
Operators
and

Matrices

Volume 17, Number 2 (2023), 539–548 doi:10.7153/oam-2023-17-35

REVERSE OF FUJII–SEO TYPE LOG–MAJORIZATION AND

ITS APPLICATION TO THE TSALLIS RELATIVE ENTROPIES
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(Communicated by E. Poon)

Abstract. In this paper, firstly, we shall show reverse of Fujii-Seo type log-majorization, and
discuss the equivalence between the log-majorization and Furuta inequality with negative power.
At last, we show its application to the Tsallis relative entropies.

1. Introduction

Throughout this paper, a capital letter, such as T , means an n× n matrix. We
denote T � 0 if T is a positive semidefinite matrix and T > 0 if T is positive definite.
For positive semidefinite A and B , let us write A ≺

(log)
B and refer to log-majorization if

k


i=1

i(A) �
k


i=1

i(B) (k = 1,2, · · · ,n−1)

and
n


i=1

i(A) =
n


i=1

i(B) (i.e. detA = detB)

hold, where 1(A) � 2(A) � · · · � n(A) and 1(B) � 2(B) � · · · � n(B) are the
eigenvalues of A and B respectively arranged in decreasing order. There are many
perfect log-majorization, see [3, 4, 6, 8, 12] for details.

Recently, in [5], M. Fujii and Y. Seo obtained the following log-majorization.

THEOREM 1.1. ([5], Fujii-Seo type log-majorization) If A,B > 0 , then

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 ≺
(log)

A
1−q
2 BqA

1−q
2

holds for all p � q > 0 and 0 < q � 1 .

In this paper, we shall show reverse of Fujii-Seo type log-majorization inspired by
the idea of “reverses of log-majorization” from [11], then we show its application to the
Tsallis relative entropies.

In order to prove the result, we list some lemmas first.
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LEMMA 1.1. ([7, 10], Löwner-Heinz inequality) If A � B � 0 , then

A � B

holds for all 0 �  � 1 .

LEMMA 1.2. ([9, 11, 13, 15], Furuta inequality with negative power)
If A � B � 0 and A > 0 , then

(I) A1−t � (A− t
2 BpA− t

2 )
1−t
p−t holds for 1 � p > t � 0 , p � 1

2 ;

(II) A−t � (A− t
2 BpA− t

2 )
−t
p−t holds for 1 � t > p � 0 , 1

2 � p;

(III) A2p−t � (A− t
2 BpA− t

2 )
2p−t
p−t holds for 1

2 � p > t � 0 ;

(IV) A2p−t−1 � (A− t
2 BpA− t

2 )
2p−t−1

p−t holds for 1 � t > p � 1
2 .

LEMMA 1.3. ([2], Araki’s inequality) If A,B � 0 , then

A
t
2 BtA

t
2 ≺
(log)

(A
1
2 BA

1
2 )t

holds for 0 � t � 1 .

2. Main results

In this section, we shall show reverse of Fujii-Seo type log-majorization, and the
equivalence between the log-majorization and Furuta inequality with negative power.

THEOREM 2.1. If A,B > 0 , then

A
1−p

2 B
1−p
1−q qA

1−p
2 ≺

(log)
{A 1

2 (A− p
2 BpA− p

2 )
q
p A

1
2 } 1−p

1−q (2.1)

holds for 0 < q
2 � p � q < 1 .

Furthermore, (2.1) is equivalent to (I) in Lemma 1.2.

Proof. We only need to prove that

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 } 1−p

1−q � I (2.2)

ensures that
A

1−p
2 B

1−p
1−q qA

1−p
2 � I. (2.3)

(2.2) is equivalent to (A− p
2 BpA− p

2 )
q
p � A−1 . Let A1 = A−1 and B1 = (A− p

2 BpA− p
2 )

q
p ,

we have B1 � A1 , A = A−1
1 and B = (A

p
2 B

p
q
1 A

p
2 )

1
p = (A

− p
2

1 B
p
q
1 A

− p
2

1 )
1
p . Let u = p

q ,

v = p . Then the assumption 0 < q
2 � p � q < 1 implies 0 < v < u � 1 and u � 1

2 and
so it follows from (I) in Lemma 1.2 that

(A
− v

2
1 Bu

1A
− v

2
1 )

1−v
u−v � A1−v

1 , (2.4)
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which is just (2.3).
We have proved that (2.1) can be derived from (I) in Lemma 1.2 above. Next, we

shall show (I) in Lemma 1.2 can be derived from (2.1), too.

By (2.1), {A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 } 1−p

1−q � I ensures that A
1−q
2 B

1−p
1−q qA

1−q
2 � I . There-

fore, (A− p
2 BpA− p

2 )
q
p � A−1 ensures that B

1−p
1−q q � Ap−1 .

Let A1 = A−1 , B1 = (A− p
2 BpA− p

2 )
q
p , u = p

q , v = p above. Notice that A = A−1
1 ,

B = (A− p
2

1 B
p
q
1 A

− p
2

1 )
1
p and 0 < p < p

q � 1, p
q � 1

2 . We have that B1 � A1 ensures (2.4)

holds for 0 < v < u � 1, u � 1
2 .

Hence the proof of Theorem 2.1 is completed. �

COROLLARY 2.1. If A,B > 0 , then A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds

for 0 < q
2 � p � q < 1 .

Proof. Notice that t1 = 1−q
1−p ∈ (0,1] . By (2.1),

(A
1−p

2 B
1−p
1−q qA

1−p
2 )

1−q
1−p ≺

(log)
A

1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 . (2.5)

By Lemma 1.3,

A
1−q
2 BqA

1−q
2 ≺

(log)
(A

1−p
2 B

1−p
1−q qA

1−p
2 )

1−q
1−p . (2.6)

Together with (2.5) and (2.6), we have

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 .

Hence the proof of Corollary 2.1 is completed. �

THEOREM 2.2. If A,B > 0 , then

A− p
2 B

pq
q−1 A− p

2 ≺
(log)

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 } p

q−1 (2.7)

holds for 0 < p � 1 , q > 1 , q � 2p.
Furthermore, (2.7) is equivalent to (II) in Lemma 1.2.

Proof. We only need to prove that

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 } p

q−1 � I (2.8)

ensures that
A− p

2 B
pq

q−1 A− p
2 � I. (2.9)

(2.8) is equivalent to (A− p
2 BpA− p

2 )
q
p � A−1 . Let A1 = A−1 and B1 = (A− p

2 BpA− p
2 )

q
p ,

we have B1 � A1 , A = A−1
1 and B = (A

p
2 B

p
q
1 A

p
2 )

1
p = (A

− p
2

1 B
p
q
1 A

− p
2

1 )
1
p . Let u = p

q ,
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v = p . Then the assumption 0 < p � 1, q > 1 and q � 2p implies 1 � v > u > 0 and
1
2 � u and so it follows from (II) in Lemma 1.2 that

A−v
1 � (A− v

2
1 Bu

1A
− v

2
1 )

−v
u−v , (2.10)

which is just (2.9).
We have proved that (2.7) can be derived from (II) in Lemma 1.2 above. Next, we

shall show (II) in Lemma 1.2 can be derived from (2.7), too.

By (2.7), {A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 } p

q−1 � I ensures that A− p
2 B

pq
q−1 A− p

2 � I . There-

fore, (A− p
2 BpA− p

2 )
q
p � A−1 ensures that B

pq
q−1 � Ap . Let A1 = A−1 , B1 = (A− p

2 BpA− p
2 )

q
p ,

u = p
q , v = p above. Notice that A = A−1

1 , B = (A− p
2

1 B
p
q
1 A

− p
2

1 )
1
p and 1 � p > p

q > 0

with 1
2 � p

q . We have that B1 � A1 ensures (2.10) holds for 1 � v > u > 0, 1
2 � u .

(2.10) is obvious if u = 0.
Hence the proof of Theorem 2.2 is completed. �

COROLLARY 2.2. If A,B > 0 , then A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds

for 0 < p � 1 , q > 1 , p+1 � q � 2p.

Proof. Notice that t2 = q−1
p ∈ (0,1] . By (2.7),

(A− p
2 B

pq
q−1 A− p

2 )
q−1

p ≺
(log)

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 . (2.11)

By Lemma 1.3,

A
1−q
2 BqA

1−q
2 ≺

(log)
(A− p

2 B
pq

q−1 A− p
2 )

q−1
p . (2.12)

Together with (2.11) and (2.12), we have

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 .

Hence the proof of Corollary 2.2 is completed. �

THEOREM 2.3. If A,B > 0 , then

A
p
q − p

2 B
2p−pq
1−q A

p
q− p

2 ≺
(log)

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq
q−q2 (2.13)

holds for 0 < 2p � q < 1 .
Furthermore, (2.13) is equivalent to (III) in Lemma 1.2.

Proof. We only need to prove that

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq
q−q2 � I (2.14)
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ensures that

A
p
q − p

2 B
2p−pq
1−q A

p
q− p

2 � I. (2.15)

(2.14) is equivalent to (A− p
2 BpA− p

2 )
q
p � A−1 . Let A1 = A−1 and B1 = (A− p

2 BpA− p
2 )

q
p ,

we have B1 � A1 , A =A−1
1 and B =(A

p
2 B

p
q
1 A

p
2 )

1
p =(A

− p
2

1 B
p
q
1 A

− p
2

1 )
1
p . Let u = p

q , v = p .

Then the assumption 0 < 2p � q < 1 implies 1
2 � u > v > 0 and so it follows from

(III) in Lemma 1.2 that

A2u−v
1 � (A− v

2
1 Bu

1A
− v

2
1 )

2u−v
u−v , (2.16)

which is just (2.15).
We have proved that (2.13) can be derived from (III) in Lemma 1.2 above. Next,

we shall show (III) in Lemma 1.2 can be derived from (2.13), too.

By (2.13), {A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq
q−q2 � I ensures that A

p
q − p

2 B
2p−pq
1−q A

p
q − p

2 � I .

Therefore, (A− p
2 BpA− p

2 )
q
p � A−1 ensures that B

2p−pq
1−q � Ap− 2p

q . Let A1 = A−1 , B1 =

(A− p
2 BpA− p

2 )
q
p , u = p

q , v = p above. Notice that A = A−1
1 , B = (A− p

2
1 B

p
q
1 A

− p
2

1 )
1
p and

1
2 � p

q > p > 0. We have that B1 � A1 ensures (2.16) holds for 1
2 � u > v > 0.

Hence the proof of Theorem 2.3 is completed. �

COROLLARY 2.3. If A,B > 0 , then A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds

for 0 < 2p � q < 1 , 2p− pq−q+q2 � 0 .

Proof. Notice that t3 = q−q2

2p−pq ∈ (0,1] . By (2.13),

(A
p
q − p

2 B
2p−pq
1−q A

p
q− p

2 )
q−q2

2p−pq ≺
(log)

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 . (2.17)

By Lemma 1.3,

A
1−q
2 BqA

1−q
2 ≺

(log)
(A

p
q − p

2 B
2p−pq
1−q A

p
q− p

2 )
q−q2
2p−pq . (2.18)

Together with (2.17) and (2.18), we have

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 .

Hence the proof of Corollary 2.3 is completed. �

THEOREM 2.4. If A,B > 0 , then

A
p
q − p

2− 1
2 B

2p−pq−q
1−q A

p
q− p

2 − 1
2 ≺
(log)

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq−q
q−q2 (2.19)

holds for p � 1 < q � 2p.
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Furthermore, (2.19) is equivalent to (IV ) in Lemma 1.2.

Proof. We only need to prove that

{A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq−q
q−q2 � I (2.20)

ensures that
A

p
q − p

2 − 1
2 B

2p−pq−q
1−q A

p
q− p

2− 1
2 � I. (2.21)

(2.20) is equivalent to (A− p
2 BpA− p

2 )
q
p � A−1 . Let A1 = A−1 and B1 = (A− p

2 BpA− p
2 )

q
p ,

we have B1 � A1 , A =A−1
1 and B =(A

p
2 B

p
q
1 A

p
2 )

1
p =(A

− p
2

1 B
p
q
1 A

− p
2

1 )
1
p . Let u = p

q , v = p .

Then the assumption p � 1 < q � 2p implies 1 � v > u � 1
2 and so it follows from

(IV) in Lemma 1.2 that

(A− v
2

1 Bu
1A

− v
2

1 )
2u−v−1

u−v � A2u−v−1
1 , (2.22)

which is just (2.21).
We have proved that (2.19) can be derived from (IV) in Lemma 1.2 above. Next,

we shall show (IV) in Lemma 1.2 can be derived from (2.19), too.

By (2.19), {A 1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 }

2p−pq−q
q−q2 �I ensures that A

p
q − p

2 − 1
2 B

2p−pq−q
1−q A

p
q− p

2 − 1
2

� I . Therefore, (A− p
2 BpA− p

2 )
q
p � A−1 ensures that B

2p−pq−q
1−q � A1+p− 2p

q .

Let A1 = A−1 , B1 = (A− p
2 BpA− p

2 )
q
p , u = p

q , v = p above. Notice that A = A−1
1 ,

B = (A− p
2

1 B
p
q
1 A

− p
2

1 )
1
p and 1 � p > p

q � 1
2 . We have that B1 � A1 ensures (2.22) holds

for 1 � v > u � 1
2 .

Hence the proof of Theorem 2.4 is completed. �

COROLLARY 2.4. If A,B > 0 , then A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds

for p � 1 < q � 2p.

Proof. Notice that t4 = (1−q)q
2p−pq−q ∈ (0,1] . By (2.19),

(A
p
q − p

2− 1
2 B

2p−pq−q
1−q A

p
q− p

2 − 1
2 )

(1−q)q
2p−pq−q ≺

(log)
A

1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 . (2.23)

By Lemma 1.3,

A
1−q
2 BqA

1−q
2 ≺

(log)
(A

p
q − p

2 − 1
2 B

2p−pq−q
1−q A

p
q− p

2 − 1
2 )

(1−q)q
2p−pq−q . (2.24)

Together with (2.23) and (2.24), we have

A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 .

Hence the proof of Corollary 2.4 is completed. �
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THEOREM 2.5. If A,B > 0 , then

A
1
2 (A− p

2 BpA− p
2 )

1
p A

1
2 �
(log)

B

holds for 0 < p � 1 .

Proof. We only need to prove that

A
1
2 (A− p

2 BpA− p
2 )

1
p A

1
2 � I (2.25)

ensures
B � I. (2.26)

(2.25) is equivalent to

(A− p
2 BpA− p

2 )
1
p � A−1. (2.27)

For 0 < p � 1, applying Löwner-Heinz inequality to (2.27), we have A− p
2 BpA− p

2 �
A−p, which ensures (2.26) obviously.

Hence the proof of Theorem 2.5 is completed. �

THEOREM 2.6. If A,B > 0 , then A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds for

0 < p � 1 , p � q � p+1 with 2p− pq−q+q2 � 0 .

Figure 1: Region of ( p , q) in Theorem 2.6

Proof. Together with Corollary 2.1, Corollary 2.2, Corollary 2.3, Corollary 2.4

and Theorem 2.5, A
1
2 (A− p

2 BpA− p
2 )

q
p A

1
2 �
(log)

A
1−q
2 BqA

1−q
2 holds when (p,q) satisfies

one of the following:
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• 0 < q
2 � p � q < 1,

• 0 < p � 1, q > 1, p+1 � q � 2p ,
• 0 < 2p � q < 1 and 2p− pq−q+q2 � 0,
• p � 1 < q � 2p ,
• 0 < p � 1, q = 1.
Summing up these conditions we obtain Theorem 2.6. �

3. Application

The famous Tsallis relative entropy ([1]) of two positive definite matrices A and
B is defined by

D(A|B) =
TrA−Tr[A1−B ]


,

where  belongs to (0,1]. The generalized Tsallis relative entropy of two positive
definite matrices A and B is defined by

D̂(A|B) =
TrA−Tr[A1−B ]


,

where  belongs to R\{0} .
Another famous entropy, which is called Tsallis relative operator entropy ([14]) of

two positive definite matrices A and B is defined by

T(A|B) =
A�B−A


,

where A�B = A
1
2 (A− 1

2 BA− 1
2 )A

1
2 and  belongs to (0,1]. The generalized Tsallis

relative operator entropy of two positive definite matrices A and B is defined by

T̂(A|B) =
A�B−A


,

where A�B = A
1
2 (A− 1

2 BA− 1
2 )A

1
2 and  belongs to R\{0} .

In [5], Fujii and Seo obtain that

D(A|B) � −Tr
[A1−q

q
T

q
(Aq|Bq)

]
(3.1)

holds for q �  > 0 and 0 <  � 1. Next, we shall show the reverse of (3.1).
By Theorem 2.6, it is easy to obtain the following theorem.

THEOREM 3.1. If A,B > 0 , then

|||A 1
2 (A− q

2 BqA− q
2 )


q A

1
2 ||| � |||A 1−

2 BA
1−

2 ||| (3.2)

holds for 0 < q � 1 , q �  � q+1 with 2q−q− +2 � 0 , where ||| � ||| stands
for any unitarily invariant norm.



REVERSE OF FUJII-SEO TYPE LOG-MAJORIZATION 547

THEOREM 3.2. If A,B > 0 , then

D̂(A|B) � −Tr
[A1−q

q
T̂

q
(Aq|Bq)

]
(3.3)

holds for 0 < q � 1 , q �  � q+1 with 2q−q−+2 � 0 .

Proof. By Theorem 3.1,

Tr[A1−B ] = Tr(A
1−

2 BA
1−

2 ) � Tr[A
1
2 (A− q

2 BqA− q
2 )


q A

1
2 ]

holds for 0 < q � 1, q �  � q+1 with 2q−q−+2 � 0. It follows that

D̂(A|B) =−Tr
[A1−B −A



]

�−Tr
[A

1
2 (A− q

2 BqA− q
2 )


q A

1
2 −A



]

=−Tr
[A1−q

q
(
A

q
2 (A− q

2 BqA− q
2 )


q A

q
2 −Aq


q

)
]

=−Tr
[A1−q

q
T̂

q
(Aq|Bq)

]
. �

REMARK 3.1. It is still unknown that whether (3.3) holds for 0 < q � 1, q �  �
q+1 with 2q−q−+2 < 0.

Acknowledgements. The authors thank anonymous reviewers for their helpful
comments on an earlier draft of this paper. The authors also thank Professor Chunru
Dong for drawing Figure 1 by MATLAB. The authors are supported by Science and
Technology Project of Hebei Education Department (QN2023057).

RE F ER EN C ES

[1] S. ABE, Monotone decrease of the quantum nonadditive divergence by projective measurements, Phys.
Lett. A 312 (2003), 336–338.

[2] H. ARAKI, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167–170.
[3] T. ANDO AND F. HIAI, Log majorization and complementary Golden-Thompson type inequalities,

Linear Algebra Appl. 197/198 (1994), 113–131.
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