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ON ZEROS OF MATRIX-VALUED ANALYTIC FUNCTIONS

7Z.B. MONGA AND W. M. SHAH

(Communicated by S. McCullough)

Abstract. We extend a result proved by Dirr and Wimmer [IEEE Trans. Automat. Control
52(2007)] for polynomials to the matrix valued analytic functions and thereby obtain generaliza-
tions of some well-known results concerning the zero free regions of a class of analytic functions.

1. Introduction and statement of results

Let Q C C be an open set, M, be the set of n x n matrices, n > 1, with entries
in C and ||-|| denote the operator norm, induced by the Euclidean norm on C". Then
a matrix-valued function F : Q — M), is said to be analytic in Q, if for each zg € M,
there is a member of M],, denoted by F’(zp), such that H %Z)(ZO) —F/(
z—20. Anumber A € C is said to be a zero of F(z) if there exists a vector x € C"\ {0}
such that F(A)x =0. In other words A is a zero of F(z), if F(A) is less than full rank.
Some authors also refer to A (see e.g. [2]), as an eigenvalue of F(z).

Many differential equations in science and engineering lead to the consideration of
the matrix-valued analytic functions. For instance, the standard model of an RLC cir-

cuit, gives rise to the formulation of the problem, x'(¢) = Ax(¢), where A € M, and x(t)

Zo)H — 0 as

is a vector valued function. Its solution is of the form of ¢4 = ¥, % and the decay
j=0 K:

of these solutions is controlled by the operator norm HeAt H . Matrix-valued functions

also play an important role in the spectral analysis of a matrix A € M,. After all,

A € C, is an eigenvalue of a matrix A if and only if the resolvent function defined by

z— (A—zI)"! has a singularity at z = A, that is, A — A[ is not invertible. Here I

represents the identity matrix.

Analytic matrix-valued functions also appear in many other areas such as harmonic
analysis of an operator on a Hilbert space, for example, finite-rank perturbation of self-
adjoint and unitary operator. As a result they also arise in mathematical physics, for
example, Schrodinger operators. Practically, problems related to spectral properties
of an operator are generally solved with the help of matrix-valued analytic functions
defined on the upper-half plane, called characteristic functions.

For matrices A,B € M,,, we write A >0 or A > 0, if A is positive semi-definite or
positive definite respectively. Similarly A > B, means A—B >0 and A > B implies A —
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B>0. Also, A* and tr(A) denote the transpose conjugate and trace of A, respectively.
In the same way, x* denotes the conjugate transpose of a vector x € C". A vector u
is unit vector if ||u|| := v/u*u = 1. It should also be noted that every matrix A can be
A+A* A—AF
uniquely expressed as A = H +iK, where H = + and K = -
i
We call H and K the real and imaginary parts of A and write R(A) = H and 3(A) =K.
Also Amax(A) and Apmin(A) denote the maximum and minimum of all the eigenvalues
of a Hermitian matrix A, respectively.
For an inner product (-,-) on a vector space V over the field F (F = C or R),

are Hermitian.

A(x,y) :=cos 'R (%) defines an angle between vectors x,y € V' \ {0}. We
(xx) 2 (v,) 2
also note that for the vector space V = M,,, over C, the function (-,-) : V. xV — C

given by (A,B) =tr(B*A), defines an inner product called Frobenius inner product and
the corresponding induced norm, denoted by |||, is called the Frobenius norm.
We must also mark down that any matrix-valued function F(z) analyticin |z| < 1

can be expressed as a power series F(z) = ¥ Ajz/, Aj € My, |z] <1 (for ref. see
j=0

[13]).
The following theorem of Enestréom and Kakeya is well-known in the theory of
distribution of zeros of a polynomial.

n
THEOREM A. If p(z) := 2 a;z’ is a polynomial with real coefficients such that
j=0
an > ay_1 =+ = ag > 0. Then all the zeros of p(z) liein |z| < 1.

Theorem A was first proved by Gustov Enestrom [3], while he was studying a
problem in the theory of pension funds. Kakeya [10] independently proved the follow-
ing more general result and published it in English.

n
THEOREM B. Let p(z):= Z a;z’, be a polynomial with real and positive co-
j=0
efficients, then all the zeros of p(z) lie in the annulus Ry < |z| < Ry, where Ry =

. ai aj
min { - },Rgz max { - }
j=0,...n—1 L4j+1 j=0,...n—1 L4+l

Enestrom [4] later published a French translation of his earlier proof and it is due
to these reasons that the result is known as Enestrom-Kakeya theorem. For a detailed
survey of the result and its generalizations, see [8, 12].

Joyal, Labelle and Rahman [9] generalized Theorem A by dropping the condition
of non-negativity and maintaining the condition of monotonicity. They proved:

n
THEOREM C. If p(z):= 2 a;z’ is a polynomial of degree n such that a, >
J=0

1
—(an —ao+lag|).

‘an‘

an_1 >+ = ay = ag. Then all the zeros of p(z) lie in |z <
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Theorem C like the Enestrom-Kakeya theorem is only applicable to the polyno-
mials with real coefficients. Govil and Rahman [6] proved the following result for
polynomials with complex coefficients.

n
THEOREM D. Let p(z) := Z a;z’, be a polynomial of degree n with complex
j=0
coejﬁcients such that for some real B, |arga; —B| < o < 5§, for 0< j <n and |a,| >
|an—1] = -+ = |ai| = |ao|. Then all zeros of p(z) lie in the disk |z < (Slnoc—l-cosa) +

2sina’:
sin 2| ,‘

]

Govil and Rahman [6], in the same paper, extended the above result to complex
valued analytic functions with similar conditions on the angles and moduli of the coef-
ficients, appearing in their series representation. They proved

THEOREM E. Let f(z) Zajz be analytic in |z| < 1, such that for some real
j=0

arga; — B| <o < 5, for j=0,1,2,... and |ao| > |a1| > |as| = -+, Then f(z)

-1

B.

2 sinot ",
does not vanish in the disk |z| < (sin o+coso+ —— 2 la ,|>

They also [6] proved a different result for polynomials with complex coefficients
while imposing a non-negative and monotone condition on the real parts of the coeffi-
cients of a polynomial, as follows:

n
THEOREM F. Let p(z) := Z ajzj7 be a polynomial of degree n with complex co-
j=0
efficients such that R(a;) = o; and 3aj = B; for j=0,1,2,...,n satisfying oy, >

2 n
Oy =~ =01 =0, o #0. Then all the zeros of p(z) liein |z| < 1—|—a—2\ﬁj\.
n i=0

Dirr and Wimmer [2] extended Theorem A to matrix polynomials and proved the
following result concerning the bound estimate of the zeros of a matrix polynomial.

THEOREM G. Ler P(z ZA,Z Aj €My, k>0, 0< j<n beamatrix poly-
nomial of degree n such that =
ApzAp1 224020, 4,>0. (1.1)
Then the zeros of P(z) lie in the closed unit disk |z| < 1

Le, Du and Nguyen [ 1] extended Theorem B to matrix polynomials as follows.
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THEOREM H. Let P(z ZA,Z where Aj € My, k> 0 are positive-definite,
=0
be a matrix polynomial of degree n . Then the eigenvalues of P(z) lie in the annulus

: A’min(A ) Amax (A )
/ < < / / — { J } / — { J .
R| < |z| <R}, where R} -~ g}lﬁ_l T ) and R), ,,':(I)I}.E.l,);fl y e ey

In this paper we extend Theorem G to matrix valued analytic functions by asso-
ciating a monotone condition of the form of (1.1), on coefficients of the Taylor series
expansion of a matrix valued analytic function. We further extend Theorem E and The-
orem F by firstly restricting the angle and then binding the real parts of the coefficients
of a matrix valued analytic function. We first prove:

THEOREM 1. Let F(z ZAJZ AjeM,, j=0,1,..., be analytic in |z| < 1
Jj=0
Assume Ag > Ay = ---, Ag >0 . Then the zeros of F(z) lie outside the disk |z| < 1.

‘We next prove:

THEOREM 2. Let F(z ZA 7/, det(Ag) #0, Aj €M, j=0,1,..., be ana-
j=0
lytic in |z| < 1. Assume ||Ao||r = ||A1||F = -+, and £(A;,C) < o0 < 5, j=0,1,...,
Sfor some non-zero matrix C € Ml,. Then the zeros of F(z) lie outside the disk
1 < B
2| < —— 1 [lAollr(cosar+sina) +2sinee Y, [|Ajllr p - (1.2)
HAO ||F j=1

Finally we prove:

THEOREM 3. Let F(z ZA,Z AjeM,, j=0,1,..., be analytic in |z| < 1
j=0
Let R(Aj) =Bj and 3(Aj) =Cj, j=0,1,..., and assume By > By > ---, By > 0.
Then the zeros of F(z) lie outside the disk
1
lz| < = . (1.3)
L+ 57— Z Ir(C))
j=0

where, for a matrix A € M, r(A) = max{|u*Aul;|ju|| = 1}.

For Cj =0, Theorem 3 reduces to Theorem 1. We also note that for a matrix A,
r(A) is called the numerical radius of A.
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2. Lemmas and proofs of theorems

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. Let A,B € M, be such that ||A||r > ||B||r and £(A,B) =0 < 2a <
7, then

1A =Bl < ([Allr = |[Bl[F)cos e+ (Al + [|B]|F) sin &x. 2.1

Proof.

1A =B = [|All7+ | Bl = 2||AllF||B|r cos 6
< AlIE+I1B7 = 2[|A] ]| Bllcos(2¢r)
= (lAllr — 1Bllr)* cos® o+ (|Allr +[B]| r)* sin®
< ((|AllF = Bl F) cos -+ (|Al| +[|B|| ) sin )
Thus
IA—=B||r < (|Allr = [|Bl|[F)cosc+ (| All r+ || Bl ) sin .

This proves Lemma 1. [J

LEMMA 2. Let {-,-) be an inner product on a vector space V over F. Let a,b,c €
Vi1 Vi1
V\ {0} such that £(a,b) = 0; < 5 L(b,c)=6, < 5 then

£L(a,b) =60 <6, + 6.
Proof. Without loss of generality we assume (a,a) = (b,b) = (c,c) = 1. Since

R(x,y), x,y € V defines an inner product on V and determinant of a gram matrix is
non-negative, therefore

R{a,a) R{a,b) R{a,c)
R{b,a) R(b,b) R(b,c) |>0
R{c,a) R{c,b) R{c,c)
That is
1 cosf; cosO
cos 6y 1 cos6, | > 0.
cos cosH, 1
This gives
1 —cos® 0, — cos® 0, — cos” 6 +2cos 01 cosBrcosO > 0.
That is

(1—cos?0;)(1 —cos®6;) — (cos O — cos 0 cos 6,)% > 0,
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or
|cos 8 — cos 0 cos 0| < sin 6 sin 6,.
Equivalently
cos 6 > cos 0 cos 6, — sin 6 sin 6, = cos(6; + 6,).
This gives

0 <6,+6,.
This proves Lemma 2. [
We also need following lemmas (for ref. see [7]) for the proof of the theorems.
LEMMA 3. Let A € M, then
r(A) < [IA[l < [|Allp
LEMMA 4. Let A € M,,, be a Hermitian matrix, then

Amin(A) = ﬁl 1{ uAu} < HmHa} {u*Au} = Amax (A).

Proof of Theorem 1. Let u be a unit vector and define F,(z) = u* (1 —2)F (2)u =
§ (1 —z)u*Ajuz’. Since F(z) is analytic in |z| < 1, therefore F,(z) is analytic in
Tzz\og 1. Also A; > Ajy1, Ag > 0, therefore

uAu uAjHu wAou >0, j=0,1,.. (2.2)
Now for |z| < 1, we have

[Fu(2)] = [u* (1 = 2) F (2)u|

= |u*A0u +z Z u* (A.,'Jr] —Aj)uzj\
J=0

> [ Agu| - \z|2|u j1—Aju.

This gives on using (2.2),

[Fu(z)] = w Agu(1 — J2])
>0, if [z < 1.
This shows that the zeros of F,(z) and therefore, the zeros of F(z) lie outside the disk
lz2l<1. O

Proof of Theorem 2. Since £(A;,C) < g > j=0,1,..., therefore by Lemma
2, L(Aj_1,Aj) <2a<m, j=1,2,.... Define G(z) = (1 — ) () and let u be a unit
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vector, then we have for |z| < 1

1G(2Jull = [[(1 = 2)F (2)u]

oo

= [[Aou— Y (Ajr1 —Ajuz’"!
=0

Z i1 —Ajuz/

> ||Aoul| —

=

Y (Aj —Aj)Z""

J=0

> Jlagt| ™ - 12 [lAse1 = Al
p

> (|45 ~ 1a]

This gives with the help of Lemma 3,
1 >
GGyl > flAgH = el X 14541 = As] -
Jj=
Therefore by using Lemma 1, we get

16l > 45|, - IZ\Z{ 145l = 1A j41ll ) cos o+ ([[Aj ] s+ (|41 ]| ) sinec}
0

— HA&IHEI — || {||Ao||F(cosoc+s1noc)+2s1noc D HAJHF}
=

>0,
if
7] <

1
149

-1
1” <||A0F(cosoc+sina)+251naz||A,-||F> <1
F J=1

Since Frobenius norm is submultiplicative and 0 < o < 7, therefore the inequality on
the right is true. This shows that all the zeros of G(z), and therefore of F(z) lie in

-1
|z|>7#1 Aol (cos o+ siner) +2sina Y, [|Ay]|. | . O
145" |17 st

Since A > B, implies ||A||r > ||B||F, therefore on using Lemma 3 and Lemma 4
we have the following:

COROLLARY 1. Let F(z ZA,Z A; €M, j=0,1,..., be analytic in |z| <
j=0
Vi1
1. Assume Ag > A1 > ..., and £(A;,C) < a < =, j=0,1,..., for some non-zero

2
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matrix C € M. Then the zeros of F(z) lie outside the disk

-1
lz] < )L;A_l) {/lmax(Ao)(cos o +sino) +2sino Y, )Lmax(Aj)} . (2.3)
max 0

J=1

Proof of Theorem 3. Let u be a unit vector. Define F,(z) = u*(1 — z)F(z)u, then
F,(z) is a complex function analytic in |z| < 1. Now for |z| < 1, we have

|Fu@)] = [ Agu —2 3 ' (Aj1 = Aj)ud|
j=0

> [ Aou| 2] 3, |u” (Bj1 — ByJu-+iu’ (Cji1 — Cy)u
j=0

> u*Bou — |z|(u*Bou — [u*Cou| +2 Y, |u*Cjul)
j=0
> u*Bou — |z|(u*Bou+2 |u*Cjul)
J=0
>0,
if
1

lz] < = )
1+ o 2 |u*Cjul
j=0

Using Lemma 3 and Lemma 4, this is possible if
1

o

l + A«minz(BO) jéo |F(C‘])‘

7] <

This shows that all the zeros of F,(z) and therefore the zeros of F(z) lie outside the
disk |
lz] < = . O
1 + )Lmin(BO) .20 |r(CJ)‘
j=

The following can be easily obtained from the above theorem by using Lemma 3
and Lemma 4:

COROLLARY 2. Let F(z):= Y Ajz/, Aj€M,, j=0,1,... beanalyticin |z| < 1.
=0
Let R(Aj)=Bj and 3(Aj) =Cj, j=0,1,... and assume By > By > ..., By >0. Then
the zeros of F(z) lie outside the disk

4 1
2 S ol
||BEIH IJZIOH JH

2.4)
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