 0 (2.3)

and

L =
[

0 I
I 0

][
A Y+X

2
Y ∗+X∗

2 B

][
0 I
I 0

]
=

[
B Y ∗+X∗

2
Y+X

2 A

]
� 0. (2.4)

For the convenience of follow-up proofs, we compute several trace inequalities below
by using the positive semi-definite matrices T,K,N,L from (2.1)–(2.4). According to
Lemma 2.3,

tr(TN) = 2tr(A)tr(B)−2tr(AB)+2tr(Z∗Z)−2|tr(Z)|2 � 0, (2.5)

tr(KN) = 2tr(A)tr(B)+2tr(AB)−2tr(Z∗Z)−2|tr(Z)|2 � 0, (2.6)

tr(TL) = 2tr(A)tr(B)−2tr(AB)−2tr(Z∗Z)+2|tr(Z)|2 � 0. (2.7)

Now we present the extensions on inequalities (1.4)–(1.5) in the next theorem.
Actually, the inequalities achieved are (1.2)–(1.3) under the special case, respectively.

THEOREM 2.1. Let M =
[

A X
Y ∗ B

]
∈ M2n with A,B,X ,Y ∈ Mn , and W (M) ⊆ S

for some  ∈ [0, 2 ) . Let  be the smallest eigenvalue of M. Then,

|tr(AB)− tr(Z∗Z)| � tr(A)tr(B)−|tr(Z)|2 −  (n−1)
2

1
sec()

tr(|M|) (2.8)

and

tr(AB)+ tr(Z∗Z) � tr(A)tr(B)+ |tr(Z)|2 −  (n−1)
2

1
sec()

tr(|M|), (2.9)

where Z = X+Y
2 .
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Proof. By the unitary similarity,  is also the smallest eigenvalue of N and L .
Applying Lemma 2.3, we have

tr(T (N− I)) = tr(TN)− · tr(T )
= tr(TN)− (n−1)(tr(M)) � 0,

(2.10)

tr (K(N− I)) = tr(KN)− · tr(K)
= tr(KN)− (n+1)(tr(M)) � 0,

(2.11)

and

tr(T (L− I)) = tr(TL)− · tr(T )
= tr(TL)− (n−1)(tr(M)) � 0.

(2.12)

Since M � 0, (2.11) leads to

tr(KN)− (n−1)(tr(M)) � 0. (2.13)

Therefore, (2.8) follows from (2.5), (2.6), (2.10), (2.13) and Lemma 2.2. Similarly, the
inequality (2.9) follows from (2.7) and (2.12). �

REMARK 2.1. When M is positive semi-definite, (2.8) and (2.9) are (1.4) and
(1.5), respectively. If M has a zero eigenvalue, then (2.8) and (2.9) reduce to (1.2)
and (1.3), respectively.

As analogues of (2.8) and (2.9), we give the following theorem with the largest
eigenvalue of M .

THEOREM 2.2. Let M =
[

A X
Y ∗ B

]
∈M2n be a sector matrix with A,B,X ,Y ∈Mn .

Let  be the largest eigenvalue of M. Then,

|tr(AB)− tr(Z∗Z)| � (n+1)
2

tr(|M|)− tr(A)tr(B)+ |tr(Z)|2 (2.14)

and

tr(A)tr(B)+ |tr(Z)|2 � (n−1)
2

tr(|M|)+ tr(AB)+ tr(Z∗Z), (2.15)

where Z = X+Y
2 .

Proof. By unitary similarity,  is also the largest eigenvalue of N and L . Apply-
ing Lemma 2.3, we have

tr(T (I−N)) =  · tr(T )− tr(TN)
= (n−1)tr(M)− tr(TN) � 0,

(2.16)
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tr(K(I−N)) =  · tr(K)− tr(KN)
= (n+1)tr(M)− tr(KN) � 0,

(2.17)

and

tr(T (I−L)) =  · tr(T )− tr(TL)
= (n−1)tr(M)− tr(TL) � 0.

(2.18)

Since M � 0, (2.16) implies that

(n+1)tr(M)− tr(TN) � 0. (2.19)

Thus, (2.14) follows from (2.5), (2.6), (2.17), (2.19) and Lemma 2.1. The inequality
(2.15) follows from (2.7) and (2.18). �

REMARK 2.2. When M is positive semi-definite, (2.14) and (2.15) are (1.6) and
(1.7), respectively.

Next, we extend the inequalities (1.9)–(1.10) to the class of sector matrices.

THEOREM 2.3. Let M =
[

A X
Y ∗ B

]
∈ M2n be SPT with A,B,X ,Y ∈ Mn . Let 

and  be the smallest and the largest eigenvalues of M, respectively. Then,


2
· tr(|M|)− tr(Z∗Z) � tr(AB) � tr(Z∗Z)+


2
· 1
sec()

tr(|M|),

where Z = X+Y
2 .

Proof. Observe that  is also the smallest eigenvalue of N . Thus, N − I � 0.
By Lemma 2.3,

tr
(
(M )(N − I)

)
= 2tr(AB)−2tr(Z∗Z)− · tr(M) � 0.

Applying Lemma 2.2, we have

tr(AB) � tr(Z∗Z)+

2
· 1
sec()

tr(|M|). (2.20)

Note that  is also the largest eigenvalue of L . Thus, I−L � 0. Thus,

tr
(
(M )(I−L)

)
= −2tr(AB)−2tr(Z∗Z)+  · tr(M) � 0.

Then by Lemma 2.1,


2
· tr(|M|)− tr(Z∗Z) � tr(AB). (2.21)

The result follows from (2.20) and (2.21). �
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REMARK 2.3. Obviously, if M is PPT in Theorem 2.3, our result is inequality
(1.9).

Moreover, without the SPT condition in Theorem 2.3, the following result is ob-
tained.

THEOREM 2.4. Let M =
[

A X
Y ∗ B

]
∈ M2n with A,B,X ,Y ∈ Mn , and W (M) ⊆ S

for some  ∈ [0, 2 ) . Let ̃ and ̃ be the smallest and the largest eigenvalues of
(M ) , respectively. Then,

̃
2
· tr(|M|)− tr(Z∗Z) � tr(AB) � tr(Z∗Z)+

̃
2
· 1
sec()

tr(|M|),

where Z = X+Y
2 .

Proof. Note that M =
[

A X+Y
2

X∗+Y∗
2 B

]
is positive semi-definite and (M )−

̃ I � 0, ̃I−(M) � 0. By Lemma 2.3,

tr
(
((M )− ̃ I)N

)
= 2tr(AB)−2tr(Z∗Z)− ̃ · tr(A+B) � 0

and

tr
(
(̃I−(M))L

)
= −2tr(AB)−2tr(Z∗Z)+ ̃ · tr(A+B) � 0.

Thus,

tr(AB)− tr(Z∗Z) � ̃
2
· tr(M)

and

tr(AB)+ tr(Z∗Z) � ̃
2
· tr(M).

By Lemmas 2.1 and 2.2,

tr(M) � tr(|M|)
and

tr(M) � 1
sec()

tr(|M|).

Hence, we have

tr(AB) � tr(Z∗Z)+
̃
2
· 1
sec()

tr(|M|)

and

tr(AB) � ̃
2
· tr(|M|)− tr(Z∗Z),

which complete the proof. �
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REMARK 2.4. When M is positive semi-definite (i.e.,  = 0), our result is in-
equality (1.10).
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