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LOG–MAJORIZATION OF GAN–LIU–TAM TYPE

JIAN SHI ∗ AND YING DAI

(Communicated by F. Hansen)

Abstract. In this paper, we shall obtain several extensions of log-majorization of Gan-Liu-Tam
type.

1. Introduction

Throughout this paper, a capital letter, such as T , means an n× n matrix. We
denote T � 0 if T is a positive semidefinite matrix and T > 0 if T is positive definite,
respectively. For A > 0, B � 0, 0 �  � 1, F. Kubo and T. Ando, in [7], introduce the
 -power mean of A and B as follows,

A�B = A
1
2 (A− 1

2 BA− 1
2 )A

1
2 .

Usually, A� 1
2
B is denoted by A�B . There are many beautiful properties of the  -power

mean. For example, if 0 � A � C , 0 � B � D , then A�tB � C�tD holds for t ∈ [0,1] .
If A,B � 0, T. Ando and F. Hiai, in [1], introduce the following relationship, which is
called log-majorization, denoted by A �

(log)
B , if

k


i=1

i(A) �
k


i=1

i(B) (k = 1,2, · · · ,n−1)

and
n


i=1

i(A) =
n


i=1

i(B) (i.e. detA = detB)

hold, where 1(A) � 2(A) � · · · � n(A) and 1(B) � 2(B) � · · · � n(B) are the
eigenvalues of A and B respectively arranged in decreasing order. There are many
perfect log-majorizations, see [2, 6, 9] for details.

Very recently, in [4], L. Gan, X. Liu and T.-Y. Tam obtained the following log-
majorization.
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THEOREM 1.1. ([4], Log-majorization of Gan-Liu-Tam type) If A,B > 0 and
t ∈ [0,1] , we have

A�tB ≺
(log)

(A−1�B)tA(A−1�B)t .

In this paper, we shall extend the above result in several cases. In order to prove
our results, we list some lemmas first.

LEMMA 1.1. ([5, 8], Löwner-Heinz inequality) If A � B � 0 , then

Ap � Bp

holds for all 0 � p � 1 .

LEMMA 1.2. ([9, 10, 11], Tanahashi inequality) If A � B � 0 and A > 0 , we
have

(I) A−t � (A− t
2 BpA− t

2 )
−t
p−t , for all 0 � p < t � 1 , p � 1

2 ;

(II) A2p−1−t � (A− t
2 BpA− t

2 )
2p−1−t

p−t , for all 1
2 � p < t � 1 .

LEMMA 1.3. ([3], Furuta lemma) If A > 0 and B is invertible, then

(BAB∗)s = BA
1
2 (A

1
2 B∗BA

1
2 )s−1A

1
2 B∗

holds for all s ∈ R .

LEMMA 1.4. ([3], Grand Furuta inequality) If A � B � 0 and A > 0 , then

A1−t+r � {A r
2 (A− t

2 BpA− t
2 )sA

r
2 } 1−t+r

(p−t)s+r

holds for 0 � t � 1 , p � 1 , s � 1 and r � t .

LEMMA 1.5. Let f (A,B) and g(A,B) be positive operator-valued functions for
A,B > 0 satisfying the homogeneity f (aI,bI)= g(aI,bI) for a,b > 0 . Then ‖ f (A,B)‖�
‖g(A,B)‖ if and only if g(A,B) � I implies f (A,B) � I .

2. Gan-Liu-Tam type log-majorization in the case of 0 < t � 1
2 and 1

2 < t � 1

In this section, we first shall show several extensions of Gan-Liu-Tam type log-
majorization in the case of 0 < t � 1

2 .

THEOREM 2.1. (Gan-Liu-Tam type log-majorization in the case of 0 < t � 1
2 ) If

A,B > 0 , 0 �  � 1 , 0 � t � 1 , 0 �  � 1
2 , s � 1 , p � 1 , r � t , h = (1−t+r)ps

(p−t)s+r , then

A
(1−t+r)

2 {A− r
2 [A

t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2 ≺

(log)
{(A−1�B)A(A−1�B)}h

(2.1)
holds and is equivalent to grand Furuta inequality.

Proof. First, we proof that (2.1) can be derived from grand Furuta inequality.
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Notice that  = 0 holds obviously, we only need to prove that under the condition
of 0 <  � 1

2 . The following identity holds

det
(
A

(1−t+r)
2 {A− r

2 [A
t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2

)

=det
({(A−1�B)A(A−1�B)}h)

because

det
({(A−1�B)A(A−1�B)}h)

=
(
det(A−1�B)2(detA)

)h

=
(
(detA)−

1
2 (detB)

1
2
)2h(detA)h

=(detA)(1−)h(detB)h

and

det
(
A

(1−t+r)
2 {A− r

2 [A
t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2

)

=(detA)(1−t+r){(detA)−r[(detA)t
(
(detA)−

1
2 (detB)

1
2
)2 p]s}

(1−t+r)
(p−t)s+r

=(detA)
(1−)(1−t+r)ps

(p−t)s+r (detB)
(1−t+r) ps

(p−t)s+r

=(detA)(1−)h(detB)h.

Notice that

{((xA)−1�(yB)
)(

xA
)(

(xA)−1�(yB)
)}h = x(1−)hyh{(A−1�B)A(A−1�B)}h

and

(xA)
(1−t+r)

2 {(xA)−
r
2 [(xA)

t
2
(
(xA)−1�(yB)

)2 p(xA)
t
2 ]s(xA)−

r
2 }

(1−t+r)
(p−t)s+r (xA)

(1−t+r)
2

=x(1−)hyh{A
(1−t+r)

2 {A− r
2 [A

t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2

}

hold for x,y > 0, that is, A
(1−t+r)

2 {A− r
2 [A

t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2 and

{(A−1�B)A(A−1�B)}h have the same order of homogeneity for A,B .
Next, by Lemma 1.5, we shall prove that

{(A−1�B)A(A−1�B)}h � I (2.2)

ensures

A
(1−t+r)

2 {A− r
2 [A

t
2 (A−1�B)2 pA

t
2 ]sA− r

2 }
(1−t+r)
(p−t)s+r A

(1−t+r)
2 � I. (2.3)

Notice that (2.2) is equivalent to A−1 � (A−1�B)2 . Let A1 = A−1 and B1 = (A−1�B)2 .
Applying grand Furuta inequality to A1 and B1 , then

{A
r
2
1 (A

− t
2

1 Bp
1A

− t
2

1 )sA
r
2
1 }

1−t+r
(p−t)s+r � A1−t+r

1 (2.4)
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holds for 0 � t � 1, s � 1, p � 1 and r � t .
Applying Löwner-Heinz inequality to (2.4) for 0 �  � 1, we have

{A
r
2
1 (A

− t
2

1 Bp
1A

− t
2

1 )sA
r
2
1 }

(1−t+r)
(p−t)s+r � A(1−t+r)

1 , (2.5)

which is equivalent to

A
− (1−t+r)

2
1 {A

r
2
1 (A

− t
2

1 Bp
1A

− t
2

1 )sA
r
2
1 }

(1−t+r)
(p−t)s+r A

− (1−t+r)
2

1 � I, (2.6)

(2.6) is just (2.3), if A1 and B1 are replaced by A−1 and (A−1�B)2 , respectively.
Next, we shall show that grand Furuta inequality can be derived from (2.1).
Let  = 1 in (2.1), we have

{(A−1�B)A(A−1�B)}
(1−t+r)ps
(p−t)s+r � I (2.7)

ensures that

A
1−t+r

2 {A− r
2 [A

t
2 (A−1�B)2 pA

t
2 ]sA− r

2 } 1−t+r
(p−t)s+r A

1−t+r
2 � I. (2.8)

Notice that (2.7) is equivalent to A−1 � (A−1�B)2 . Let A1 = A−1 and B1 = (A−1�B)2 ,

then A = A−1
1 , B = B

1
2
1 A−1

1 B
1

2
1 and (2.7) is just that A1 � B1 . Replacing A by A−1

1

and B by B
1

2
1 A−1

1 B
1

2
1 in (2.8), we have

A
− 1−t+r

2
1 {A

r
2
1 [A− t

2
1

(
A1�(B

1
2
1 A−1

1 B
1

2
1 )

)2 p
A
− t

2
1 ]sA

r
2
1 }

1−t+r
(p−t)s+r A

− 1−t+r
2

1 � I, (2.9)

which is equivalent to

{A
r
2
1 (A

− t
2

1 Bp
1A

− t
2

1 )sA
r
2
1 }

1−t+r
(p−t)s+r � A1−t+r

1 . (2.10)

(2.10) holds from A1 � B1 , 0 � t � 1, s � 1, p � 1 and r � t , which is just grand
Furuta inequality.

Hence the proof of Theorem 2.1 is completed. �

If we put p = 1
2 in Theorem 2.1, we have the following corollary.

COROLLARY 2.1. If A,B > 0 ,

A
(1−t+r)

2 {A− r
2 [A

t−1
2 (A

1
2 BA

1
2 )

1
2 A

t−1
2 ]sA− r

2 }
2(1−t+r)

(1−2t)s+2r A
(1−t+r)

2

≺
(log)

{(A−1�B)A(A−1�B)}
(1−t+r) s

(1−2t)s+2r

holds for 0 �  � 1 , 0 � t � 1 , 0 �  � 1
2 , s � 1 and r � t .

If we put t = 1 in Corollary 2.1, we have the following corollary.
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COROLLARY 2.2. If A,B > 0 ,

A
 r
2 {A− r

2 (A
1
2 BA

1
2 )

s
2 A− r

2 } 2 r
(1−2)s+2r A

 r
2 ≺

(log)
{(A−1�B)A(A−1�B)}  rs

(1−2)s+2r

holds for 0 �  � 1 , 0 �  � 1
2 , s � 1 and r � 1 .

If we put s = 2 in Corollary 2.2, we have the following corollary.

COROLLARY 2.3. If A,B > 0 ,

A
 r
2 (A

1−r
2 BA

1−r
2 )

 r
1−2+r A

 r
2 ≺

(log)
{(A−1�B)A(A−1�B)}  r

1−2+r

holds for 0 �  � 1 , 0 �  � 1
2 and r � 1 .

If we put r = 2 in Corollary 2.3, we have the following corollary.

COROLLARY 2.4. If A,B > 0 ,

A (A− 1
2 BA− 1

2 )2A ≺
(log)

{(A−1�B)A(A−1�B)}2

holds for 0 �  � 1 and 0 �  � 1
2 .

REMARK 2.1. If we put  = 1
2 and replace  by t in Corollary 2.4, it is just

Gan-Liu-Tam type log-majorization under the condition of 0 � t � 1
2 .

Next, we shall show an extension of Gan-Liu-Tam type log-majorization in the
case of 1

2 < t � 1.

THEOREM 2.2. (Gan-Liu-Tam type log-majorization in the case of 1
2 < t � 1) If

A,B > 0 , then

A�tB ≺
(log)

(A−1�B)
t

2 A1−2t+ t
 (A−1�B)

t
2 (2.11)

holds for 0 <  � 1
2 < t � 1 .

Proof. First, it is easy to obtain det(A�tB)= det((A−1�B)
t

2 A1−2t+ t
 (A−1�B)

t
2 )

because det(A�tB) = (detA)1−t(detB)t and

det((A−1�B)
t

2 A1−2t+ t
 (A−1�B)

t
2 )

=det((A−1�B)
t
 )det(A1−2t+ t

 )

=[(detA)−1(detB) ]
t
 det(A1−2t+ t

 )

=(detA)1−t(detB)t .

Thus, by Lemma 1.5, we only need to prove that

(A−1�B)
t

2 A1−2t+ t
 (A−1�B)

t
2 � I (2.12)



380 J. SHI AND Y. DAI

ensures that
A�tB � I. (2.13)

(2.12) is equivalent to A1−2t+ t
 � (A−1�B)−

t
 . Let A1 = (A−1�B)−

t
 , B1 =

A1−2t+ t
 , and q = 

t , c = (1−2t + t
 )−1 . Then we have

B1 � A1, (2.14)

A = Bc
1, (2.15)

and

B = B
− c

2
1 (B

c
2
1 A−q

1 B
c
2
1 )

1
 B

− c
2

1 . (2.16)

Next, we shall prove (2.13) holds in two cases.

Case I. If t � 2 , let  = 2− 1
t . Then 0 �  � 1 and 1

 = c
c−q . Hence we have

B
c−q


1 = Bc
1 � (B

c
2
1 A−q

1 B
c
2
1 )

c
c−q = (B

c
2
1 A−q

1 B
c
2
1 )

1


by Lemma 1.1 and Lemma 1.2.
Moreover, it implies that

B = B
− c

2
1 (B

c
2
1 A−q

1 B
c
2
1 )

1
 B

− c
2

1 � B
− c

2
1 B

c−q


1 B
− c

2
1 = B

c−q
 −c

1 .

Consequently, we have

A�tB � Bc
1�tB

c−q
 −c

1 = I.

Case II. If t � 2 , let  = c−q
(1+c−2q) . Then 0 �  � 1 holds for (1− 2)( +

t2−2t) � 0. Hence we have

B(1+c−2q)
1 � (B

c
2
1 A−q

1 B
c
2
1 )

2q−c−1
q−c = (B

c
2
1 A−q

1 B
c
2
1 )

1


by Lemma 1.1 and Lemma 1.2.
Moreover, it implies that

B = B
− c

2
1 (B

c
2
1 A−q

1 B
c
2
1 )

1
 B

− c
2

1 � B
− c

2
1 B(1+c−2q)

1 B
− c

2
1 = B

c−q
 −c

1 .

Consequently, we have

A�tB � Bc
1�tB

c−q
 −c

1 = I.

Hence the proof of Theorem 2.2 is completed. �

REMARK 2.2. If we put  = 1
2 , Theorem 2.2 is just Gan-Liu-Tam type log-

majorization in the case of 1
2 < t � 1.
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3. A generalization of Gan-Liu-Tam type log-majorization

In this section, we shall show a generalization of Gan-Liu-Tam type log-majorization
for any t ∈ [0,1] .

THEOREM 3.1. If A,B > 0 , then

At(2−1)(A�2tB)At(2−1) ≺
(log)

(A−1�B)tA(A−1�B)t (3.1)

holds for 1
2 �  � 1 , 0 � 2t � 1 .

Proof. First, it is easy to obtain

det(At(2−1)(A�2tB)At(2−1)) = det((A−1�B)tA(A−1�B)t)

because

det(At(2−1)(A�2tB)At(2−1))

=(detA)2t(2−1)[(detA)1−2t(detB)2t ]

=(detA)2t−2t+1(detB)2t

and

det((A−1�B)tA(A−1�B)t)

=det(A−1�B)2t detA

=[(detA)−1(detB) ]2t detA

=(detA)2t−2t+1(detB)2t.

Thus, by Lemma 1.5, we only need to prove that

(A−1�B)tA(A−1�B)t � I (3.2)

ensures that
At(2−1)(A�2tB)At(2−1) � I. (3.3)

Notice that (3.2) is equivalent to A � (A−1�B)−2t . Let A1 = (A−1�B)−2t .
Lemmas 1.3 and 1.1 imply that, since 0 � 1

 −1 � 1 and A � A1 ,

B = A− 1
2 (A

1
2 A

− 1
2t

1 A
1
2 )

1
 A− 1

2 = A
− 1

4t
1 (A

− 1
4t

1 AA
− 1

4t
1 )

1
 −1A

− 1
4t

1 � A
(1− 1

2t )(
1
−1)− 1

2t
1 .

Therefore, we have

A�2tB � A1�2tA
(1− 1

2t )(
1
−1)− 1

2t
1 = A2t−4t

1 � A2t−4t

because 0 � 4t−2t � 1 and so −1 � 2t−4t � 0. Finally it follows that

At(2−1)(A�2tB)At(2−1) � At(2−1)A2t−4tAt(2−1) = I.
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Hence the proof of Theorem 3.1 is completed. �

REMARK 3.1. If we put  = 1
2 , Theorem 3.1 is just Gan-Liu-Tam type log-

majorization.
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