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REAL POWER FORM FOR YOUNG–TYPE INEQUALITIES

VIA FAMOUS CONSTANTS AND APPLICATIONS
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Abstract. In this paper, we propose new refinements and reverses of real power form for Young-
type inequalities, which generalizes the recent inspired results by D. Q. Huy et al. [Linear Al-
gebra Appl. 656 (2023), 368-384], and by Y. Ren et al. [J. Inequal. Appl. 2020 (2020), Paper
No. 98, 13 p.]. Furthermore, the above refinements and reverses are continued to improve via
the famous constants consisting of Kantorovich constant and Specht ratio. As applications, we
establish operator versions, inequalities for unitarily invariant norms and inequalities for deter-
minants of matrices.

1. Introduction

The classical Young inequality for scalars says that if a,b > 0 and  ∈ [0,1] , then

(1−)a+b � a1−b , (1)

with equality if and only if a = b . The inequality (1) is also called  -weighted arithme-
tic-geometric mean inequality.

This inequality has been extended and generalized to many different frameworks
with refinements and reverses (see, e.g., [2, 4, 6, 7, 8]). In 2017, Kórus [10] gave a
refinement of the Young inequality (1) as follows

(1−)a+b �
(
1+L() ln2

(a
b

))
a1−b , (2)

where L() is a 1-periodic function given by

L() =
2

2

(
1−


)2
for  ∈ (0,1] and L(0) = 0. (3)

Besides, L is symmetric about 1
2 , namely, L() = L(1−) , for all  ∈ [0,1] . He also

applied the obtained results to the operator version.
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In 2019, C. Yang, Y. Gao and F. Lu [17] obtained the following refinement of
inequality (1)

(1−)a+b �
(

1+
L(2)

4
ln2
(a

b

))
a1−b + r0(

√
a−

√
b)2, (4)

where r0 = min{,1− } . Similar to Kórus, Yang’s group also found an application
to the operator version of the resulting inequality.

Recently, Y. Ren and P. Li [13] have continued to give an improvement to the
classical Young inequality of the form

(1−)a+b �
(

1+
L(8)

64
ln2
(a

b

))
a1−b + r0(

√
a−

√
b)2 (5)

+ r1

[
(
√

a− 4
√

ab)2(0, 1
2 )()+ (

√
b− 4

√
ab)2( 1

2 ,1)()
]

+ r2

[
(
√

a− 8
√

a3b)2(0, 1
4 )()+ ( 4

√
ab− 8

√
a3b)2( 1

4 , 1
2 )()

+( 4
√

ab− 8
√

ab3)2( 1
2 , 3

4 )()+ (
√

b− 8
√

ab3)2( 3
4 ,1)()

]
,

where r1 = min{2r0,1− 2r0} , r2 = min{2r1,1− 2r1} and I() is the characteristic
function of an interval I , defined by I() = 1 if  ∈ I and I() = 0 if  /∈ I .

The latest relevant results are given by M. A. Ighachane and M. Akkouchi in [5],
the authors proposed a multiple-term refinement and reverse of Young’s inequality of
the form

(1−)a+b �
(

1+
L
(
2N

)
22N ln2

(a
b

))
a1−b

+ r0(
√

a−
√

b)2 +
N−1


l=1

rl()
2l


k=1

fl,k(a,b)( k−1
2l , k

2l

)(), (6)

and

(1−)a+b �
(

1+
L
(
2N(1−)

)
22N ln2

(a
b

))−1

a1−b

+R0(
√

a−
√

b)2 −
N−1


l=1

rl()
2l


k=1

fl,k(a,b)( k−1
2l , k

2l

)(), (7)

where N is an arbitrary positive integer, rl() and fl,k are defined in (8) and (9) below

rl() =

⎧⎨
⎩

2l− k+1, if k−1
2l �  � 2k−1

2l+1

k−2l, if 2k−1
2l+1 �  � k

2l ,
(8)

fl,k(a,b) =

(√
a

k−1
2l b

1− k−1
2l −

√
a

k
2l b

1− k
2l

)2

, (9)
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with l = 0, . . . ,N−1 and k = 1, . . . ,2l .

Observing the results of Young’s inequality corresponding to L() , we temporar-
ily call it the logarithmic coefficient, we find that most of the achievements are in the
direction of tightening the inequality (1), there are no outstanding results for improve-
ment exponentiation of the quantity (1−)a+b . From the above motivation, in this
article we will improve and give more general results for the improvements made by
mathematicians in (2), (4), (5). One of the main results of the present paper is as follows

[(1−)a+b]p

�
[(

1+
L(8)

64
(lna− lnb)2

)
a1−b

]p

+(2r0)p
[(

a+b
2

)p

−
(√

ab
)p
]

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)[(√

a+
√

b
2

)p

−
(

4
√

ab
)p
]

+(2r2)p
(

4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()+ 4

√
ab2

p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)()
)

×
[(

4
√

a+ 4
√

b
2

)p

−
(

8
√

ab
)p
]

,

and

[(1−)a+b]p

�
[(

1+
L(8(1−))

64
(lna− lnb)2

)−1

a1−b
]p

+(2R0)p
[(

a+b
2

)p

−
(√

ab
)p
]

− (2r1)p(√b
p
(0, 1

2 )()+
√

a
p( 1

2 ,1)()
)[(√

a+
√

b
2

)p

−
(

4
√

ab
)p
]

− (2r2)p
(

4
√

b3
p
(0, 1

4 )()+ 4
√

ab2
p
( 1

4 , 1
2 )()+ 4

√
a2b

p
( 1

2 , 3
4 )()+ 4

√
a3

p
( 3

4 ,1)()
)

×
[(

4
√

a+ 4
√

b
2

)p

−
(

8
√

ab
)p
]

,

where R0 = max{,1−} and p � 1 is a arbitrary real number.

This paper is organized as follows. After the forgoing section, we state and prove
our main results in Section 2 relying on the theory of weak sub-majorization. In sec-
tion 3, we present the application of the main results to operator inequalities. Some
refinements and reverses of inequalities for unitarily invariant norms are given in Sec-
tion 4. Finally, Section 5 is devoted to establishing new refinements for determinants
of matrices.
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2. Some refinements and reverses of real power form for
Young-type inequalities with famous constants

The main goal of this section is to establish further new refinements and reverses
real power form for Young-type inequalities, which consist of the Kantorovich, Loga-
rithmic constants and Specht’s ratio. The method used here is based on the theory of
weak sub-majorization.

2.1. Some preliminaries on the theory of weak sub-majorization and
auxiliary results

We recall the definition of the weak sub-majorization. Let x = (x1,x2, . . . ,xn) and
y = (y1,y2, . . . ,yn) are two vectors in R

n . Then, x is called weak sub-majorization of
y , denoted by x ≺w y , if

k


i=1

x∗i �
k


i=1

y∗i ,

where k = 1, 2, . . . ,n and x∗i , y∗i , i = 1,2, . . . ,n respectively are components of vectors
x∗ = (x∗1,x

∗
2, . . . ,x

∗
n) and y∗ = (y∗1,y

∗
2, . . . ,y

∗
n) satisfying

x∗1 � x∗2 � . . . � x∗n and y∗1 � y∗2 � . . . � y∗n.

An important feature of the theory of weak sub-majorization via continuously increas-
ing convex functions is given in the following.

LEMMA 2.1. ([12, pp. 13]) Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two vec-
tors in R

n and I ⊂ R be an interval containing xi,yi for i = 1, . . . ,n. Then,

x ≺w y if and only if
n


i=1

g(xi) �
n


i=1

g(yi), (10)

for every continuously increasing convex funtion g : I → R .

Hereafter, we will state and prove some auxiliary results, which are used in the
proofs of our main inequalities of this section.

LEMMA 2.2. Let x = (x1,x2,x3,x4) , y = (y1,y2,y3,y4) be two vectors in R
4 with

components

x1 =
[
1+

L(8)
64

(lna− lnb)2
]
a1−b ,

x2 = r0(a+b),

x3 = r1(
√

a+
√

b)
(√

a(0, 1
2 )()+

√
b( 1

2 ,1)()
)

,

x4 = r2( 4
√

a+ 4
√

b)
(

4
√

a3(0, 1
4 )()+ 4

√
a2b( 1

4 , 1
2 )()+ 4

√
ab2( 1

2 , 3
4 )()+ 4

√
b3( 3

4 ,1)()
)

,
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and

y1 = (1−)a+b,

y2 = 2r0

√
ab,

y3 = 2r1
4
√

ab
(√

a(0, 1
2 )()+

√
b( 1

2 ,1)()
)

,

y4 = 2r2
8
√

ab
(

4
√

a3(0, 1
4 )()+ 4

√
a2b( 1

4 , 1
2 )()+ 4

√
ab2( 1

2 , 3
4 )()+ 4

√
b3( 3

4 ,1)()
)

.

Then, we have x ≺w y.

Proof. To prove x ≺w y , we clarify following inequalities

x∗1 + x∗2 + x∗3 + x∗4 � y∗1 + y∗2 + y∗3 + y∗4, (11)

x∗1 + x∗2 + x∗3 � y∗1 + y∗2 + y∗3, (12)

x∗1 + x∗2 � y∗1 + y∗2, (13)

x∗1 � y∗1. (14)

To prove inequality (11), we need to show

x1 + x2 + x3 + x4 � y1 + y2 + y3 + y4. (15)

This is evidently deduced from (5).
Inequality (12) is cleared up if the following inequalities are verified

x1 + x2 + x3 � y1 + y2 + y3, (16)

x1 + x2 + x4 � y1 + y2 + y4, (17)

x1 + x3 + x4 � y1 + y3 + y4, (18)

x2 + x3 + x4 � y1 + y2 + y3. (19)

From (15) we get x1 + x2 + x3 � y1 + y2 + y3− (x4− y4) � y1 + y2 + y3. The reason we
have this is because x4 � y4 . So (16) is true. By analogy, starting from inequality (15)
and remarking that x3 � y3 , x2 � y2 , we can prove the inequalities (17) and (18).

However, inequality (19) is obtained in a rather complicated way, through elemen-
tary transformations, we get what we need to prove about an inequality that is always
true for each particular case of  . Specifically, we consider the following cases in turn.

•  ∈
[
0,

1
8

]
: we have r0 = , r1 = 2, r2 = 4 , inequality (19) becomes (a+

b)+2
√

a(
√

a+
√

b)+4 4
√

a3( 4
√

a+ 4
√

b) � (1−)a+b+2
√

ab+4 4
√

ab
√

a . To
make it short, we get (1−8)a � 0. This is always true for  under consideration.

•  ∈
(

1
8
,
1
4

]
: we have r0 = , r1 = 2, r2 = 1−4 , inequality (19) is equivalent

to (a+b)+2
√

a(
√

a+
√

b)+(1−4) 4
√

a3( 4
√

a+ 4
√

b) � (1−)a+b+2
√

ab+
4 4

√
ab
√

a . This can turn into (8 − 1) 4
√

a3b � 0, which is always true for  in this
interval.
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•  ∈
(

1
4
,
3
8

]
: we have r0 = , r1 = 1− 2, r2 = 4 − 1, inequality (19) is

specifically written as (a+b)+(1−2)
√

a(
√

a+
√

b)+(4−1) 4
√

a2b( 4
√

a+ 4
√

b) �
(1−)a+b+2

√
ab+2(1−2) 4

√
ab
√

a , which is equivalent to (3−8) 4
√

a3b � 0.
This inequality is obvious in this case of  .

•  ∈
(

3
8
,
1
2

]
: we have r0 = , r1 = 1− 2, r2 = 2− 4 . Substitute them in

(19) we get (a+b)+(1−2)
√

a(
√

a+
√

b)+(2−4) 4
√

a2b( 4
√

a+ 4
√

b) � (1−)a+
b+ 2

√
ab+ 2(1− 2) 4

√
ab
√

a . The short form is as follows (8 − 3)
√

ab � 0. All
values of  in this range satisfy the obtained inequality.

•  ∈
(

1
2
,
5
8

]
: The proof can be deduced directly from the case  ∈

(
3
8
,
1
2

]
.

Indeed, we have r0 = 1−, r1 = 2−1, r2 = 4−2 and 1− ∈
[
3
8
,
1
2

)
, inequality

(19) becomes (1− )(a+ b)+ (2 − 1)
√

b(
√

a+
√

b)+ (4 − 2) 4
√

ab2( 4
√

a+ 4
√

b) �
(1− )a + b + 2(1− )

√
ab + 2(2 − 1) 4

√
ab
√

b . By changing a,b and  by b,a
and 1−  , respectively, we obtain the desired result exactly as the previous case  ∈(

3
8
,
1
2

]
. Notice that, at the endpoint  =

5
8

, then 1−  =
3
8

. Therefore, when per-

forming the above substitution technique, the inequality to be clarified becomes the

case  ∈
(

1
4
,
3
8

]
. For the remaining cases  ∈

(
5
8
,
3
4

]
,  ∈

(
3
4
,
7
8

]
and

(
7
8
,1

]
, we

check in the same way, so we omit the details.
Thus, we have done the inequality (12). Next we will go to test the inequality (13).

Inequality (13) is checked if we have the following six minor inequalities

x1 + x2 � y1 + y2, (20)

x1 + x3 � y1 + y3, (21)

x1 + x4 � y1 + y4, (22)

x2 + x3 � y1 + y2, (23)

x2 + x4 � y1 + y2, (24)

x3 + x4 � y1 + y3. (25)

From (16), we get x1 +x2 � y1 +y2−(x3−y3) � y1 +y2 . This is inferred from the
comment x3 � y3 . This means that the inequality (20) is cleared up. Also combining
(16) and determining x2 � y2 we get the inequality (21). Similarly, combining (17)
and x2 � y2 we get (22), combining (19) and x3 � y3 we get (24), combining (19) and
x2 � y2 we get (25). The remaining inequality (23) has been clarified in [4] by D. Q.
Huy et al.

Finally, our lemma is to perfect if the inequality (14) is proved. This means that
we are going to unravel the following four inequalities

x1 � y1, (26)

x2 � y1, (27)



FURTHER NEW REFINEMENTS AND REVERSES FOR YOUNG-TYPE INEQUALITIES 491

x3 � y1, (28)

x4 � y1. (29)

Since r0 = min{,1− } , x2 � y1 . This means (27) is clarified. With the same
way as in the process of proving (16), combining (20) and commenting x2 � y2 we
can deduce (26), also with this statement when combined with (23) we obtained (28),
combined with (24) then deduce (29). This helps us not only to complete the proof (14)
but also to reach the conclusion in Lemma. That means we are done with the proof of
x ≺w y .

In the process of proving this lemma, we have discovered something quite in-
teresting that y∗1 is exactly y1 . Indeed, we have y1 � xi, for all i = 1,2,3,4, besides
xi � yi, for all i = 2,3,4 so y1 � yi, for all i = 2,3,4. �

LEMMA 2.3. Let X = (X1,X2,X3,X4) and Y = (Y1,Y2,Y3,Y4) be two vectors in
R

4 with components

X1 = (1−)a+b, X2 = 2R0

√
ab,

X3 = r1(
√

a+
√

b)
(√

b(0, 1
2 )()+

√
a( 1

2 ,1)()
)
,

X4 = r2( 4
√

a+ 4
√

b)
(

4
√

b3(0, 1
4 )()+ 4

√
b2a( 1

4 , 1
2 )()

+ 4
√

ba2( 1
2 , 3

4 )()+ 4
√

a3( 3
4 ,1)()

)
,

and

Y1 = R0(a+b), Y2 =
[
1+

L(8(1−))
64

(lna− lnb)2
]−1

a1−b ,

Y3 = 2r1
4
√

ab
(√

b(0, 1
2 )()+

√
a( 1

2 ,1)()
)
,

Y4 = 2r2
8
√

ab
(

4
√

b3(0, 1
4 )()+ 4

√
b2a( 1

4 , 1
2 )()+ 4

√
ba2( 1

2 , 3
4 )()+ 4

√
a3( 3

4 ,1)()
)

,

where R0 = max{,1−} . Then, we have X ≺w Y .

Proof. The verification of X ≺w Y is not fundamentally different from x ≺w y .
We can summarize as follows. We need to clarify the following

X∗
1 +X∗

2 +X∗
3 +X∗

4 � Y ∗
1 +Y ∗

2 +Y ∗
3 +Y ∗

4 , (30)

X∗
1 +X∗

2 +X∗
3 � Y ∗

1 +Y ∗
2 +Y ∗

3 , (31)

X∗
1 +X∗

2 � Y ∗
1 +Y ∗

2 , (32)

X∗
1 � Y ∗

1 . (33)

First, inequality (30) is equivalent to X1 +X2 +X3 +X4 � Y1 +Y2 +Y3 +Y4 . Ac-
cording to (7), choose N = 3, we get

(1−)a+b �
[
1+

L(8(1−))
64

(lna− lnb)2
]−1

a1−b +R0(
√

a−
√

b)2 (34)

− r1

(
(
√

b− 4
√

ab)2(0, 1
2 )

()+ (
√

a− 4
√

ab)2( 1
2 ,1)()

)
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− r2

[
(
√

b− 8
√

ab3)2(0, 1
4 )()+ ( 4

√
ab− 8

√
ab3)2( 1

4 , 1
2 )()

+( 4
√

ab− 8
√

a3b)2( 1
2 , 3

4 )()+ (
√

a− 8
√

a3b)2( 3
4 ,1)()

]
.

Equivalent transformation of this result, we get X1 +X2 +X3 +X4 � Y1 +Y2 +Y3 +Y4 .
So (30) is complete.

Proving inequality (31) is converted to checking the correctness of the following
specific inequalities

X1 +X2 +X3 � Y1 +Y2 +Y3, (35)

X1 +X2 +X4 � Y1 +Y2 +Y4, (36)

X1 +X3 +X4 � Y ∗
1 +Y ∗

2 +Y ∗
3 , (37)

X2 +X3 +X4 � Y1 +Y3 +Y4. (38)

From (30), combined with the comments X4 � Y4 , X3 � Y3 and X1 � Y2 , by the
same method implemented during test (16), we get clarify the inequalities (35), (36)
and (38). The remaining inequality (37) is more difficult to test. We divide it into the
following two cases.

• The first case, from now on we will make this case A, if  ∈
[
0,

1
2

]
, then

a � b and if  ∈
(

1
2
,1

]
, then a � b . We will show that X3 � X2 so we can deduce

X1 +X3 +X4 � X1 +X2 +X4 � Y1 +Y2 +Y4 . Specifically, we do the following

If  ∈
[
0,

1
4

]
and a � b then X2 = 2(1−)

√
ab , X3 = 2

√
b(
√

a+
√

b) , so we

have

X2−X3 = 2
√

b
[
(1−2)

√
a−

√
b
]

� 2
√

b(
√

a−
√

b) � 0.

This can be deduced X3 � X2 .

If  ∈
(

1
4
,
1
2

]
and a � b then X2 = 2(1−)

√
ab , X3 = (1−2)

√
b(
√

a+
√

b) .

This leads to

X2−X3 =
√

b
[√

a− (1−2)
√

b
]

> (1−2)
√

b(
√

a−
√

b) � 0.

This verifies that X3 � X2 .

If  ∈
(

1
2
,1

]
and a � b then 1− ∈

[
0,

1
2

)
. We also find that, if we replace a,b

and  by b,a and 1−  , respectively, as in the inequality clarification process (19),

the result we need test becomes exactly the same as when considering  ∈
[
0,

1
2

]
and

a � b . So we can assert that X2 � X3 in this case.
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• The second case, from now on we will make this case B, if  ∈
[
0,

1
2

]
, then

a < b and if  ∈
(

1
2
,1

]
, then a > b . We will prove that X1 +X3 +X4 � Y1 +Y3 +Y4

by looking at specific cases of  . The detailed process is as follows.

With  ∈
[
0,

1
8

]
and a < b , we have R0 = 1−, r1 = 2, r2 = 4 and

Y1 +Y3 +Y4− (X1 +X3 +X4)

= (1−)a+(1−)b+4
√

b 4
√

ab+8 4
√

b3 8
√

ab

−
(
(1−)a+b+2

√
b(
√

a+
√

b)+4 4
√

b3( 4
√

a+ 4
√

b)
)

= (1−8)b+8 8
√

ab7−2
√

ab

� (1−8)b+2 8
√

ab4
(

8
√

b3− 8
√

a3
)

� 0.

With  ∈
(

1
8
,
1
4

]
and a < b , we have R0 = 1−, r1 = 2, r2 = 1−4 and

Y1 +Y3 +Y4− (X1 +X3 +X4)

= (1−)a+(1−)b+4
√

b 4
√

ab+(2−8) 4
√

b3 8
√

ab

−
(
(1−)a+b+2

√
b(
√

a+
√

b)+ (1−4) 4
√

b3( 4
√

a+ 4
√

b)
)

= (8−1) 4
√

ab3 +(2−8) 8
√

ab7−2
√

ab

� (8−1)
√

ab+(2−8)
√

ab−2
√

ab

= (1−2)
√

ab � 0.

With  ∈
(

1
4
,
3
8

]
and a < b , we have R0 = 1−, r1 = 1−2, r2 = 4−1 and

Y1 +Y3 +Y4− (X1 +X3 +X4)

= (1−)a+(1−)b+(2−4)
√

b 4
√

ab+(8−2) 4
√

ab2 8
√

ab

−
(
(1−)a+b+(1−2)

√
b(
√

a+
√

b)+ (4−1) 4
√

ab2( 4
√

a+ 4
√

b)
)

= (8−2) 8
√

a3b5 +(3−8) 4
√

ab3−2
√

ab

� (8−2)
√

ab+(3−8)
√

ab−2
√

ab

= (1−2)
√

ab � 0.
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With  ∈
(

3
8
,
1
2

]
and a < b , we have R0 = 1−, r1 = 1−2, r2 = 2−4 and

Y1 +Y3 +Y4− (X1 +X3 +X4)

= (1−)a+(1−)b+(2−4)
√

b 4
√

ab+(4−8) 4
√

ab2 8
√

ab

−
(
(1−)a+b+(1−2)

√
b(
√

a+
√

b)+ (2−4) 4
√

ab2( 4
√

a+ 4
√

b)
)

= (4−8) 8
√

a3b5− (3−6)
√

ab

� (3−6) 8
√

a3b4( 8
√

b− 8
√

a) � 0.

When  ∈
(

1
2
,1

]
and a > b , we reuse the proof method of inequality (19), i.e.,

changing a,b and  by b,a and 1−  , respectively, the clarification can be obtained

directly from the previous cases when  ∈
[
0,

1
2

]
and a < b . The detailed process we

do not repeat.

Next, we will clarify assertion (32) by giving truth to the following inequalities

X1 +X2 � Y1 +Y2, (39)

X1 +X3 � Y ∗
1 +Y ∗

2 , (40)

X1 +X4 � Y ∗
1 +Y ∗

2 , (41)

X2 +X3 � Y1 +Y3, (42)

X2 +X4 � Y1 +Y4, (43)

X3 +X4 � Y1 +Y3. (44)

With the familiar method used in the inequality proof stage (35), we will go with
inequality (35) and observe that X3 � Y3 gives the result (39).

With the same method, if we combine (35) and determine X1 �Y2 , we can deduce
(42), combine (36) and the above statement, we get (43).

Continue the process, we clarify (40) by checking that X1 +X3 � Y1 +Y3 or X1 +
X3 �Y1 +Y2 . In case B, we have X1 +X3 �Y1 +Y3 (see [4]). In case A, reuse the result
that X3 � X2 and the inequality (39), we have X1 +X3 � X1 +X2 �Y1 +Y2 . Combining
two cases, we have (40).

Next, we go to check the correctness of inequality (41) by proving that X1 +X4 �
Y1 +Y4 in case B and X1 +X4 � Y1 +Y2 in case A. Details are as follows.

• In case B, using (37) and X3 � Y3 , we get X1 + X4 � Y1 +Y4 − (X3 −Y3) �
Y1 +Y4 .

• In case A, we prove X4 � X2 from which we get X1 +X4 � X1 +X2 � Y1 +Y2 .
the latter part of the inequality is obtained by doing the same as in (39). Specifically,
we do the following.
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With  ∈
[
0,

1
8

]
and a � b , we have R0 = 1−, r2 = 4 and

X2−X4 = 2(1−)
√

ab−4 4
√

b3( 4
√

a+ 4
√

b)

=
[
(1−)

√
ab−4 4

√
ab3
]
+
[
(1−)

√
ab−4b

]
� 4 4

√
ab2( 4

√
a− 4

√
b)+4

√
b(
√

a−
√

b) � 0.

With  ∈
(

1
8
,
1
4

]
and a � b , we have R0 = 1−, r2 = 1−4 and

X2−X4 = 2(1−)
√

ab− (1−4) 4
√

b3( 4
√

a+ 4
√

b)

=
[
(1−)

√
ab− (1−4) 4

√
ab3
]
+
[
(1−)

√
ab− (1−4)b

]
� (1−4) 4

√
ab2( 4

√
a− 4

√
b)+ (1−4)

√
b(
√

a−
√

b) � 0.

With  ∈
(

1
4
,
3
8

]
and a � b , we have R0 = 1−, r2 = 4−1 and

X2−X4 = 2(1−)
√

ab− (4−1) 4
√

ab2( 4
√

a+ 4
√

b)

= (3−6) 4
√

a2b2− (4−1) 4
√

ab3

� (4−1) 4
√

ab2( 4
√

a− 4
√

b) � 0.

With  ∈
(

3
8
,
1
2

]
and a � b , we have R0 = 1−, r2 = 2−4 and

X2−X4 = 2(1−)
√

ab− (2−4) 4
√

ab2( 4
√

a+ 4
√

b)

= 2 4
√

a2b2− (2−4) 4
√

ab3

� (2−4) 4
√

ab2( 4
√

a− 4
√

b) � 0.

With  ∈
(

1
2
,1

]
and a � b , we also comment that 1−  ∈

[
0,

1
2

)
. Thus by

converting the roles of a,b and  by b,a and 1−  , respectively, the inequalities to

be checked X2 � X4 have been pointed out in the previous cases when  ∈
[
0,

1
2

]
and

a � b . We ignore the specific process.

The last operation to clarify (32) is prove (44). We accomplish this by directly
computing the cases of  , returning the above inequality to the value that is always
true.
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With  ∈
[
0,

1
8

]
, we have R0 = 1−, r1 = 2, r2 = 4 and

Y1 +Y3−X3−X4 = (1−)a+(1−)b+4
√

b 4
√

ab

−2
√

b(
√

a+
√

b)−4 4
√

b3( 4
√

a+ 4
√

b)

= (1−)a+(1−7)b−2
√

ab

� a+b−2
√

ab

= (
√

a−
√

b)2 � 0.

With  ∈
(

1
8
,
1
4

]
, we have R0 = 1−, r1 = 2, r2 = 1−4 and

Y1 +Y3−X3−X4 = (1−)a+(1−)b+4
√

b 4
√

ab

−2
√

b(
√

a+
√

b)− (1−4) 4
√

b3( 4
√

a+ 4
√

b)

= (1−)a+b−2
√

ab+(8−1) 4
√

ab3

� (
√

a−
√

b)2 +(8−1) 4
√

ab3 � 0.

With  ∈
(

1
4
,
3
8

]
, we have R0 = 1−, r1 = 1−2, r2 = 4−1 and

Y1 +Y3−X3−X4 = (1−)a+(1−)b+2(1−2)
√

b 4
√

ab

− (1−2)
√

b(
√

a+
√

b)− (4−1) 4
√

ab2( 4
√

a+ 4
√

b)

= (1−)a+b−2
√

ab+(3−8) 4
√

ab3

� (
√

a−
√

b)2 +(3−8) 4
√

ab3 � 0.

With  ∈
(

3
8
,
1
2

]
, we have R0 = 1−, r1 = 1−2, r2 = 2−4 and

Y1 +Y3−X3−X4 = (1−)a+(1−)b+2(1−2)
√

b 4
√

ab

− (1−2)
√

b(
√

a+
√

b)− (2−4) 4
√

ab2( 4
√

a+ 4
√

b)

= (1−)a+b− (3−6)
√

ab

� a+b−2
√

ab

= (
√

a−
√

b)2 � 0.

For  ∈
(

1
2
,1

]
, by the same manner as used while checking for inequalities (19),

(37) or (41), we also get X3 +X4 � Y1 +Y3 satisfying for any  value in this range.
To finish the proof of the lemma, we need to clarify inequality (33), which is

equivalent to check the following four minor inequalities:

X1 � Y1, (45)



FURTHER NEW REFINEMENTS AND REVERSES FOR YOUNG-TYPE INEQUALITIES 497

X2 � Y1, (46)

X3 � Y1, (47)

X4 � Y1. (48)

Since R0 = max{,1−} and applying the classical Young’s inequality we easily
get (45) and (46). Besides, we got (47) (see in [4]). Finally, according to (44) and using
the property X3 � Y3 , we have X4 � Y1 − (X3 −Y3) � Y1 . That means (48) is proven
and we end the lemma. �

2.2. Main results for scalars

Based on (10), we can prove the following important result. This improvement
will extend the class of Young’s inequality refinements with logarithmic coefficient.
Details are as in the following theorem.

THEOREM 2.4. If a,b > 0 and 0 �  � 1 , then for all real number p � 1, we
have

[(1−)a+b]p �
[(

1+
L(8)

64
(lna− lnb)2

)
a1−b

]p

+(2r0)pS0

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)

S1

+(2r2)p
(

4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()

+ 4
√

ab2
p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)()
)

S2,

(49)

and

[(1−)a+b]p �
[(

1+
L(8(1−))

64
(lna− lnb)2

)−1

a1−b
]p

+(2R0)pS0

− (2r1)p(√b
p
(0, 1

2 )()+
√

a
p( 1

2 ,1)()
)
S1

− (2r2)p
(

4
√

b3
p
(0, 1

4 )()+ 4
√

ab2
p
( 1

4 , 1
2 )()

+ 4
√

a2b
p
( 1

2 , 3
4 )()+ 4

√
a3

p
( 3

4 ,1)()
)

S2,

(50)

where

S0 :=
(

a+b
2

)p

−
(√

ab
)p

, S1 :=

(√
a+

√
b

2

)p

−
(

4
√

ab
)p

and

S2 :=

(
4
√

a+ 4
√

b
2

)p

−
(

8
√

ab
)p

.
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Proof. Consider

g0 : [0,+) → [0,+)
t �→ t p,

then g0 is continuous increasing convex function. Apply Lemma 2.1 to g0 and two
vectors x,y is defined as in Lemma 2.2, we get

xp
1 + xp

2 + xp
3 + xp

4 � yp
1 + yp

2 + yp
3 + yp

4 ,

or [(
1+

L(8)
64

(lna− lnb)2
)

a1−b
]p

+ rp
0 (a+b)p

+ rp
1 (
√

a+
√

b)p
(√

a(0, 1
2 )()+

√
b( 1

2 ,1)()
)p

+ rp
2 ( 4
√

a+ 4
√

b)p
(

4
√

a3(0, 1
4 )()+ 4

√
a2b( 1

4 , 1
2 )()

+ 4
√

ab2( 1
2 , 3

4 )()+ 4
√

b3( 3
4 ,1)()

)p

� [(1−)a+b]p +(2r0)p
√

ab
p

+(2r1)p 4
√

ab
p
(√

a(0, 1
2 )()+

√
b( 1

2 ,1)()
)p

+(2r2)p 8
√

ab
p
(

4
√

a3(0, 1
4 )()+ 4

√
a2b( 1

4 , 1
2 )()

+ 4
√

ab2( 1
2 , 3

4 )()+ 4
√

b3( 3
4 ,1)()

)p
.

This inequality can be rewritten as

[(1−)a+b]p �
[(

1+
L(8)

64
(lna− lnb)2

)
a1−b

]p

+(2r0)p
[(

a+b
2

)p

−
(√

ab
)p
]

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)[(√

a+
√

b
2

)p

−
(

4
√

ab
)p
]

+(2r2)p
(

4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()+ 4

√
ab2

p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)()
)

×
[(

4
√

a+ 4
√

b
2

)p

−
(

8
√

ab
)p
]

.

Let S0 :=
(

a+b
2

)p−
(√

ab
)p

, S1 :=
(√

a+
√

b
2

)p
−
(

4
√

ab
)p

, S2 :=
(

4√a+ 4√b
2

)p

−(
8
√

ab
)p

, we have (49).
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Inequality (50) is similarly proved by applying using Lemma 2.1 to the function
g0 and the two vectors X ,Y showed as in Lemma 2.3. �

Using the same approach as Theorem 2.4, we can obtain the following important
result for Young’s inequality with Kantorovich constants. Recall that the Kantorovich
constant has the form

K(h) :=
(h+1)2

4h
, h > 0.

Clearly, the function K is strictly decreasing on (0,1) and strictly increasing on
[1,+), with K(h) > 1 for all h 	= 1 and K(h) = K

(
1
h

)
for any h > 0.

THEOREM 2.5. If a, b > 0 and 0 �  � 1 , then for all real number p � 1 , we
have

[(1−)a+b]p �
(
Kr3

3 a1−b
)p

+(2r0)pS0

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)

S1

+(2r2)p
(

4
√

a3(0, 1
4 )()+ 4

√
a2b( 1

4 , 1
2 )()

+ 4
√

ab2( 1
2 , 3

4 )()+ 4
√

b3( 3
4 ,1)()

)
S2,

(51)

and

[(1−)a+b]p �
(
K−r3

3 a1−b
)p

+(2R0)pS0

− (2r1)p(√b
p
(0, 1

2 )()+
√

a
p( 1

2 ,1)()
)
S1

− (2r2)p
(

4
√

b3(0, 1
4 )()+ 4

√
ab2( 1

4 , 1
2 )()

+ 4
√

a2b( 1
2 , 3

4 )()+ 4
√

a3( 3
4 ,1)()

)
S2,

(52)

where S0, S1, S2 are defined as in Theorem 2.4, r3 = min{2r2,1− 2r2} and K3 :=

K

(
8
√

b
a

)
= ( 8√a+ 8√b)2

4 8√ab
.

Proof. Comparing the similarity between the components of the terms in the In-
equalities (49) and (51), we find that Inequality (51) will be cleared up if we can show
that

(1−)a+b �Kr3
3 a1−b + r0(

√
a−

√
b)2

+ r1

[
(
√

a− 4
√

ab)2(0, 1
2 )()+ (

√
b− 4

√
ab)2( 1

2 ,1)()
]

+ r2

[
(
√

a− 8
√

a3b)2(0, 1
4 )()+ ( 4

√
ab− 8

√
a3b)2( 1

4 , 1
2 )()

+( 4
√

ab− 8
√

ab3)2( 1
2 , 3

4 )()+ (
√

b− 8
√

a3b)2( 3
4 ,1)()

]
.
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This refinement was obtained by the authors M. Sababheh and M.S. Moslehian given
in Theorem 2.11 in [15] when choosing the corresponding N = 3.

To prove (52), we also use the same method as when we prove (50). We also
remark that the two inequalities (52) and (50) only differ in two quantities, K−r3

3 a1−b

and
(
1+ L(8(1−))

64 (lna− lnb)2
)−1

a1−b . Therefore, to clarify (52), we will give a

proof that

(1−)a+b �K−r3
3 a1−b +R0(

√
a−

√
b)2

− r1

(
(
√

b− 4
√

ab)2(0, 1
2 )

()+ (
√

a− 4
√

ab)2( 1
2 ,1)()

)
− r2

[
(
√

b− 8
√

ab3)2(0, 1
4 )()+ ( 4

√
ab− 8

√
ab3)2( 1

4 , 1
2 )()

+( 4
√

ab− 8
√

a3b)2( 1
2 , 3

4 )()+ (
√

a− 8
√

a3b)2( 3
4 ,1)()

]
.

We get this by applying Theorem 2.1 in [17], choosing N = 3 respectively. �

Next, we mention another ratio that is also interested by many mathematicians,
which is Specht’s ratio, defined in [16] by

S(h) :=

⎧⎪⎨
⎪⎩

h
1

h−1

e ln

(
h

1
h−1

) if h ∈ (0,1)∪ (1,),

1 if h = 1.

(53)

It is well known that lim
h→1

S(h) = 1 and S(h) = S
(1

h

)
> 1, for h > 0, h 	= 1. The

function S is strictly decreasing on (0,1) and strictly increasing on (1,) . Moreover,
the authors in [18] clarified that

Kr(h) � S (hr) for h > 0 and r ∈
[
0,

1
2

]
. (54)

This interesting relationship makes it easy to construct Young’s inequality for Specht’s
ratio based on the available results with Kantorovich constants. Naturally, this is com-
bined with the statement r3 ∈ [0, 1

2

]
helps us get the following achievement about

Specht’s ratio.

THEOREM 2.6. If a, b > 0 and 0 �  � 1 , then for all real number p � 1 , we
have

[(1−)a+b]p �
(
S(hr3)a1−b

)p
+(2r0)pS0

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)

S1

+(2r2)p
(

4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()

+ 4
√

ab2
p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)()
)

S2,

(55)
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and

[(1−)a+b]p �
(
S−1(hr3)a1−b

)p
+(2R0)pS0

− (2r1)p(√b
p
(0, 1

2 )()+
√

a
p( 1

2 ,1)()
)
S1

− (2r2)p
(

4
√

b3
p
(0, 1

4 )()+ 4
√

ab2
p
( 1

4 , 1
2 )()

+ 4
√

a2b
p
( 1

2 , 3
4 )()+ 4

√
a3

p
( 3

4 ,1)()
)

S2,

(56)

where S0, S1, S2 are defined as in Theorem 2.4 and h = 8

√
b
a

.

COROLLARY 2.7. If a, b > 0 and 0 �  � 1 , then for all real number p � 1 , we
have

[(1−)a+b]p �
(
a1−b

)p
+(2r0)pS0

+(2r1)p
(√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)()
)

S1

+(2r2)p
(

4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()

+ 4
√

ab2
p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)()
)

S2,

(57)

and

[(1−)a+b]p �
(
a1−b

)p
+(2R0)pS0

− (2r1)p(√b
p
(0, 1

2 )()+
√

a
p( 1

2 ,1)()
)
S1

− (2r2)p
(

4
√

b3
p
(0, 1

4 )()+ 4
√

ab2
p
( 1

4 , 1
2 )()

+ 4
√

a2b
p
( 1

2 , 3
4 )()+ 4

√
a3

p
( 3

4 ,1)()
)

S2,

(58)

where S0, S1, S2 are defined as in Theorem 2.4.

Proof. Because of 1+ L(8)
64 (lna− lnb)2 � 1, for all a,b > 0 and  ∈ [0,1] , we

have ⎧⎨
⎩
(
1+ L(8)

64 (lna− lnb)2
)

a1−b � a1−b ,(
1+ L(8(1−))

64 (lna− lnb)2
)−1

a1−b � a1−b .

So, from (49), we get (57) and from (50), we receive (58). �

REMARK 2.8. The performances obtained in Corollary 2.7 provide one refining
term for the recent appropriate results given in [4] by Huy, Van and Xinh. Furthermore,
the results given in Theorems 2.5 and 2.6 are better than those in Corollary 2.7.
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3. Operator versions for the generalizations of Young-type inequalities
with famous constants

Our main goal in this section is to use versions of Young-type inequalities with
some famous constants such as logarithmic, Kantorovich, Spechts to establish their
operator forms.

On a complex Hilbert space H , we denote invertible positive operators by capital
letters and the identity operator by I . In addition, we also use the following notations

• A � 0 (A > 0) if A is a positive (invertible positive) operator;
• A � B (A > B) if A−B is a positive (invertible positive) operator.
For A,B > 0 and  ∈ (0,1) the  -weighted arithmetic and geometric means of A

and B are defined respectively by

AB = (1−)A+B,

A�B = A1/2
(
A−1/2BA−1/2

)
A1/2.

We also write AB and A�B instead of A 1
2
B and A� 1

2
B , respectively. We also use

the same symbol as geometric mean for  ∈ R .
The main idea for showing operator inequalities corresponding to their scalar ver-

sions is to use the operator monotonicity of continuous functions in the following.

LEMMA 3.1. Let X be an arbitrary self-adjoint operator. If f and g are contin-
uous real-valued functions on the spectrum Sp(X) satisfying that f (t) � g(t) for all
t ∈ Sp(X) , we then have an operator inequality f (X) � g(X) .

Based on Theorems 2.4, 2.5, 2.6 and Corollary 2.7, we have the following results
for the operator version.

THEOREM 3.2. Let 0 <  < 1 and A,B> 0 satisfy one of the following conditions

(i) 0 < mI � A � I < I � B � MI ,

(ii) 0 < mI � B � I < I � A � MI ,

where 0 < M,m,, < + are scalars. Then for all a real number p � 1 , we have

A�p(AB) � Q()pA� pB+(2r0)p[A�p(AB)−A� p
2
B] (59)

+ rp
1(0, 1

2 )()[A�p(A+A�B)−2pA� p
4
B]

+ rp
1( 1

2 ,1)()[A�p(A�B+B)−2pA� 3p
4
B]

+ rp
2(0, 1

4 )()[A�p(A+A� 1
4
B)−2pA� p

8
B]

+ rp
2( 1

4 , 1
2 )()[A�p(A� 1

4
B+A�B)−2pA� 3p

8
B]

+ rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 3

4
B)−2pA� 5p

8
B]

+ rp
2( 3

4 ,1)()[A�p(A� 3
4
B+B)−2pA� 7p

8
B],
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and

A�p(AB) � Q(1−)−pA� pB+(2R0)p[A�p(AB)−A� p
2
B] (60)

− rp
1(0, 1

2 )()[A�p(A�B+B)−2pA� 3p
4
B]

− rp
1( 1

2 ,1)()[A�p(A+A�B)−2pA� p
4
B]

− rp
2(0, 1

4 )()[A�p(B+A� 3
4
B)−2pA� 7p

8
B]

− rp
2( 1

4 , 1
2 )()[A�p(A� 3

4
B+A�B)−2pA� 5p

8
B]

− rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 1

4
B)−2pA� 3p

8
B]

− rp
2( 3

4 ,1)()[A�p(A� 1
4
B+A)−2pA� p

8
B],

where Q() = 1+
L(8)

64
ln2
(



)
and L() is given in (3).

Proof. Notice that,
m
M

� 


< 1 <



� M
m

.

Firstly, we suppose that the operators A,B satisfy the condition (i). Utilizing

the inequality (49) and the increase of the function Q()(x) = 1 +
L(8)

64
ln2(x) on

[1,+) , we have, for all x ∈
[


,
M
m

]
⊂
[

m
M

,
M
m

]
,

[(1−)+x]p � (Q()(x)x )p +(2r0)p
[(

1+ x
2

)p

− xp/2
]

+ rp
1(0, 1

2 )()
[
(1+ x1/2)p−2pxp/4]

+ rp
1( 1

2 ,1)()
[
(x1/2 + x)p−2px3p/4]

+ rp
2(0, 1

4 )()
[
(1+ x1/4)p−2pxp/8]

+ rp
2( 1

4 , 1
2 )()

[
(x1/4 + x1/2)p−2px3p/8]

+ rp
2( 1

2 , 3
4 )()

[
(x1/2 + x3/4)p−2px5p/8]

+ rp
2( 3

4 ,1)()
[
(x3/4 + x)p−2px7p/8]

� min
h�x�h′

(Q()(x))p x p +(2r0)p
[(

1+ x
2

)p

− xp/2
]

+ rp
1(0, 1

2 )()
[
(1+ x1/2)p−2pxp/4]

+ rp
1( 1

2 ,1)()
[
(x1/2 + x)p−2px3p/4]

+ rp
2(0, 1

4 )()
[
(1+ x1/4)p−2pxp/8]

+ rp
2( 1

4 , 1
2 )()

[
(x1/4 + x1/2)p−2px3p/8]
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+ rp
2( 1

2 , 3
4 )()

[
(x1/2 + x3/4)p−2px5p/8]

+ rp
2( 3

4 ,1)()
[
(x3/4 + x)p−2px7p/8]

= (Q()(h))p x p +(2r0)p
[(

1+ x
2

)p

− xp/2
]

+ rp
1(0, 1

2 )()
[
(1+ x1/2)p−2pxp/4]

+ rp
1( 1

2 ,1)()
[
(x1/2 + x)p−2px3p/4]

+ rp
2(0, 1

4 )()
[
(1+ x1/4)p−2pxp/8]

+ rp
2( 1

4 , 1
2 )()

[
(x1/4 + x1/2)p−2px3p/8]

+ rp
2( 1

2 , 3
4 )()

[
(x1/2 + x3/4)p−2px5p/8]

+ rp
2( 3

4 ,1)()
[
(x3/4 + x)p−2px7p/8],

where h =



and h′ =
M
m

. This, together with Lemma 3.1, implies that, for every

positive operator X with its spectrum in [h,h′] ,

[(1−)I +X ]p � (Q()(h))pX p +(2r0)p[( 1
2 I + 1

2X
)p−X p/2]

+ rp
1(0, 1

2 )()
[
(I +X1/2)p−2pX p/4]

+ rp
1( 1

2 ,1)()
[
(X1/2 +X)p−2pX3p/4]

+ rp
2(0, 1

4 )()
[
(I +X1/4)p−2pX p/8]

+ rp
2( 1

4 , 1
2 )()

[
(X1/4 +X1/2)p−2pX3p/8]

+ rp
2( 1

2 , 3
4 )()

[
(X1/2 +X3/4)p−2pX5p/8]

+ rp
2( 3

4 ,1)()
[
(X3/4 +X)p−2pX7p/8].

On the other hand, by the condition (i), the spectrum Sp(A−1/2BA−1/2) of the

operator A−1/2BA−1/2 is in

[


,
M
m

]
. Thus, replacing X in the above inequality with

A−1/2BA−1/2 , we have

[
(1−)I +A−1/2BA−1/2

]p
� (Q()(h))p

(
A−1/2BA−1/2

) p

+(2r0)p
[(

1
2 I + 1

2A−1/2BA−1/2
)p−

(
A−1/2BA−1/2

)p/2
]

+ rp
1(0, 1

2 )()
{[

I +
(
A−1/2BA−1/2

)1/2
]p

−2p
(
A−1/2BA−1/2

)p/4
}
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+ rp
1( 1

2 ,1)()
{[(

A−1/2BA−1/2
)1/2

+A−1/2BA−1/2
]p

−2p
(
A−1/2BA−1/2

)3p/4
}

+ rp
2(0, 1

4 )()
{[

I +
(
A−1/2BA−1/2

)1/4
]p

−2p
(
A−1/2BA−1/2

)p/8
}

+ rp
2( 1

4 , 1
2 )()

{[(
A−1/2BA−1/2

)1/4
+(A−1/2BA−1/2)1/2

]p

−2p
(
A−1/2BA−1/2

)3p/8
}

+ rp
2( 1

2 , 3
4 )()

{[(
A−1/2BA−1/2

)1/2
+(A−1/2BA−1/2)3/4

]p

−2p
(
A−1/2BA−1/2

)5p/8
}

+ rp
2( 3

4 ,1)()
{[(

A−1/2BA−1/2
)3/4

+A−1/2BA−1/2
]p

−2p
(
A−1/2BA−1/2

)7p/8
}

.

Multiplying both sides of above inequality by A1/2 , we get

A1/2
{

A−1/2 [(1−)A+B]A−1/2
}p

A1/2

� (Q()(h))pA1/2
(
A−1/2BA−1/2

) p
A1/2

+(2r0)p
{

A1/2
[
A−1/2 ( 1

2 I + 1
2B
)
A−1/2

]p
A1/2

−A1/2
(
A−1/2BA−1/2

)p/2
A1/2

}

+ rp
1(0, 1

2 )()
{

A1/2
[
A−1/2

(
A+A1/2

(
A−1/2BA−1/2

)1/2
A1/2

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)p/4
A1/2

}

+ rp
1( 1

2 ,1)()
{

A1/2
[
A−1/2

(
A1/2

(
A−1/2BA−1/2

)1/2
A1/2 +B

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)3p/4
A1/2

}

+ rp
2(0, 1

4 )()
{

A1/2
[
A−1/2

(
A+A1/2

(
A−1/2BA−1/2

)1/4
A1/2

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)p/8
A1/2

}
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+ rp
2( 1

4 , 1
2 )()

{
A1/2

[
A−1/2

(
A1/2

(
A−1/2BA−1/2

)1/4
A1/2

+A1/2
(
A−1/2BA−1/2

)1/2
A1/2

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)3p/8
A1/2

}

+ rp
2( 1

2 , 3
4 )()

{
A1/2

[
A−1/2

(
A1/2

(
A−1/2BA−1/2

)1/2
A1/2

+A1/2
(
A−1/2BA−1/2

)3/4
A1/2

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)5p/8
A1/2

}

+ rp
2( 3

4 ,1)()
{

A1/2
[
A−1/2

(
A1/2

(
A−1/2BA−1/2

)3/4
A1/2 +B

)
A−1/2

]p

A1/2

−2pA1/2
(
A−1/2BA−1/2

)7p/8
A1/2

}
.

It is easy to see that this is equivalent to the inequality to be proved (59). Inequality
(60) is tested in a similar way, so we omit the details. �

Using the achievement of the numerical version in Theorems 2.5, 2.6 and Corol-
lary 2.7 with the proof method for Theorem 3.2, we have the following results for the
operator version of Young’s inequality in the fields: Kantorovich constants, Specht’s
ratio and coefficientless case, respectively.

THEOREM 3.3. Under the hypotheses and notations of Theorem 3.2, we have

A�p(AB) � K3(h)r3 pA� pB+(2r0)p[A�p(AB)−A� p
2
B] (61)

+ rp
1(0, 1

2 )()[A�p(A+A�B)−2pA� p
4
B]

+ rp
1( 1

2 ,1)()[A�p(A�B+B)−2pA� 3p
4
B]

+ rp
2(0, 1

4 )()[A�p(A+A� 1
4
B)−2pA� p

8
B]

+ rp
2( 1

4 , 1
2 )()[A�p(A� 1

4
B+A�B)−2pA� 3p

8
B]

+ rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 3

4
B)−2pA� 5p

8
B]

+ rp
2( 3

4 ,1)()[A�p(A� 3
4
B+B)−2pA� 7p

8
B],

and

A�p(AB) � K3(h)−r3pA� pB+(2R0)p[A�p(AB)−A� p
2
B] (62)

− rp
1(0, 1

2 )()[A�p(A�B+B)−2pA� 3p
4
B]

− rp
1( 1

2 ,1)()[A�p(A+A�B)−2pA� p
4
B]
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− rp
2(0, 1

4 )()[A�p(B+A� 3
4
B)−2pA� 7p

8
B]

− rp
2( 1

4 , 1
2 )()[A�p(A� 3

4
B+A�B)−2pA� 5p

8
B]

− rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 1

4
B)−2pA� 3p

8
B]

− rp
2( 3

4 ,1)()[A�p(A� 1
4
B+A)−2pA� p

8
B],

where K3 := K( 8
√

h) with h = 
 .

THEOREM 3.4. Under the hypotheses and notations as in Theorem 3.2, we have

A�p(AB) � S(hr3)pA� pB+(2r0)p[A�p(AB)−A� p
2
B] (63)

+ rp
1(0, 1

2 )()[A�p(A+A�B)−2pA� p
4
B]

+ rp
1( 1

2 ,1)()[A�p(A�B+B)−2pA� 3p
4
B]

+ rp
2(0, 1

4 )()[A�p(A+A� 1
4
B)−2pA� p

8
B]

+ rp
2( 1

4 , 1
2 )()[A�p(A� 1

4
B+A�B)−2pA� 3p

8
B]

+ rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 3

4
B)−2pA� 5p

8
B]

+ rp
2( 3

4 ,1)()[A�p(A� 3
4
B+B)−2pA� 7p

8
B],

and

A�p(AB) � (S−1(hr3))pA� pB+(2R0)p[A�p(AB)−A� p
2
B] (64)

− rp
1(0, 1

2 )()[A�p(A�B+B)−2pA� 3p
4
B]

− rp
1( 1

2 ,1)()[A�p(A+A�B)−2pA� p
4
B]

− rp
2(0, 1

4 )()[A�p(B+A� 3
4
B)−2pA� 7p

8
B]

− rp
2( 1

4 , 1
2 )()[A�p(A� 3

4
B+A�B)−2pA� 5p

8
B]

− rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 1

4
B)−2pA� 3p

8
B]

− rp
2( 3

4 ,1)()[A�p(A� 1
4
B+A)−2pA� p

8
B],

where S(h) is Specht’s ratio with h = 
 .

THEOREM 3.5. Let A,B be two positive invertible operators. We have, for every
real number p � 1 :

A�p(AB) � A� pB+(2r0)p[A�p(AB)−A� p
2
B] (65)

+ rp
1(0, 1

2 )()[A�p(A+A�B)−2pA� p
4
B]

+ rp
1( 1

2 ,1)()[A�p(A�B+B)−2pA� 3p
4
B]
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+ rp
2(0, 1

4 )()[A�p(A+A� 1
4
B)−2pA� p

8
B]

+ rp
2( 1

4 , 1
2 )()[A�p(A� 1

4
B+A�B)−2pA� 3p

8
B]

+ rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 3

4
B)−2pA� 5p

8
B]

+ rp
2( 3

4 ,1)()[A�p(A� 3
4
B+B)−2pA� 7p

8
B],

and

A�p(AB) � A� pB+(2R0)p[A�p(AB)−A� p
2
B] (66)

− rp
1(0, 1

2 )()[A�p(A�B+B)−2pA� 3p
4
B]

− rp
1( 1

2 ,1)()[A�p(A+A�B)−2pA� p
4
B]

− rp
2(0, 1

4 )()[A�p(B+A� 3
4
B)−2pA� 7p

8
B]

− rp
2( 1

4 , 1
2 )()[A�p(A� 3

4
B+A�B)−2pA� 5p

8
B]

− rp
2( 1

2 , 3
4 )()[A�p(A�B+A� 1

4
B)−2pA� 3p

8
B]

− rp
2( 3

4 ,1)()[A�p(A� 1
4
B+A)−2pA� p

8
B].

4. Inequalities for unitarily invariant norms

Let Mn be the algebra of all n×n complex matrices. A norm � ·� on Mn is said
to be unitarily invariant if �UAV� = �A� for all A ∈ Mn and for all unitary matrices
U,V ∈ Mn . Let s1(A) � s2(A) � · · · � sn(A) be the singular values of A ∈ Mn . The
Schatten p -norms, p ∈ [1,) , written ‖ · ‖p , and defined by

‖A‖p =

(
n


i=1

sp
i (A)

)1/p

,

are typical examples of unitarily invariant norms. The trace norm of A ∈ Mn , as
usually expressed as ‖A‖1 = tr |A| , is defined as the Schatten 1-norm of A , where
|A| := (A∗A)1/2 is a positive semidefinite matrix.

It is known (see [1]) that if X ∈ Mn and A,B ∈ Mn are positive semidefinite, the
inequality �A1−XB� � �(1− )AX + XB� is not valid for  ∈ [0,1] . However,
Kosaki [9] showed that

�A1−XB� � (1−)�AX �+�XB� .

This inequality can be regarded as a unitarily invariant norm inequality form of Young’s
inequality (1) for matrices. It has been generalized to different frameworks and one of
the most remarkable results is given in the following.

THEOREM 4.1. ([4, Theorem 4.1]) Let  ∈ [0,1], X ∈ Mn and A,B ∈ Mn be two
positive semidefinite matrices. Then, for all real numbers p � 1, the following inequal-
ities hold

[(1−)�AX �+�XB�]p � �A1−XB �p +(2r0())pN0
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+(2r1())p((0, 1
2 )()�AX �p/2

+( 1
2 ,1)()�XB�p/2)N1,

and

[(1−)�AX �+�XB�]p � [�AX �1− �XB� ]p +(2R0())pN0

−(2r1())p((0, 1
2 )()�XB�p/2

+( 1
2 ,1)()�AX�p/2)N1,

where

N0 =
(

�AX �+�XB�

2

)p

−
√

�AX ��XB�
p

and

N1 =

(√
�AX�+

√
�XB�

2

)p

− 4
√

�AX ��XB�
p
.

Our main result in this section provides further new refinements of the above re-
sults, which is stated as follows.

THEOREM 4.2. Let 0 �  � 1 and A,B ∈ Mn be two positive semidefinite matri-
ces. Let X ∈ Mn be such that �AX� > 0 and �XB� > 0 . Then, for every real number
p � 1, we have

(�AX � �XB�)p � M (A,B)p �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B)

� S(hr3)p �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B)

� �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B) (67)

and

(�AX� �XB�)p � m(A,B)p(�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B)

� S−p(hr3)(�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B)

� (�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B), (68)
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where S is Specht’s ratio given in (53) with h =
(�XB�

�AX�

) 1
8 and N0(A,B) = 1,

N1(A,B) = �AX �
p
2 (0, 1

2 )()+�XB�
p
2 ( 1

2 ,1)(),

N2(A,B) =
3


i=0

(�A1− i
3 XB

i
3 �)

3p
4 ( i

4 , i+1
4 )(),

Si(A,B) =
(�AX �

1
2i +�XB�

1
2i

2

)p− (�AX ��XB�)
p

2i+1 , i = 0,1,2,

M (A,B) = max
{( (�AX �

1
8 +�XB�

1
8 )2

4(�AX ��XB�)
1
8

)r3
,1+

L(8)
64

ln2
(�AX�

�XB�

)}
,

m(A,B) = min
{((�AX �

1
8 +�XB�

1
8 )2

4(�AX ��XB�)
1
8

)−r3
,
(
1+

L(8(1−))
64

ln2
(�AX�

�XB�

))−1}
.

REMARK 4.3. (i) By using Corollary 2.7, we can prove that the inequalities be-
tween the first and last terms in the inequalities (67) and (68) are valid without the
conditions �AX� > 0 and �XB� > 0.

(ii) By substituting the unitarily invariant norm � ·� by the trace norm tr(·) and
taking X = I in Theorem 4.2, we will obtain further new refinements of [4, Corollary
4.2].

To prove this theorem, we need to recall the following lemma, which is a Heinz-
Kato type inequality for unitarily invariant norms (see [11] for details).

LEMMA 4.4. ([11]) Let A,B,X ∈Mn such that A and B are positive semidefinite.
If 0 �  � 1, then

�A1−XB� � �AX �1− �XB� .

Proof. [Proof of Theorem 4.2] First of all, by Lemma 4.4, we find that

N2(A,B) :=
3


i=0

(�AX �1− i
3 �BX�

i
3 )

3p
4 ( i

4 , i+1
4 )()

�
3


i=0

(�A1− i
3 XB

i
3 )

3p
4 ( i

4 , i+1
4 )()

= N2(A,B).

(69)

On the one hand, it follows from the first inequalities in Theorems 2.4 and 2.5 that

[(1−)a+b]p � M(a,b)p(a1−b)p +
2


i=0

(2ri)pNi(a,b)Si(a,b), (70)

where M(a,b) = max
{( (a

1
8 +b

1
8 )2

4(ab)
1
8

)r3 ,1+ L(8)
64 ln2

(
a
b

)}
, N0(a,b) = 1 and

N1(a,b) =
√

a
p(0, 1

2 )()+
√

b
p
( 1

2 ,1)(),
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N2(a,b) = 4
√

a3
p
(0, 1

4 )()+ 4
√

a2b
p
( 1

4 , 1
2 )()+ 4

√
ab2

p
( 1

2 , 3
4 )()+ 4

√
b3

p
( 3

4 ,1)(),

Si(a,b) =
(a

1
2i +b

1
2i

2

)p− (ab)
p

2i+1 , i = 0,1,2.

On the other hand, by taking a = �AX�, b = �XB� in the inequality (70), combining
the inequalities (54) and (69) with Lemma 4.4, we infer that

(�AX � �XB�)p � M (A,B)p(�AX �1− �XB�)p

+
2


i=0

(2ri)pNi(A,B)Si(A,B)

� M (A,B)p �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B)

� S(hr3)p �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B)

� �A1−XB �p +
2


i=0

(2ri)pNi(A,B)Si(A,B),

where S is Specht’s ratio given in (53) with h =
(�XB�

�AX�

) 1
8 . This also finishes the proof

of (67).
Similarly, we deduce from the second inequalities in Theorems 2.4 and 2.5 that

[(1−)a+b]p � m(a,b)p(a1−b)p +(2R0)pS0(a,b)−
2


i=1

(2ri)pNi(b,a)Si(a,b),

where Ni,Si for i = 0,1,2 are as above and

m(a,b) = min
{( (a

1
8 +b

1
8 )2

4(ab)
1
8

)−r3
,
(
1+

L(8(1−))
64

ln2
(a

b

))−1}
.

By substituting a = �AX�, b = �XB� in this inequality and combining the inequali-
ties (54) and (70) with Lemma 4.4, we gain

(�AX � �XB�)p � m(A,B)p(�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B)

� m(A,B)p(�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B)

� S−p(hr3)(�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B)

� (�AX � � �XB�)p +(2R0)pS0(A,B)
− (2r1)pN1(B,A)S1(A,B)− (2r2)pN2(B,A)S2(A,B),

where S is Specht’s ratio given in (53) with h =
(�XB�

�AX�

) 1
8 , which finishes the proof. �
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5. Inequalities for determinants of matrices

In this section, we present a refinement of Young-type inequality for determinants
of positive definite matrices due to Theorems 2.4, 2.5, 2.6 and Corollary 2.7. The matrix
version of Young inequality (1) says that (see [3, p. 467])

det(AB) � det(A�B),

where  ∈ [0,1], the matrices A,B ∈ Mn are positive definite. This inequality was
refined by Huy, Van and Xinh in [4] as follows.

THEOREM 5.1. ([4, Theorem 5.1]) Let  ∈ [0,1] and A,B ∈ Mn be positive defi-
nite matrices. Then, for all real numbers p � 1 , we have

[det(AB)]p � [det(A�B)]p +(2r0())npD0

+(2r1())np
[
(0, 1

2 )()(detA)
p
2 + ( 1

2 ,1)(detB)
p
2

]
D1,

where

D0 =

(
(detA)1/n +(detB)1/n

2

)np

− (det(AB))p/2,

and

D1 =

(
(detA)1/2n +(detB)1/2n

2

)np

− (det(AB))p/4.

We will propose further refinements of this theorem in the following.

THEOREM 5.2. Let 0 �  � 1 and N be a positive integer. Then, for all positive
definite matrices A,B ∈ Mn and every positive real number p � 1, we have

det(AB)p � M(A,B)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� S(hr3)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B),

where S is Specht’s ratio given in (53) with h =
(

detB
detA

) 1
8n and N0(A,B) = 1,

N1(A,B) = det(A)
p
2 (0, 1

2 )()+det(B)
p
2 ( 1

2 ,1)(),

N2(A,B) =
3


i=0

det(A3−iBi)
p
4 ( i

4 , i+1
4 )(),
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M(A,B) = max
{( ((detA)

1
8n +(detB)

1
8n )2

4(det(AB))
1
8n

)r3
,1+

L(8)
64n2 ln2

(detA
detB

)}
,

Si(A,B) =
( (detA)

1
2in +(detB)

1
2in

2

)np− (det(AB))
p

2i+1 , for i = 0,1,2.

To prove this theorem, we need the following important lemma, which is known
as Minkowski’s inequality for determinants.

LEMMA 5.3. ([11, Lemma 5]) Let A,B ∈ Mn be positive definite. Then

[det(A+B)]1/n � (detA)1/n +(detB)1/n.

Proof of Theorem 5.2. First of all, from Theorems 2.4, 2.5, 2.6 and the inequality
(54), we deduce that

[(1−)a+b]np � M(a,b)np(a1−b)np +
2


i=0

(2ri)npNi(a,b)Si(a,b)

� S(hr3)np(a1−b)np +
2


i=0

(2ri)npNi(a,b)Si(a,b)

� (a1−b)np +
2


i=0

(2ri)npNi(a,b)Si(a,b),

(71)

where M(a,b) = max
{( (a

1
8 +b

1
8 )2

4(ab)
1
8

)r3 ,1+ L(8)
64 ln2

(
a
b

)}
, N0(a,b) = 1 and

N1(a,b) =
√

a
np(0, 1

2 )()+
√

b
np
( 1

2 ,1)(),

N2(a,b) = 4
√

a3
np
(0, 1

4 )()+ 4
√

a2b
np
( 1

4 , 1
2 )()+ 4

√
ab2

np
( 1

2 , 3
4 )()+ 4

√
b3

np
( 3

4 ,1)(),

Si(a,b) =
(a

1
2i +b

1
2i

2

)np− (ab)
np

2i+1 , i = 0,1,2.

Now, on the one hand, by using the substitution of variables a = (detA)
1
n and b =

(detB)
1
n in the inequality (71), we obtain the following series of inequalities

[(1−)(detA)1/n +(detB)1/n]
np

� M(A,B)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� S(hr3)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B).

(72)
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On the other hand, it follows from Lemma 5.3 that

[det(AB)]p =
{
[det((1−)A+B)]

1
n
}np

�
{
[det((1−)A)]

1
n +[det(B)]

1
n
}np

=
[
(1−)(detA)

1
n +(detB)

1
n
]np

.

Combining inequalities (72) and (73), we gain

det(AB)p � M(A,B)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� S(hr3)np det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B)

� det(A�B)p +
2


i=0

(2ri)npNi(A,B)Si(A,B),

this also finishes the proof. �
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