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JING XU, JUNJIE HUANG ∗ AND ALATANCANG CHEN

(Communicated by B. Jacob)

Abstract. This paper is concerned with an abstract initial-boundary value problem with dynam-
ical boundary conditions. The analyticity and stability of semigroup generated by the associated
operator are obtained, by the spectral properties of one-sided coupled operator matrices. As ap-
plications, the well-posedness of a heat equation with dynamical boundary conditions and the
stability of a diffusion-transport system with dynamical boundary conditions are further pre-
sented.

1. Introduction

In this article, we discuss the following abstract initial-boundary value problem
with dynamical boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) = Ax(t)+Bu(t), t � 0,

u̇(t) = Du(t), t � 0,

u(t) = x(t), t � 0,

u(0) = u0, x(0) = x0

(1.1)

and use semigroup method to examine the existence and stability of its solutions. In the
problem (1.1),

X , X are the state and boundary Banach spaces, respectively;

A : D(A) ⊂ X → X ; D : D(D) ⊂ X → X ;

B : D(B) ⊂ X → X is called a feedback operator; and

 : D() ⊂ X → X is called a boundary operator.

It is well-known that the abstract Cauchy problem is well-posed if and only if its
govern operator generates a C0 -semigroup on the underlying space, and the analyticity
of the semigroup will be helpful in improving the regularity and asymptotic proper-
ties of solutions of the corresponding abstract Cauchy problem (cf. [12] and references
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therein). In recent years, the problem (1.1) frequently appeared in the literature. Au-
thors discussed its well-posedness by studying the generator property of operators with
generalized Wentzell boundary conditions on X (cf. [11, 2, 3]). On the other hand, un-
der some assumptions, in a similar way as in the proof of [21, Section 1.2] one can
show that the well-posedness of the problem (1.1) is equivalent to that of the abstract
Cauchy problem associated to the operator matrix

A =
(

A B
0 D

)
, D(A ) =

{(
x
u

)
∈ D(A)×

(
D(B)∩D(D)

)
: u = x

}

in the product space X ×X , and by the factorization of  −A [23, formula (3.2)]

 −A =
(
 −A+BL −B

0  −D0

)(
I 0

L I

)
(1.2)

with Dirichlet operator −L = (|N(−D))−1 and D0 = D|N() for  ∈ (D0) . Based
on this factorization, many authors studied the generation of analytic semigroups by
A on X × X by means of similarity transformations and perturbation theory (cf.
[4, 21, 23]). The paper [17] used the theory of one-sided coupled operator matrices
to consider the positivity and exponential stability of the semigroup generated by A .
Note that the operator matrix of the form (1.2) is one-sided coupled, which has been
extensively studied, see [8, 9, 10, 17].

Many evolution equations like wave equations, heat equations or diffusion-trans-
port equations with dynamical boundary conditions have been discussed systematically
by A. Favini, G. R. Goldstein, J. A. Goldstein, et al [13, 14, 15]. On the other hand,
one knows that such equations can be reformulated as the problem (1.1) by considering
suitable spaces and operators, see e.g. [5, 22, 4, 17]. In the present paper, we use the
resolvent estimate (2.1) and the involved spectral properties to study the analyticity
and stability of the associated semigroups generated by one-sided coupled operator
matrices, and apply these abstract results to A arising from the problem (1.1). It is
also worth mentioning that for the generation of analytic semigroups by A we extend
the condition in [23] to more general settings. As applications, the well-posedness of
a heat equation with dynamical boundary conditions and the stability of a diffusion-
transport equation with dynamical boundary conditions are given.

2. Preliminaries

Unless stated specially, X , Y and Z are always Banach spaces and the operators
involved are always linear in the whole paper. X ↪→ Y indicates that X is continuously
imbedded in Y . For  ∈ R and r � 0, write

H,r := { ∈ C : Re >  , | − |� r}.

For an operator A : X → Y , the notations D(A) , N(A) , R(A) and A∗ are reserved for
the domain, kernel, range and adjoint of A , respectively; if A is closed, by [D(A)] we
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denote (D(A),‖ · ‖A) equipped with the graph norm

‖x‖A = ‖Ax‖+‖x‖, x ∈ D(A).

Now let A be an operator in X . The point spectrum, residual spectrum, spectrum and
resolvent set of A are respectively defined as

p(A) = { ∈ C :  −A is not injective},
r(A) = { ∈ C : R( −A) is not dense in X},
(A) = { ∈ C :  −A is not bijective or else ( −A)−1 is unbounded}

and (A) = C\(A) . For  ∈ (A) , the inverse R( ;A) = ( −A)−1 is called the
resolvent of A at the point  . In particular, if A is densely defined closed, the MP
spectrum of A is defined as

mp(A) = { ∈ C : R( −A) is not closed in X}.

DEFINITION 2.1. (see [17]) Assume that A and D are closed operators in X and
Y , respectively, and that B : [D(D)] → X and L : [D(A)] → Y are bounded operators.
Then the operator

A =
(

A B
0 D

)(
I 0
L I

)
with domain

D(A ) =

{(
x
y

)
∈ D(A)×Y : Lx+ y ∈ D(D)

}
is called an one-sided coupled operator matrix in the product space X ×Y .

DEFINITION 2.2. (see [12]) Let A be the generator of a C0 -semigroup T (·) on
X . The semigroup T (·) is said to be strongly stable if limt→ ‖T (t)x‖ = 0 for every
x ∈ X .

DEFINITION 2.3. (see [1]) Let X and Y be Hilbert spaces. An operator B : Y →
X is called a Tseng inverse of the operator A : X → Y , if R(A) ⊂ D(B) , R(B) ⊂ D(A)
and the following relations are fulfilled:

BA = PR(B)|D(A), AB = PR(A)|D(B),

where PR(B) and PR(A) are orthogonal projections onto R(B) and onto R(A) , respec-
tively.

Note that A has a Tseng inverse if and only if

D(A) = N(A)⊕ (D(A)∩N(A)⊥),

in which case R(B)= D(A)∩N(A)⊥ and N(B) is an arbitrary subspace of R(A)⊥ . Such
decomposition of the domain is clearly true for bounded and closed operator classes,
since their kernels are closed subspaces of the whole Hilbert space.



552 J. XU, J. HUANG AND A. CHEN

DEFINITION 2.4. (see [1]) Let X and Y be Hilbert spaces. The maximal Tseng
inverse A† of an operator A : X → Y is the Tseng inverse of A with D(A†) = R(A)⊕
R(A)⊥ and N(A†) = R(A)⊥ . In particular, A† = A−1 if A is invertible.

DEFINITION 2.5. (see [7]) Let A be the generator of a C0 -semigroup T (·) on
X . Then a Banach space (Z,‖ · ‖Z) satisfies the (Z)-condition with respect to A , if

(i) Z ↪→ X ,
(ii) for all t > 0 and continuous functions  ∈ C([0,t],Z) , we have

∫ t
0 T (t −

s)(s)ds ∈ D(A) , and
(iii) there is an increasing continuous function (t) : [0,)→ [0,) with (0)= 0,

such that ∥∥∥A
∫ t

0
T (t − s)(s)ds

∥∥∥ � (t) sup
0�s�t

‖(s)‖Z .

REMARK 2.6. Let A be the generator of a C0 -semigroup T (·) on X . Then Z can
be [D(A)] and the Favard class of T (·) , i.e.

Z =
{

x ∈ X : limsup
t→0+

1
t
‖T (t)x− x‖ < 

}
endowed with the norm

‖x‖Z = ‖x‖+ limsup
t→0+

1
t
‖T (t)x− x‖.

In particular, if T (·) is analytic, then we can take Z = ([D(A)],X) , the real interpola-
tion space of order  between [D(A)] and X , where  ∈ (0,1) , cf. [6].

LEMMA 2.7. (see [12]) A densely defined operator A is the generator of an an-
alytic semigroup on X if and only if there exist  ∈ R , M > 0 and r � 0 such that
 ∈ (A) and

‖R( ;A)‖ � M
| − | (2.1)

whenever  ∈ H,r .

LEMMA 2.8. (see [12]) Let A be the generator of a bounded analytic semigroup
T (·) on a reflexive space X . Then the following statements are equivalent:

(i) 0 /∈ r(A);
(ii) T (·) is strongly stable.

We collect the following propositions whose simple proofs are omitted.

PROPOSITION 2.9. Let A =
(

A B
0 D

)(
I 0
L I

)
be one-sided coupled in X ×Y . If A

and D are densely defined, then A is densely defined.
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PROPOSITION 2.10. Let M =
(

A11 A12
A21 A22

)
be a bounded operator matrix on X×Y .

Then

max
{‖A11‖,‖A12‖,‖A21‖,‖A22‖

}
� ‖M‖ � ‖A11‖+‖A12‖+‖A21‖+‖A22‖.

PROPOSITION 2.11. Let B : X → Y and A : Y → Z be linear operators. If B is
injective and D(A) ⊂ R(B|D(AB)) , then R(AB) = R(A) and dimN(AB) = dimN(A) .

3. Analytic semigroups

This section is devoted to the analyticity of semigroups generated by one-sided
coupled operator matrices.

THEOREM 3.1. Let A =
(

A B
0 D

)(
I 0
L I

)
be one-sided coupled in X ×Y , and let D

be invertible and generate an analytic semigroup T (·) on Y . Assume that Z satisfies
the (Z)-condition with respect to D and L : X → Z is bounded. Then the following
statements are equivalent:

(i) A generates an analytic semigroup on X ;
(ii) A generates an analytic semigroup on X ×Y .

Proof. Let A0 =
(

A 0
0 D

)(
I 0
L I

)
. Since D generates an analytic semigroup, by Lemma

2.7 there exist  ∈ R , M > 0 and r � 0 such that  ∈ (D) and ‖R( ;D)‖ � M
|−|

for all  ∈ H,r . Thus ‖T (t)‖ � Met for all t � 0. Obviously, there exist a bounded
and invertible operator U : Y → X and constants a,b � 0 such that the operator LU :
Y → Z is bounded and ‖By‖ � a‖y‖+ b‖Dy‖ for all y ∈ D(D) . Hence there exists

M̃ > aM+bM(r+||)+br
r such that

‖LUy‖Z � M̃‖y‖ and ‖BR( ;D)‖ � M̃

for all y ∈ Y and all  ∈ H,r . Since Z satisfies the (Z)-condition with respect to D
and T (·) is analytic, we have for all sufficiently large Re and all y ∈ Y that

‖R( ;D)LUy‖D = ‖
∫ 

0
e− sT (s)LUyds‖D

� ‖
∫ t

0
e− sT (s)LUyds‖D +‖

∫ 

t
e− sT (s)LUyds‖D

= ‖
∫ t

0
T (t− s)(e− (t−s)LUy)ds‖D +‖e− tT (t)

∫ 

0
e− sT (s)LUyds‖D

�
(
(t)+

M


(et −1)
)

sup
0�s�t

‖e− (t−s)LUy‖Z

+Me−(Re−)t‖R( ;D)LUy‖D.

Putting

t( ) =
ln2M

Re −
.
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Then

‖DR( ;D)LUy‖ � ‖R( ;D)LUy‖D � 2M̃
(

(
t( )

)
+

M


(et( ) −1)
)
‖y‖.

Since limRe→ t( ) = 0, we have limRe→

(

(
t( )

)
+ M

 (et( ) − 1)
)

= 0. Let

 > 0. Then

‖DR( ;D)LU‖ �  (3.1)

for Re sufficiently large. We point out that the estimate when  = 1
2 can be found in

the proof of [16, Theorem 2.1].
“(i)⇒(ii)” Let  ∈ (D) . Then

 ∈ (A0) ⇔  ∈ (A).

In this case

R( ;A0) =
(

R( ;A) 0
DR( ;D)LR( ;A) R( ;D)

)
(3.2)

and
 −A = Q( −A0), (3.3)

where Q =
(

I−BR( ;D)LR( ;A) −BR( ;D)
0 I

)
. Since A generates an analytic semigroup,

D(A ) = D(A0) is dense in X ×Y by Proposition 2.9. And by Lemma 2.7, there
exist 1 �  , M1 > 0 and r1 � r such that  ∈ (A) and ‖R( ;A)‖ � M1

|−1| for all

 ∈ H1,r1 . Let M2 = M1(r1+|1|)
r1

. Then

‖R( ;A)‖ � M1

(
1+

|1|
| −1|

)
� M2.

Let  be a positive number satisfying  � 1
2M2‖BD−1‖‖U−1‖ . Then by (3.1) there exists

2 � 1 such that

‖DR( ;D)L‖ � 1
2M2‖BD−1‖ and ‖BR( ;D)L‖ � 1

2M2

for Re > 2 . This implies

‖DR( ;D)LR( ;A)‖ � M1

2M2‖BD−1‖
1

| −2| (3.4)

and

‖BR( ;D)LR( ;A)‖ � 1
2

(3.5)

for all  ∈H2,r1 . Thus we have from (3.2), (3.4) and Proposition 2.10 that  ∈ (A0)
and

‖R( ;A0)‖ �
(

M +M1 +
M1

2M2‖BD−1‖
)

1
| −2|
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for all  ∈ H2,r1 . Hence A0 generates an analytic semigroup.
From (3.5), by the Banach Lemma, the operator I−BR( ;D)LR( ;A) is invert-

ible and the norm of its inverse is not greater than 2 for all  ∈ H2,r1 . Then Q is
invertible and

Q−1 =
(

(I−BR( ;D)LR( ;A))−1 (I−BR( ;D)LR( ;A))−1BR( ;D)
0 I

)
.

An easy computation shows that ‖Q−1‖ � 3+2M̃ . By (3.3) we have  ∈ (A ) ,

R( ;A ) = R( ;A0)Q−1,

and hence

‖R( ;A )‖ � ‖R( ;A0)‖‖Q−1‖ � (3+2M̃)
(

M +M1 +
M1

2M2‖BD−1‖
)

1
| −2|

for all  ∈ H2,r1 . Therefore A generates an analytic semigroup, namely (ii) holds.
“(ii)⇒(i)” Let  ∈ (D) . Then

 ∈ (A ) ⇔  ∈ (A ).

In this case

R( ;A ) =
(

R( ;A ) R( ;A )BR( ;D)
−LR( ;A ) R( ;D)−LR( ;A )BR( ;D)

)
(3.6)

and
 −A0 = Q( −A ), (3.7)

where Q =
(

I+BR( ;D)LR( ;A) (I+BR( ;D)LR( ;A))BR( ;D)
0 I

)
, A = A + BR( ;D)L

and L = −DR( ;D)L . Since A generates an analytic semigroup, there exist 1 �
 ,M1 > 0 and r1 � r such that  ∈ (A ) and ‖R( ;A )‖� M1

|−1| for all  ∈H1,r1 .
Using (3.6) and Proposition 2.10 we conclude that  ∈ (A ) and

‖R( ;A )‖ � M1

| −1|
for all  ∈ H1,r1 . In a similar way as in the proof of “(i)⇒(ii)”, we have that there
exists 2 � 1 such that

‖BR( ;D)LR( ;A )‖ � 1
2

for all  ∈ H2,r1 . Thus Q is invertible and ‖Q−1‖ � 3+ M̃ , where

Q−1 =
(

(I +BR( ;D)LR( ;A ))−1 −BR( ;D)
0 I

)
.
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By (3.7) we have  ∈ (A0) and

‖R( ;A0)‖ � ‖R( ;A )‖‖Q−1‖ � M1(3+ M̃)
| −2|

for all  ∈ H2,r1 . Hence A0 generates an analytic semigroup.
From (3.2) and Proposition 2.10,  ∈ (A) and

‖R( ;A)‖ � M1(3+ M̃)
| −2|

for all  ∈ H2,r1 . Since D(A ) ⊂ D(A)×Y , D(A) is dense in X . Therefore A gener-
ates an analytic semigroup, which proves the assertion (i). �

COROLLARY 3.2. Let A =
(

A B
0 D

)(
I 0
L I

)
be one-sided coupled in X ×Y , and let

D be invertible and generate an analytic semigroup T(·) on Y . Assume that Z satisfies
the (Z)-condition with respect to D, L : X → Y is bounded and L(X) ↪→ Z . Then the
following statements are equivalent:

(i) A generates an analytic semigroup on X ;
(ii) A generates an analytic semigroup on X ×Y .

Proof. If L : X → Y is bounded and L(X) ↪→ Z , then L : X → Z is bounded. By
virtue of Theorem 3.1, the conclusion is clear. �

REMARK 3.3. By the matrix  −A =
(−A0 0

−B −B̃−BDA,L


)(
I −DA,L


0 I

)
in X ×X ,

[21, Theorem 2.2.8.(iii)] investigated the generation of analytic semigroups by A and
yielded the following result:

Let A0 and B̃ generate anayltic semigroups on X and X , respectively. If [D(A)]L
↪→ ([D(A0)],X) for some  ∈ (0,1) , and if B : [D(A)]L → X and B : [D(A0)] →
([D(B̃)],X) are bounded, then A generates an analytic semigroup on X × X ,
where [D(A)]L is a Banach space obtained by endowing D(A) with the graph norm
of

(
A
L

)
.

In fact, the boundedness of B : [D(A)]L → X implies that B : [D(A0)] → X is
bounded, and hence  −A is a one-sided coupled matrix. Observe that  − B̃−BDA,L


is a bounded perturbation of B̃ . Therefore, the (analytic) generation property of B̃
implies the same property of  − B̃−BDA,L

 . Combining the assumption [D(A)]L ↪→
([D(A0)],X) with the boundedness of DA,L

 : X → [D(A)]L , we have that DA,L
 : X →

([D(A0)],X) is bounded. Note that Z = ([D(A0)],X) is one of the spaces satisfying
the (Z)-condition with respect to A0 . By Theorem 3.1 we conclude that A generates
an analytic semigroup on X ×X . Therefore, compared with [21, Theorem 2.2.8.(iii)],
this paper can discuss the (analytic) generation property of A by more general condi-
tions. It is also worth mentioning that we extend the work of [21, Theorem 2.2.8.(iii)]
to the more general case of the operator matrix under more general conditions.
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4. Stability of analytic semigroups

In this section, X and Y are Hilbert spaces. The purpose of this section is to
consider the stability of analytic semigroups associated with one-sided coupled operator
matrices.

THEOREM 4.1. Let A0 =
(

A 0
0 D

)(
I 0
L I

)
be one-sided coupled in X ×Y . Assume

that there exist 0 ∈ R and r0 � 0 such that H0,r0 ⊂ (D)∪(A) , D(D∗) ⊂ D(L∗) ,
and A0 generates an analytic semigroup T (·) on X ×Y . Then there exists  ∈ R

such that the following statements are equivalent:
(i) (e−tT (t))t�0 is strongly stable;
(ii)  /∈ r(A)∪r(D) .

Proof. From (3.2) and Proposition 2.10, both A and D generate analytic semi-
groups. Let A and D be the generators of T (·) and S(·) , respectively. Obviously, there
exists  ∈R such that A0− generates a bounded analytic semigroup (e−tT (t))t�0 .
By Lemma 2.8,

(e−tT (t))t�0 is strongly stable ⇔ 0 /∈ r(A0−).

Observe that A0 − = QV , where Q =
(

A− 0
L D−

)
and V =

(
I 0
L I

)
. Since V is

injective and D(Q) ⊂ R(V |D(QV )) , we have from Proposition 2.11 that R(QV ) =
R(Q) and dimN(QV ) = dimN(Q) . Hence

(e−tT (t))t�0 is strongly stable ⇔ 0 /∈ r(Q).

“(ii)⇒(i)” We are going to show that R(Q) is dense in X ×Y . In fact, if R(Q) is
not dense, then R(Q)⊥ = N(Q∗) = {0} and hence Q∗ is not injective. Since D(D∗)⊂
D(L∗) , we have

Q∗ =
(

A∗ − L∗
0 D∗ −

)
.

Then

R(A−)⊥ = N(A∗ −) = {0} or R(D−)⊥ = N(D∗ −) = {0}.
This is a contradiction. Hence we have 0 /∈ r(Q) , i.e., (e−tT (t))t�0 is strongly
stable.

“(i)⇒(ii)” Write G̃(t)x := D
∫ t
0 S(t− s)LT (s)xds for all x ∈ D(A) . Assume G(t)

to be the continuous extension of G̃(t) to the whole space X . The convolution theorem
for the Laplace transform implies that the Laplace transform Ĝ( ) of G(t) exists and

Ĝ( ) := DR( ;D)LR( ;A)

for Re sufficiently large. Since R( ;A0)21 = DR( ;D)LR( ;A) is the Laplace trans-
form of T (t)21 for Re large, we have G(t) = T (t)21 . Similarly, T (t) = T (t)11 and
S(t) = T (t)22 . Hence

T (t) =
(

T (t) 0
G(t) S(t)

)
. (4.1)
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Obviously, (e−tT (t))t�0 and (e−t S(t))t�0 are also bounded analytic semigroups.
If (e−tT (t))t�0 is strongly stable, from (4.1) we see that

lim
t→

∥∥∥e−tT (t)
(

x
y

)∥∥∥ = lim
t→

∥∥∥(
e−tT (t)x

e−tG(t)x+ e−tS(t)y

)∥∥∥ = 0

for all ( x
y ) ∈ X ×Y . Taking x = 0 yields limt→ ‖e−tS(t)y‖ = 0 for all y ∈Y , which

means that (e−t S(t))t�0 is strongly stable. Letting y = 0 gives limt→

∥∥∥(
e−t T (t)x
e−tG(t)x

)∥∥∥
= 0 for all x ∈ X , which implies that (e−tT (t))t�0 is strongly stable. By Lemma 2.8,
 /∈ r(A)∪r(D) . �

THEOREM 4.2. Let A =
(

A B
0 D

)(
I 0
L I

)
be one-sided coupled in X ×Y . Assume

that A generates an analytic semigroup T (·) on X ×Y . Then there exists  ∈ R

such that the following statements hold:
(i) If  ∈ (D) , then (e−tT (t))t�0 is strongly stable if and only if 0 /∈ r();
(ii) If  /∈ mp(D) , then (e−tT (t))t�0 is strongly stable provided that R(1) =

R(D−)⊥ and R(2) = X .
In particular, if L is bounded on D(A) , then (e−tT (t))t�0 is strongly stable for

 /∈ mp(D) , under the conditions that R(1) = R(D−)⊥ and R(2) = X . Here,

= A−−B(D−)†L,

1 = (I− (D−)(D−)†)L|D(A) and 2 = B|N(D−) .

Proof. Obviously, there exists  ∈ R such that A − generates a bounded an-
alytic semigroup (e−tT (t))t�0 . In a similar way as in the proof of Theorem 4.1, we
find that

(e−tT (t))t�0 is strongly stable ⇔ 0 /∈ r(Q),

where Q =
(

A− B
L D−

)
. Let  /∈ mp(D) . Then

Q =
(

I B(D−)†

0 I

)(
 B(I− (D−)†(D−))

(I− (D−)(D−)†)L D−

)

×
(

I 0
(D−)†L I

)
.

Write

U =
(

I B(D−)†

0 I

)
, V =

(
I 0

(D−)†L I

)
,

and

U −1QV −1 =
(

 B(I− (D−)†(D−))
(I− (D−)(D−)†)L D−

)
.

Note that, since (D−)† and B(D−)† are bounded, U is bounded and has a
bounded inverse on X ×Y . Then 0 /∈ r(Q) if and only if 0 /∈ r(U −1Q) . Since
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V is injective in X ×Y and D(U −1QV −1) = D(A)×D(D) = R(V |D(U −1Q)) , we

have from Proposition 2.11 that R(U −1Q) = R(U −1QV −1) and dimN(U −1Q) =
dimN(U −1QV −1) . Hence 0 /∈ r(Q) if and only if 0 /∈ r(U −1QV −1) . Since

U −1QV −1 =

⎛⎝  2 0
1 0 0
0 0 (D−)|D(D−)∩N(D−)⊥

⎞⎠
:

⎛⎝ D(A)
N(D−)

D(D−)∩N(D−)⊥

⎞⎠ →
⎛⎝ X

R(D−)⊥
R(D−)

⎞⎠
and (D−)|D(D−)∩N(D−)⊥ : D(D−)∩N(D−)⊥ → R(D−) is invertible, we
conclude

0 /∈ r(Q) ⇔ R(S ) = X ×R(D−)⊥,

where S =
(

 2
1 0

)
: D(A)×N(D−)→ X ×R(D−)⊥ .

(i) If  ∈ (D) , then S =  . Hence 0 /∈ r() if and only if R(S ) = X ×R(D−
)⊥ . The assertion (i) is clear.

(ii) Since R(1) = R(D−)⊥ , there exists x ∈ D(A) such that 1x = v for all
v ∈ R(D−)⊥ . Since R(2) is dense in X , there exists a sequence {yn} ⊂ N(D−)
such that 2yn → u−x for all u ∈ X . Hence

S

(
x
yn

)
=

(
x+2yn

1x

)
→

(
u
v

)
,

which shows that R(S ) = X ×R(D−)⊥ .

In particular, if L is bounded on D(A) , then S is closed and S ∗ =
(
∗ ∗1
∗2 0

)
.

Since R(1) = R(D−)⊥ and R(2) = X , it is clear that S ∗ is injective. The desired
proof follows immediately. �

5. Application to abstract initial-boundary value problem

We apply the results of Section 3 and Section 4 to the problem (1.1) that satisfies
the following assumptions.

ASSUMPTIONS 5.1. (A1) Y is a Banach space and Y ↪→ X ;
(A2) A is closed in X ;
(A3) D(A)∩Y is dense in X ;
(A4)  : D(D) ⊂ X → X and |D(B) : D(B) → Y are surjective;

(A5)
(

D

)
: D(D) → X ×X and

(

D

) |D(B) : D(B) → Y ×X are closed;
(A6) D0 = D|N() is densely defined and has nonempty resolvent set;
(A7) B is bounded from [D(D0)] to X .
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The above assumptions ensure that we can convert (1.1) into an abstract Cauchy
problem {

U̇(t) = A U(t), t � 0,

U(0) = ( x0
u0 )

(ACP)

in X ×X with U(t) =
(
u(t)
u(t)

)
, t � 0, A is a densely defined closed operator of the

form

A =
(

A B
0 D

)
, D(A ) =

{(
x
u

)
∈ D(A)×

(
D(B)∩D(D)

)
: u = x

}
,

and  −A can be represented as an one-sided coupled operator matrix

 −A =
(
 −A+BL −B

0  −D0

)(
I 0

L I

)
for  ∈ (D0) . Here the Dirichlet operator −L = (|N(−D))−1 is bounded from X
to Z for all Banach spaces Z satisfying D(Dk) ⊂ Z ↪→ X for some k ∈ N (see [21, 23]
for details). Note that if 0 ∈ (D0) , then L = (I−R( ;D0))L0 .

Theorem 3.1 in combination with Corollary 3.2 yields the following fact.

COROLLARY 5.2. Under the Assumptions 5.1, let D0 be the generator of an an-
alytic semigroup T(·) on X , k ∈ N and  ∈ (0,1) . If Z satisfies the (Z)-condition
with respect to D0 and if D(Dk) ⊂ Z or L (X) ↪→ Z , then the following statements
are equivalent:

(i) A−BL generates an analytic semigroup on X ;
(ii) A generates an analytic semigroup on X ×X .
In particular, if L (X) ↪→ ([D(D0)],X) , then the equivalence of (i) and (ii)

remains true, which has been proved in [23].

Recall that a closed operator A : X → Y is said to be Fredholm if R(A) is closed,
dimN(A) <  and dimY/R(A) <  . We obtain from Theorem 4.2 the following fact
for the case dimX <  .

COROLLARY 5.3. Under the Assumptions 5.1, let X and X be Hilbert spaces,
and let D0 be invertible. Assume that A generates an analytic semigroup T (·) on
X ×X . If dimX <  , D0 is self-adjoint and  −D0 is Fredholm for all  ∈ R ,
then there exists  ∈ R such that the following statements hold:

(i) If  ∈ (D0) , then (e−tT (t))t�0 is strongly stable if and only if A−BL0 −
+BR( ,D0)L0 is injective;

(ii) If  ∈ (D0) , then (e−tT (t))t�0 is strongly stable provided that 1 and 2

are injective, where 1 = (I− (D0−)(D0−)†)L0 and 2 = B|N(D0−) .

Two typical examples are presented to illustrate our results.
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EXAMPLE 5.4. We consider the following heat equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u̇(t,x) = u(t,x), t � 0, x ∈,

u̇(t,z) = qu(t,z)−
u
n

(t,z)+ u(t,z), t � 0, z ∈ ,

u(0,x) = g(x), x ∈,

u(0,z) = f (z), z ∈ ,

(5.1)

where  ⊂ Rm is a open domain whose nonempty boundary  to be a (m− 1)-
dimensional smooth manifold, with  locally on one side of  , 

n denotes the
outward normal derivative in the trace sense on  , and q, , ∈ R .

In order to satisfy the Assumptions 5.1 we consider X = L2() , X = L2()
and the following operators

D = , D(D) = {u ∈ H
1
2 () : u ∈ L2()},

Bu = − u
n

, D(B) =
{

u ∈ D(D) :
u
n

∈ L2()
}

,

the trace operator  : u �→ u| , and A = q+  with domain

D(A) =

{
H2() if q = 0,

L2() if q = 0.

Thus the problem (5.1) can be rewritten as (ACP) in X × X with U(t) =
(
u(t)
u(t)

)
,

t � 0, U(0) =
(

f
g

)
, and the governing operator

A =
(

A B
0 D

)
, D(A ) =

{(
v
u

)
∈ D(A)×D(B) : u = v

}
.

Let D0 = D|N() , then

D(D0) = H2()∩H1
0 ().

Since 0 ∈ (D0) , A can be represented by an one-sided coupled matrix

A =
(

A−BL0 B
0 D0

)(
I 0
L0 I

)
,

where L0 = −(|N(D))−1 .

From [20, Equation (14.32)], we have H
1
2 () = ([D(D0)],X) 3

4
. Since D(D) ⊂

H
1
2 () ↪→ L2() , L0 : X → ([D(D0)],X) 3

4
is bounded. We see that D0 generates

an analytic semigroup on X , and Z = ([D(D0)],X) 3
4

satisfies the (Z)-condition with

respect to D0 . Since −BL0 = N , we have

A−BL0 = q+N + .
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Here N is the Dirichlet-to-Neumann operator and bounded from H1() to L2() .
By Corollary 5.2, A generates an analytic semigroup on X ×X if and only if q+
N generates an analytic semigroup on X .

Note that (q,H2()) generates an analytic semigroup on L2() for q >
0. Again by the unboundedness of  one has that (q,H2()) generates an
analytic semigroup on L2() if and only if q > 0. Similarly, N generates an
analytic semigroup on X if and only if  > 0 (see [18, Theorem 4]). Since N is
bounded from H1() to L2() , there exists M1 > 0 such that

‖N u‖L2() � M1‖u‖H1(), u ∈ H1(). (5.2)

By [19, Proposition I.2.3]) and [19, Theorem I.7.7]), we have

‖u‖H1() � ‖u‖
1
2
L2()‖u‖

1
2
H2(), u ∈ H2().

Combining this with Young inequality, we obtain that for every  > 0 there exists
M > 0 such that

‖u‖H1() � ‖u‖H2() +M‖u‖L2(), u ∈ H2(). (5.3)

From [19, p. 37], there exists M2 > 0 such that

‖u‖H2() � M2(‖u‖L2() +‖u‖L2()), u ∈ H2(),

which together with the estimates (5.2) and (5.3) implies

‖N u‖L2() � M1M2‖u‖L2() +M1(M2 +M)‖u‖L2(), u ∈ H2().

Hence A generates an analytic semigroup on X × X if and only if either of the
following holds:

(i) q = 0 and  > 0,
(ii) q > 0.

EXAMPLE 5.5. Consider the following diffusion-transport system with dynami-
cal boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇(t,x) = u′′(t,x), t � 0, x ∈ [0,1],
u̇(t,0) = u′(t,0)+u(t,0), t � 0,

u̇(t,1) = −u′(t,1)+u(t,1), t � 0,

u(0,x) = f (x), x ∈ [0,1],
u(0,0) = u0, u(0,1) = u1,

(5.4)

where , ,u0,u1 ∈ C , f : [0,1] → C .
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We consider X = L2(0,1) , X = C2 and the following operators

A =
(
 0
0 

)
∈ C

2×2,

Du = u′′, D(D) = H2(0,1),

Bu =
(

u′(0)
−u′(1)

)
, D(B) = D(D),

u =
(

u(0)
u(1)

)
, D() = D(D).

Let D0 = D|N() with D(D0) = H2(0,1)∩H1
0 (0,1) . Note that the problem (5.4) can

be reformulated as (1.1), and satisfies the Assumptions 5.1. Then it can be written as

(ACP) in X ×X with U(t) =
(
u(t)
u(t)

)
, t � 0, U(0) =

(
(u0
u1 )
f

)
, and

A =
(

A B
0 D

)
, D(A ) =

{(
v
u

)
∈ X ×D(D) : u = v

}
.

Since 0 ∈ (D0) , A can be represented by

A =
(

A−BL0 B
0 D0

)(
I 0
L0 I

)
,

where L0 = −(|N(D))−1 is the Dirichlet operator. From [17, Theorem 9.4] it follows
that A generates an analytic semigroup T (·) on X ×X .

For  ∈ R and U = (u
u ) ∈ D(A ) ,

Re〈(A − )U,U〉= −
∫ 1

0
|u′(x)|2dx−

∫ 1

0
|u(x)|2dx

+(Re − )|u(1)|2 +(Re− )|u(0)|2.

This implies that A − is dissipative for  � max{0,Re,Re} . By [17, Proposi-
tion 9.8], A is self-adjoint if and only if , ∈ R . Combining these facts and taking
, ∈ R , for  � max{0,,} we obtain that A − generates a bounded ana-
lytic semigroup (e−tT (t))t�0 . Now apply Corollary 5.3 to the strong stability of
(e−tT (t))t�0 . The spectrum of D0 is given by

p(D0) = (D0) = {−k22 : k = 1,2, · · ·}.

Then  ∈ (D0) . Hence, (e−tT (t))t�0 is strongly stable if and only if A−BL0 −
+BR( ,D0)L0 = A−−BL is injective, where

−BL =

⎧⎪⎪⎨⎪⎪⎩
1

e2 − e1

(
2e1 − 1e2 1− 2

(1− 2)e1+2 2e2 − 1e1

)
if  = 0,(−1 1

1 −1

)
if  = 0,

(5.5)
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and 1,2 = ±√
 . We conclude by (5.5) that

(e−tT (t))t�0 is strongly stable ⇔
{

h() = 0 if  = 0,

 −− = 0 if  = 0,

where h()=2− [+−1− (1−2)(e1+e2 )
e1−e2 ]++ 2e

2−1e
1

e1−e2 + 2e
1−1e

2

e1−e2 .
Therefore, for all  � max{0,,} we obtain that (e−tT (t))t�0 is strongly

stable if and only if either of the following conditions holds:
(i) h() = 0 for  = 0,
(ii)  −− = 0 for  = 0.

REMARK 5.6. Let , < 0. Then T (·) is a bounded analytic semigroup and
 − −  = 0. By the above results, (T (t))t�0 is strongly stable. On the other
hand, since + < min{2,} , by [17, Proposition 9.12] we have that (T (t))t�0 is
uniformly exponentially stable, which also implies that (T (t))t�0 is strongly stable.
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