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ON ZEROS OF MATRIX–VALUED ANALYTIC FUNCTIONS
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(Communicated by S. McCullough)

Abstract. We extend a result proved by Dirr and Wimmer [IEEE Trans. Automat. Control
52(2007)] for polynomials to the matrix valued analytic functions and thereby obtain generaliza-
tions of some well-known results concerning the zero free regions of a class of analytic functions.

1. Introduction and statement of results

Let  ⊆ C be an open set, Mn be the set of n× n matrices, n � 1, with entries
in C and ‖·‖ denote the operator norm, induced by the Euclidean norm on Cn . Then
a matrix-valued function F : → Mn is said to be analytic in  , if for each z0 ∈ Mn,

there is a member of Mn, denoted by F ′(z0), such that
∥∥∥F(z)−F(z0)

z−z0
−F ′(z0)

∥∥∥→ 0 as

z→ z0 . A number  ∈C is said to be a zero of F(z) if there exists a vector x∈Cn\{0}
such that F( )x = 0. In other words  is a zero of F(z), if F( ) is less than full rank.
Some authors also refer to  (see e.g. [2]), as an eigenvalue of F(z).

Many differential equations in science and engineering lead to the consideration of
the matrix-valued analytic functions. For instance, the standard model of an RLC cir-
cuit, gives rise to the formulation of the problem, x′(t) = Ax(t), where A∈Mn and x(t)

is a vector valued function. Its solution is of the form of eAt =


j=0

Ajt j

k!
and the decay

of these solutions is controlled by the operator norm
∥∥eAt

∥∥ . Matrix-valued functions
also play an important role in the spectral analysis of a matrix A ∈ Mn . After all,
 ∈ C , is an eigenvalue of a matrix A if and only if the resolvent function defined by
z → (A− zI)−1 has a singularity at z =  , that is, A−  I is not invertible. Here I
represents the identity matrix.

Analytic matrix-valued functions also appear in many other areas such as harmonic
analysis of an operator on a Hilbert space, for example, finite-rank perturbation of self-
adjoint and unitary operator. As a result they also arise in mathematical physics, for
example, Schrödinger operators. Practically, problems related to spectral properties
of an operator are generally solved with the help of matrix-valued analytic functions
defined on the upper-half plane, called characteristic functions.

For matrices A,B∈Mn, we write A � 0 or A > 0, if A is positive semi-definite or
positive definite respectively. Similarly A� B, means A−B� 0 and A >B implies A−
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B > 0. Also, A∗ and tr(A) denote the transpose conjugate and trace of A , respectively.
In the same way, x∗ denotes the conjugate transpose of a vector x ∈ Cn . A vector u
is unit vector if ‖u‖ :=

√
u∗u = 1. It should also be noted that every matrix A can be

uniquely expressed as A = H + iK , where H =
A+A∗

2
and K =

A−A∗

2i
are Hermitian.

We call H and K the real and imaginary parts of A and write (A) = H and (A) = K.
Also max(A) and min(A) denote the maximum and minimum of all the eigenvalues
of a Hermitian matrix A , respectively.

For an inner product 〈·, ·〉 on a vector space V over the field F (F = C or R) ,

�(x,y) := cos−1
(

〈x,y〉
〈x,x〉 1

2 〈y,y〉 1
2

)
defines an angle between vectors x,y ∈ V \ {0}. We

also note that for the vector space V = Mn , over C , the function 〈·, ·〉 : V ×V → C

given by 〈A,B〉= tr(B∗A), defines an inner product called Frobenius inner product and
the corresponding induced norm, denoted by ‖·‖F , is called the Frobenius norm.

We must also mark down that any matrix-valued function F(z) analytic in |z| � 1

can be expressed as a power series F(z) =


j=0

Ajz j , Aj ∈ Mn, |z| � 1 (for ref. see

[13]).
The following theorem of Eneström and Kakeya is well-known in the theory of

distribution of zeros of a polynomial.

THEOREM A. If p(z) :=
n


j=0

a jz
j is a polynomial with real coefficients such that

an � an−1 � · · · � a0 > 0. Then all the zeros of p(z) lie in |z| � 1.

Theorem A was first proved by Gustov Eneström [3], while he was studying a
problem in the theory of pension funds. Kakeya [10] independently proved the follow-
ing more general result and published it in English.

THEOREM B. Let p(z) :=
n


j=0

a jz
j, be a polynomial with real and positive co-

efficients, then all the zeros of p(z) lie in the annulus R1 � |z| � R2 , where R1 =
min

j=0,...,n−1

{
a j

a j+1

}
, R2 = max

j=0,...,n−1

{
a j

a j+1

}
.

Eneström [4] later published a French translation of his earlier proof and it is due
to these reasons that the result is known as Eneström-Kakeya theorem. For a detailed
survey of the result and its generalizations, see [8, 12].

Joyal, Labelle and Rahman [9] generalized Theorem A by dropping the condition
of non-negativity and maintaining the condition of monotonicity. They proved:

THEOREM C. If p(z) :=
n


j=0

a jz
j is a polynomial of degree n such that an �

an−1 � · · · � a1 � a0. Then all the zeros of p(z) lie in |z| � 1
|an| (an−a0 + |a0|).
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Theorem C like the Eneström-Kakeya theorem is only applicable to the polyno-
mials with real coefficients. Govil and Rahman [6] proved the following result for
polynomials with complex coefficients.

THEOREM D. Let p(z) :=
n


j=0

a jz
j, be a polynomial of degree n with complex

coefficients such that for some real  , |arga j − |�  � 
2 , for 0 � j � n and |an|�

|an−1| � · · · � |a1| � |a0|. Then all zeros of p(z) lie in the disk |z| � (sin + cos)+
2sin
|an|

n−1


j=0

|a j|.

Govil and Rahman [6], in the same paper, extended the above result to complex
valued analytic functions with similar conditions on the angles and moduli of the coef-
ficients, appearing in their series representation. They proved

THEOREM E. Let f (z) :=



j=0

a jz
j, be analytic in |z| � 1 , such that for some real

 , |arga j −  | �  � 
2 , for j = 0,1,2, . . . and |a0| � |a1| � |a2| � · · · . Then f (z)

does not vanish in the disk |z| �
(

sin + cos +
2sin
|a0|

n−1


j=0

|a j|
)−1

.

They also [6] proved a different result for polynomials with complex coefficients
while imposing a non-negative and monotone condition on the real parts of the coeffi-
cients of a polynomial, as follows:

THEOREM F. Let p(z) :=
n


j=0

a jz
j, be a polynomial of degree n with complex co-

efficients such that (a j) =  j and a j =  j for j = 0,1,2, . . . ,n satisfying n �

n−1 � · · · � 1 � 0, n �= 0 . Then all the zeros of p(z) lie in |z| � 1+
2
n

n


j=0

| j|.

Dirr and Wimmer [2] extended Theorem A to matrix polynomials and proved the
following result concerning the bound estimate of the zeros of a matrix polynomial.

THEOREM G. Let P(z) :=
n


j=0

Ajz
j, Aj ∈ Mk, k > 0, 0 � j � n be a matrix poly-

nomial of degree n such that

An � An−1 � · · · � A0 � 0, An > 0. (1.1)

Then the zeros of P(z) lie in the closed unit disk |z| � 1.

Le, Du and Nguyen [11] extended Theorem B to matrix polynomials as follows.
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THEOREM H. Let P(z) :=
n


j=0

Ajz
j, where A j ∈ Mk, k > 0 are positive-definite,

be a matrix polynomial of degree n . Then the eigenvalues of P(z) lie in the annulus

R′
1 � |z| � R′

2 , where R′
1 = min

j=0,...,n−1

{
min(Aj)

max(Aj+1)

}
and R′

2 = max
j=0,...,n−1

{
max(Aj)
min(Aj+1)

}
.

In this paper we extend Theorem G to matrix valued analytic functions by asso-
ciating a monotone condition of the form of (1.1), on coefficients of the Taylor series
expansion of a matrix valued analytic function. We further extend Theorem E and The-
orem F by firstly restricting the angle and then binding the real parts of the coefficients
of a matrix valued analytic function. We first prove:

THEOREM 1. Let F(z) :=



j=0

Ajz
j , A j ∈ Mn , j = 0,1, . . . , be analytic in |z| � 1 .

Assume A0 � A1 � · · · , A0 > 0 . Then the zeros of F(z) lie outside the disk |z| < 1.

We next prove:

THEOREM 2. Let F(z) :=



j=0

Ajz
j, det(A0) �= 0 , A j ∈ Mn , j = 0,1, . . . , be ana-

lytic in |z| � 1 . Assume ‖A0‖F � ‖A1‖F � · · · , and �(Aj,C) �  � 
2

, j = 0,1, . . . ,

for some non-zero matrix C ∈ Mn . Then the zeros of F(z) lie outside the disk

|z| < 1

‖A−1
0 ‖F

{
‖A0‖F(cos + sin)+2sin




j=1

‖Aj‖F

}−1

. (1.2)

Finally we prove:

THEOREM 3. Let F(z) :=



j=0

Ajz
j , A j ∈ Mn , j = 0,1, . . . , be analytic in |z| � 1.

Let (Aj) = Bj and (Aj) = Cj , j = 0,1, . . . , and assume B0 � B1 � · · · , B0 > 0 .
Then the zeros of F(z) lie outside the disk

|z| < 1

1+ 2
min(B0)



j=0

|r(Cj)|
. (1.3)

where, for a matrix A ∈ Mn , r(A) = max{|u∗Au|;‖u‖ = 1} .

For Cj = 0, Theorem 3 reduces to Theorem 1. We also note that for a matrix A ,
r(A) is called the numerical radius of A .



ON ZEROS OF MATRIX-VALUED ANALYTIC FUNCTIONS 387

2. Lemmas and proofs of theorems

For the proofs of these theorems, we need the following lemmas.

LEMMA 1. Let A,B ∈ Mn, be such that ‖A‖F � ‖B‖F and �(A,B) =  � 2 �
 , then

‖A−B‖F � (‖A‖F −‖B‖F)cos +(‖A‖F +‖B‖F)sin. (2.1)

Proof.

‖A−B‖2
F = ‖A‖2

F +‖B‖2
F −2‖A‖F‖B‖F cos

� ‖A‖2
F +‖B‖2

F −2‖A‖F‖B‖F cos(2)

= (‖A‖F −‖B‖F)2 cos2 +(‖A‖F +‖B‖F)2 sin2

� ((‖A‖F −‖B‖F)cos +(‖A‖F +‖B‖F)sin)2 .

Thus
‖A−B‖F � (‖A‖F −‖B‖F)cos +(‖A‖F +‖B‖F)sin.

This proves Lemma 1. �

LEMMA 2. Let 〈·, ·〉 be an inner product on a vector space V over F . Let a,b,c∈
V \ {0} such that �(a,b) = 1 � 

2
, �(b,c) = 2 � 

2
, then

�(a,b) =  � 1 +2.

Proof. Without loss of generality we assume 〈a,a〉 = 〈b,b〉 = 〈c,c〉 = 1. Since
〈x,y〉 , x,y ∈ V defines an inner product on V and determinant of a gram matrix is
non-negative, therefore ∣∣∣∣∣∣

〈a,a〉 〈a,b〉 〈a,c〉
〈b,a〉 〈b,b〉 〈b,c〉
〈c,a〉 〈c,b〉 〈c,c〉

∣∣∣∣∣∣� 0.

That is ∣∣∣∣∣∣
1 cos1 cos

cos1 1 cos2

cos cos2 1

∣∣∣∣∣∣� 0.

This gives

1− cos2 1 − cos2 2− cos2  +2cos1 cos2 cos � 0.

That is
(1− cos2 1)(1− cos2 2)− (cos − cos1 cos2)2 � 0,
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or
|cos − cos1 cos2| � sin1 sin2.

Equivalently
cos � cos1 cos2 − sin1 sin2 = cos(1 +2).

This gives
 � 1 +2.

This proves Lemma 2. �
We also need following lemmas (for ref. see [7]) for the proof of the theorems.

LEMMA 3. Let A ∈ Mn , then

r(A) � ‖A‖ � ‖A‖F ,

LEMMA 4. Let A ∈ Mn, be a Hermitian matrix, then

min(A) = min
‖u‖=1

{u∗Au} � max
‖u‖=1

{u∗Au} = max(A).

Proof of Theorem 1. Let u be a unit vector and define Fu(z) = u∗(1− z)F(z)u =


j=0

(1− z)u∗Ajuz j . Since F(z) is analytic in |z| � 1, therefore Fu(z) is analytic in

|z| � 1. Also Aj � Aj+1, A0 > 0, therefore

u∗Aju � u∗Aj+1u, u∗A0u > 0, j = 0,1, . . . . (2.2)

Now for |z| � 1, we have

|Fu(z)| = |u∗(1− z)F(z)u|

= |u∗A0u+ z



j=0

u∗(Aj+1−Aj)uz j|

� |u∗A0u|− |z|



j=0

|u∗(Aj+1−Aj)u|.

This gives on using (2.2),

|Fu(z)| � u∗A0u(1−|z|)
> 0, if |z| < 1.

This shows that the zeros of Fu(z) and therefore, the zeros of F(z) lie outside the disk
|z| < 1. �

Proof of Theorem 2. Since �(Aj,C) �  � 
2

, j = 0,1, . . . , therefore by Lemma

2, �(Aj−1,Aj) � 2 �  , j = 1,2, . . . . Define G(z) = (1− z)F(z) and let u be a unit
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vector, then we have for |z| � 1,

‖G(z)u‖ = ‖(1− z)F(z)u‖

=

∥∥∥∥∥A0u−



j=0

(Aj+1−Aj)uz j+1

∥∥∥∥∥
� ‖A0u‖−

∥∥∥∥∥



j=1

(Aj+1−Aj)uz j+1

∥∥∥∥∥
�
∥∥A−1

0

∥∥−1−|z|
∥∥∥∥∥




j=0

(Aj+1−Aj)z j

∥∥∥∥∥
�
∥∥A−1

0

∥∥−1−|z|



j=0

∥∥Aj+1−Aj
∥∥.

This gives with the help of Lemma 3,

‖G(z)u‖ �
∥∥A−1

0

∥∥−1
F −|z|




j=0

∥∥Aj+1−Aj
∥∥

F.

Therefore by using Lemma 1, we get

‖G(z)u‖ �
∥∥A−1

0

∥∥−1
F −|z|




j=0

{
(
∥∥Aj
∥∥

F −
∥∥Aj+1

∥∥
F)cos +(

∥∥Aj
∥∥

F +
∥∥Aj+1

∥∥
F)sin

}

=
∥∥A−1

0

∥∥−1
F −|z|

{
‖A0‖F (cos + sin)+2sin




j=1

∥∥Aj
∥∥

F

}

> 0,

if

|z| < 1∥∥A−1
0

∥∥
F

(
‖A0‖F (cos + sin)+2sin




j=1

∥∥Aj
∥∥

F

)−1

� 1.

Since Frobenius norm is submultiplicative and 0 �  � 
2 , therefore the inequality on

the right is true. This shows that all the zeros of G(z), and therefore of F(z) lie in

|z| � 1∥∥A−1
0

∥∥
F

(
‖A0‖F (cos+ sin)+2sin




j=1

∥∥Aj
∥∥

F

)−1

. �

Since A � B, implies ‖A‖F � ‖B‖F , therefore on using Lemma 3 and Lemma 4
we have the following:

COROLLARY 1. Let F(z) :=



j=0

Ajz
j , A j ∈ Mn , j = 0,1, . . . , be analytic in |z|�

1 . Assume A0 � A1 � . . . , and �(Aj,C) �  � 
2

, j = 0,1, . . . , for some non-zero
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matrix C ∈ Mn . Then the zeros of F(z) lie outside the disk

|z| < 1

max(A−1
0 )

{
max(A0)(cos+ sin)+2sin




j=1

max(Aj)

}−1

. (2.3)

Proof of Theorem 3. Let u be a unit vector. Define Fu(z) = u∗(1− z)F(z)u, then
Fu(z) is a complex function analytic in |z| � 1. Now for |z| � 1, we have

|Fu(z)| = |u∗A0u− z



j=0

u∗(Aj+1−Aj)uz j|

� |u∗A0u|− |z|



j=0

|u∗(Bj+1−Bj)u+ iu∗(Cj+1−Cj)u|

� u∗B0u−|z|(u∗B0u−|u∗C0u|+2



j=0

|u∗Cju|)

� u∗B0u−|z|(u∗B0u+2



j=0

|u∗Cju|)

> 0,

if

|z| < 1

1+ 2
|u∗B0u|



j=0

|u∗Cju|
.

Using Lemma 3 and Lemma 4, this is possible if

|z| < 1

1+ 2
min(B0)



j=0

|r(Cj)|
.

This shows that all the zeros of Fu(z) and therefore the zeros of F(z) lie outside the
disk

|z| < 1

1+ 2
min(B0)



j=0

|r(Cj)|
. �

The following can be easily obtained from the above theorem by using Lemma 3
and Lemma 4:

COROLLARY 2. Let F(z) :=



j=0

Ajz
j , A j ∈Mn , j = 0,1, . . . be analytic in |z|� 1.

Let (Aj) = Bj and (Aj) =Cj , j = 0,1, . . . and assume B0 � B1 � . . . , B0 > 0 . Then
the zeros of F(z) lie outside the disk

|z| < 1

1+ 2

‖B−1
0 ‖−1



j=0

∥∥Cj
∥∥ . (2.4)
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