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Abstract. Let A be a positive bounded operator on a Hilbert space (H,〈., .〉) and P be the
orthogonal projection on cl(R(A)) . In the present paper, we prove that if A has closed range
and T ∈ BA1/2 (H) then

σA(T ) = σ(α(T )) and σA(T )\{0} = σ
(
A1/2T (A1/2)†

)
\{0} = σ(TP)\{0}.

In particular, this allows us to prove that rA(T ) = r(TP) = sup
λ∈σA(T )

|λ | , for any A -bounded

operator T ∈ BA1/2 (H) . Moreover, we prove that if T ∈ BA(H) is A -invertible and S is an
A -inverse of T , then S belongs also to BA(H) . Other results are also derived.

1. Introduction

Throughout this paper, let
(H,〈·, ·〉) be a complex Hilbert space and B(H) the

C∗ -algebra of all bounded linear operators on H and B(H)′ its topological dual. The
identity operator on H is denoted by IH (or simply by I if no ambiguity arises). If
T ∈ B(H) , then we denote by R(T ) (resp. N (T )) the range of T (resp. the null space
of T ).

Recall that given T ∈ B(H) , the Moore-Penrose inverse of T , denoted by T † , is
the unique linear mapping from R(T )⊕R(T )⊥ into H satisfying the “Moore-Penrose
equations”:

TXT = T, XTX = X , XT = Pcl(R(T )) and TX = Pcl(R(T ))
∣∣
R(T )⊕R(T)⊥ ,

where Pcl(R(T )) is the orthogonal projection on cl(R(A) , the closure of R(A) . Or

equivalently, T † is the unique linear extension of T̃−1 to D(T †) := R(T )⊕R(T )⊥
with N (T †) =R(T )⊥ . Here T̃ is the isomorphism T̃ := T

∣∣
N (T )⊥ :N (T )⊥ −→R(T ) .

A linear functional f ∈ B(H)′ is said to be positive, if f (TT ∗) � 0 for all T ∈
B(H) . Let S(B(H)) denote the set of states on B(H) which is the set of all positive
linear functionals f on B(H) such that ‖ f‖ = f (I) = 1.

The (algebraic) numerical range of an element T ∈ B(H) is

V (T ) := { f (T ) : f ∈ S(B(H))}
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which is a compact convex subset of C .
Now, let A be a positive operator in B(H) , and put

SA(B(H)) :=
{ f

f (A)
: f ∈ S(B(H)), f (A) �= 0

}
.

For an element T ∈ B(H) , let

‖T‖A := sup
{√

f (T ∗AT ) : f ∈ SA(B(H))
}

.

Note that ‖T‖A = 0 if and only if AT = 0 and that ‖ · ‖I = ‖ · ‖ . Notice also that it
may happen that ‖T‖A = ∞ for some T ∈ B(H) due to the lack of compactness of
SA(B(H)) (see [9, Example 3.2]). Also, it is shown in [9] that

‖T‖A = sup
{√

〈ATξ ,ξ 〉 : ξ ∈H, ‖ξ‖A = 1
}
. (1.1)

Here, ‖ξ‖A =
√〈Aξ ,ξ 〉 for all ξ ∈H . In particular, we have{

T ∈ B(H) : ‖T‖A < ∞
}

= BA1/2(H)

where

BA1/2(H) :=
{

T ∈ B(H) : ∃c > 0;‖Tξ‖A � c‖ξ‖A,∀ξ ∈H
}

,

which is the set of operators having an A1/2 -adjoint (called also A-bounded operator)
that has been studied extensively in the literature. See for instance [2, 3, 6, 11] and the
references therein. It is useful to note that if T ∈ BA1/2(H) , then T (N (A)) ⊆ N (A)
and ‖Tξ‖A � ‖T‖A‖ξ‖A for every ξ ∈H .

For T ∈ B(H) , an element Y ∈ B(H) is called an A-adjoint of T if AY = T ∗A .
Generally, the existence of an A-adjoint operator is not guaranteed. The set of all
elements in B(H) that admit A-adjoints is denoted by BA(H) . If T ∈ BA(H) , then
the reduced solution of the equation AX = T ∗A is a distinguished A-adjoint operator
of T , which is denoted by T �A . Note that, T �A = A†T ∗A . Also, it is well known that
BA(H) = {T ∈ B(H) : R(T ∗A) ⊆R(A)} ⊆ BA1/2(H) and if T ∈ BA(H) , then T �A ∈
BA(H) . Another important property is that if S and T are in BA(H) then ST ∈ BA(H)
and (ST )�A = T �AS�A . We refer the reader to [2] and [3] for the proof.

The A-numerical range is defined by

VA(T ) := { f (AT ) : f ∈ SA(B(H))}.
Unlike the classical algebraic numerical range, the A-numerical range VA(T ) of an
element T ∈ B(H) may or may not be closed and/or may or may not be bounded.

Originally, these concepts were introduced and studied [1, 9] as generalization of
the spatial A-numerical range for operators defined by

WA(T ) :=
{
〈ATξ ,ξ 〉 : ξ ∈H, ‖ξ‖A = 1

}
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for every operator T ∈ BA1/2(H) . Observe that for T in BA1/2(H) , we have

cl(VA(T )) = cl(WA(T )). (1.2)

Here cl(Γ) denotes the closure of a subset Γ in C . In particular if A has a closed range
then VA(T ) = cl(WA(T )) . For proofs and more facts about the A-numerical range of
operators, we refer the reader to [9]. Some other related topics can be found in [1] and
[5].

Recently, Baklouti and Namouri in [7] introduced and studied the A-spectrum of
elements in BA1/2(H) . More precisely, they studied the following concepts.

DEFINITION 1.1. An operator T ∈BA1/2(H) is said to be A-invertible in BA1/2(H)
if it has an A-inverse S ∈ BA1/2(H) . That is if there exists an operator S ∈ BA1/2(H) so
that A = AST = ATS .

For an operator T ∈ BA1/2(H) , the A-spectrum is defined by

σA(T ) := {λ ∈ C : λ I−T is not A-invertible}.
They established several permanence properties of these concepts. In particular,

they investigate the A-invertibility in B(H) and spectral properties are also derived.
So it is natural to ask if we have a kind of Beurling formula for A-bounded op-

erators. Namely if we put rA(T ) = max{|λ | : λ ∈ σA(T )} . Is it true that rA(T ) =

lim
n→∞

‖Tn‖
1
n
A = inf

n�1
‖Tn‖

1
n
A , for every T ∈ BA1/2(H)?

The results of this paper are related to a notion of A-spectrum for operators in
BA1/2(H) as considered in [7]. Our aim is not only to improve results of [7] but also
to give more characterizations of A-invertibility in BA1/2(H) . In particular, under the
assumption that A has a closed range, we show that

rA(T ) = r(TP) = lim
n→∞

‖Tn‖
1
n
A . (1.3)

The backbone of the proof of this result is a characterization that tells us that

σA(T ) = σ(α(T )) and σA(T )\{0} = σ(TP)\{0}. (1.4)

Here α is the algebra homomorphism considered in [2] and [3]. Next, we prove that
if T ∈ BA(H) is A-invertible then any A-inverse of T is also in BA(H) . Finally, we
derive some consequences.

2. Preliminaries

In this section, we review more concepts and notation. Further, we collect and
establish some auxiliary lemmas needed for the proofs of the main results.

Throughout this paper, we assume that A ∈ B(H) is a nonzero positive operator.
In a natural way, the operator A generates a positive semi-definite semi-inner prod-

uct given by 〈ξ ,μ〉A := 〈Aξ ,μ〉 for all ξ ,μ ∈ H . This semi-inner product 〈 , 〉A in-
duces on the quotient H/N (A) an inner product which is not complete in general.
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However, by [10] we know that the completion of H/N (A) is isometrically isomor-
phic to R(A1/2) ; with the inner product

[A1/2x,A1/2y] := 〈Px,Py〉 , (x,y ∈H).

Here, P is the orthogonal projection on cl(R(A)) , with cl(R(A)) denoting the norm
closure of R(A) in H . The Hilbert space (R(A1/2), [, ]) will be denoted by R(A1/2) .
Note that R(A) is closed means that R(A) = R(A1/2) . For any x,y ∈ H we have
[Ax,Ay] = 〈Ax,y〉 = 〈x,y〉A . This in particular leads to the following

‖Ax‖R(A1/2) = ‖x‖A, (x ∈H). (2.5)

For an operator T ∈ B(H) , it was shown in [4, Propositions 3.6 & 3.9] that T ∈
BA1/2(H) if and only if there exists an operator T̃ ∈ B(R(A1/2)) such that ZAT = T̃ ZA ,
moreover T̃ is unique. Here, ZA : H−→ R(A1/2) is defined by ZAx = Ax .

For two vectors x and y in H (resp. R(A1/2)) , let x⊗ y (resp. x⊗A y) stand for
the operator of rank at most one on H (resp. R(A1/2)) defined by

(x⊗ y)z := 〈z,y〉x, (z ∈H)
(
resp. (x⊗A y)z := [z,y]x, (z ∈ R(A1/2))

)
.

Define

B̃(R(A1/2)) :=
{

T̃ ∈ B(R(A1/2)) : R(T̃ ZA) ⊂R(A)
}

,

and note that B̃(R(A1/2)) is a non closed subalgebra of B(R(A1/2)) in general.
The following two mappings

α : BA1/2(H) −→ B̃(R(A1/2)), T �−→ T̃ ,

and
β : B̃(R(A1/2)) −→BA1/2(H), T̃ �−→ T

are well defined. Further by [4, Proposition 3.9], α and β are two homomorphisms
and

α ◦β (T̃ ) = T̃ , β ◦α(T ) = PTP.

The next lemma gives some properties of the homomorphism α . The proof may
be found in [2] and [14].

LEMMA 2.1.

(i) Let T̃ : R(A1/2) −→ R(A1/2) be a linear operator. Then there exists a unique
linear operator V : H −→H such that R(V ) ⊂ cl(R(A)) and A1/2V = T̃A1/2 .
Moreover, T̃ is bounded in R(A1/2) if and only if V is bounded in H and
‖T̃‖R(A1/2) = ‖V‖ .

(ii) Consider T ∈ B(H) . Then, there exists T̃ ∈ B(R(A1/2)) such that T̃ZA = ZAT if
and only if T ∈ BA1/2(H) . In such case, T̃ is unique
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(iii) For every T ∈ BA1/2(H) , we have ‖T‖A = ‖α(T )‖B(R(A1/2)) .

(iv) Let x,y ∈ H . Then, x⊗Ay ∈ BA(H) and x̃⊗Ay = Ax⊗̃AAy. Here ⊗̃A is tensor
product in R(A1/2)) .

The proof of Theorem 3.7 uses the following lemma which is a variant of [7,
Theorem 4.2].

LEMMA 2.2. An operator T ∈ BA1/2(H) is A-invertible in BA1/2(H) if and only
if the following two conditions are satisfied:

(i) There exists c > 0 such that 1
c‖x‖A � ‖Tx‖A � c‖x‖A for any x ∈H .

(ii) R(A1/2T ) = R(A1/2) .

Proof. By [7, Theorem 4.2], it suffices to show that R(AT ) = R(A) if and only if
R(A1/2T ) = R(A1/2) . To that end, first observe that we have usually R(AT ) ⊂R(A)
and R(A1/2T ) ⊂ R(A1/2) . Now, assume that R(AT ) = R(A) and let h = A1/2x ∈
R(A1/2) . Then A1/2h = Ax = ATy for some y∈H . Whence h−A1/2Ty is in N(A1/2) .
As h−A1/2Ty∈R(A1/2) , then h = A1/2Ty∈R(A1/2T ) . Hence R(A1/2T ) =R(A1/2) .
In a similar way we can show that R(AT ) = R(A) if R(A1/2T ) = R(A1/2) . �

Recall that

BA1/2(H) = {T ∈ B(H) : ∃S ∈ B(H);A1/2S = T ∗A1/2}.

S is called an A1/2 -adjoint of T . Observe that S ∈ BA1/2(H) as well.

LEMMA 2.3. Assume that T,R∈BA1/2(H) are such that A1/2T = S∗A1/2 A1/2R =
W ∗A1/2 for some S,W ∈ BA1/2(H) . Then, T is A-invertible with A-inverse R if and
only if S is with A-inverse W . In particular

σA(T ) = σA(S) =
{

λ : λ ∈ σA(S)
}

.

Proof. Assume that ART = ATR = A for some R ∈ BA1/2(H) . Hence A1/2RT =
A1/2TR = A1/2 and then W ∗S∗A1/2 = S∗W ∗A1/2 = A1/2 . Since A1/2 is self adjoint then
A1/2SW = A1/2WS = A1/2 . Whence S is A-invertible with A-inverse W . The converse
can be handselled similarly. �

For T ∈ B(H) , we shall call effective action of T with respect to the positive
operator A , the operator on cl(R(A)) given by Te f f (x) =PTP(x), for all x∈ cl(R(A)) .

The matrix of PTP in H = N (A)⊕ cl(R(A)) writes

PTP =
[
0 0
0 Te f f

]
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in particular

A = PAP =
[
0 0
0 Ae f f

]
.

Also, observe that
(T ∗)e f f = (Te f f )∗.

We get the following lemma

LEMMA 2.4. Let T ∈ BA1/2(H). If T is A-invertible in BA1/2(H) then Te f f is
invertible in B(cl(R(A))) . Moreover if S is an A-inverse of T in BA1/2(H) , then
Se f f = T−1

e f f .

Proof. Suppose that ATS = AST = A for some S ∈ BA1/2(H) . We have AP = A
and R(1−P) =N (A) . As T (N (A)) is a subset of N (A) , then R(T (1−P))⊆N (A) .
Whence PT (1−P)= 0. Accordingly AT = APT = APTP . Hence A =ATS = APTPS .
Similarly, we have APTPS = APSPT = A . Using the matrix representation we get
Ae f f Te f f Se f f = Ae f f Se f f Te f f = Ae f f . The injectivity of Ae f f leads up to Te f f Se f f =
Se f f Te f f = Icl(R(A)). �

It is worth noting that the A-inverses of T are the operators which matrices in
H = N (A)⊕ cl(R(A)) have the form

S =
[
S1 S2

0 T−1
e f f

]
,

for some suitable operators S1 and S2 . We also notice that the converse of the above
lemma is, in general, false. Indeed, the inverse of an A-bounded invertible operator
need not be A-bounded. See for instance [7].

3. Main results

We are ready now to state our first main result which gives another characterization
of A-invertibility in BA1/2(H) .

THEOREM 3.1. Assume that A has a closed range and let T ∈ BA1/2(H) . Then
T is A-invertible in BA1/2(H) if and only if α(T ) is invertible in B(R(A1/2)) . In
particular σA(T ) = σ (α(T )) , for any T ∈ BA1/2(H) .

Proof. Observe first that α(A) := Ã is one to one in B(R(A1/2)) . Now, assume
that T is A-invertible in BA1/2(H) . Hence there exists an operator S∈BA1/2(H) so that
A = AST = ATS . As the map α is a homomorphism, then α(A) = α(A)α(T )α(S) =
α(A)α(S)α(T ) . Since α(A) is one to one we infer that IB(R(A1/2)) = α(I) = α(T )α(S)

= α(S)α(T ) . Whence α(T ) is invertible and (α(T ))−1 = α(S) belongs to B̃(R(A1/2)) .
For the converse, let us show that if α(T ) is invertible in B(R(A1/2)) then (α(T ))−1

∈ B̃(R(A1/2)) . To that end, let S ∈B(R(A1/2)) be such that α(T )S = Sα(T ) = α(I) =
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IB(R(A1/2)) . Lemma 2.1-(i) tells us that there exists a unique bounded linear operator

V : H −→ H such that R(V ) ⊂ cl(R(A)) = R(A) and A1/2V = SA1/2 . In particular
α(T )A1/2V = S−1A1/2V = A1/2 and R(SZA) ⊂R(A) . To see why this let h ∈H and
note that

SZAh = SAh = Sα(T )A1/2VA1/2h = A1/2VA1/2h

SZAh = SAh = A1/2VA1/2h ∈ A1/2(R(A)) = R(A).

Now, if α(I) = Bα(T ) = α(T )B for some B ∈ B̃(R(A1/2)) . Based on the aforesaid,
we have B = (α(T ))−1 belongs to B̃(R(A1/2)) . So, by applying β , we get

P = β (B)PTP = PTPβ (B).

Clearly, condition (i)-of Lemma 2.2 is fulfilled. For condition (ii), we have

R(A1/2) = R(A1/2P) = R(A1/2PTPβ (B))

= R(A1/2TPβ (B))

= ⊂R(A1/2T ) ⊂R(A1/2).

Accordingly R(A1/2) = R(A1/2T ) . This completes the proof. �
For T ∈ BA1/2(H) the operator A1/2T (A1/2)† is densely defined and bounded. We

shall use the notation A1/2T (A1/2)† for its unique continuous extension to all of H .
The next result gives another information of σA(T ) .

THEOREM 3.2. Let T and S in BA1/2(H) be such that A1/2T = S∗A1/2 . Then

σ(PS∗)\{0}= σ
(
A1/2T (A1/2)†

)
\{0} ⊆ σA(T )\{0}. (3.6)

If A has a closed range, then

σA(T )\{0} = σ(PT )\{0} (3.7)

Proof. Pick up a non zero scalar λ ∈ C and suppose that λ /∈ σA(T ) . According
to Lemma 2.2 there exists c > 0 such that

1
c
‖y‖A � ‖(λ I−T)y‖A � c‖y‖A (3.8)

for any x ∈H and
R(A1/2T ) = R(A1/2). (3.9)

The inequalities (3.8) write

1
c
‖A1/2y‖ � ‖A1/2(λ I−T )y‖ � c‖A1/2y‖
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Let x∈H . If x∈R(A1/2) then x = A1/2y for some y∈R(A) . Therefore y = (A1/2)†x .
Keeping in mind that (A1/2)†A1/2 = P and A1/2(A1/2)† = P

∣∣
D((A1/2)†) , we get∥∥∥A1/2(λ I−T)y

∥∥∥ =
∥∥∥A1/2(λ I−T)(A1/2)†x

∥∥∥ =
∥∥∥(

λ I−A1/2T (A1/2)†
)

x
∥∥∥ .

Accordingly

1
c
‖x‖ �

∥∥∥(
λ I−A1/2T (A1/2)†

)
x
∥∥∥ � c‖x‖, (x ∈R(A1/2)). (3.10)

Now, if x ∈ N (A) = N (A1/2) = R(A)⊥ = N ((A1/2)†) . Then (A1/2)†x = 0 and there-
fore (

λ I−A1/2T (A1/2)†
)

x = λx.

Since λ is nonzero, we infer that x ∈R(
λ I−A1/2T (A1/2)†

)
. Accordingly

N (A) ⊂R
(

λ I−A1/2T (A1/2)†
)

. (3.11)

By (3.9), we have

R(A1/2) = R
(
A1/2(λ I−T )

)
= A1/2(λ I−T )(H)

= A1/2(λ I−T )(R(A)), (since T (N (A)) ⊂N (A))

= A1/2 (λ I−T )(A1/2)†(R(A1/2))

=
(

λ I−A1/2T (A1/2)†
)

(R(A1/2)), (since A1/2(A1/2)† = I on R(A1/2)).

This together with (3.11) entail that

N (A)+R(A1/2) ⊂R
(

λ I−A1/2T (A1/2)†
)

.

Given that N (A)+R(A1/2) is dense in H , it follows that R(
λ I−A1/2T (A1/2)†

)
and

R
(

λ I−A1/2T (A1/2)†
)

are dense in H .

Now, let x = x1+x2 ∈N (A1/2)⊕⊥R(A) , where ⊕⊥ is the orthogonal sum. Based
the aforesaid, we have(

λ I−A1/2T (A1/2)†
)

x = λx1 +
(

λ I−A1/2T (A1/2)†
)

x2

Since x1 ∈N (A) and
(
λ I−A1/2T (A1/2)†

)
x2 ∈R(A1/2) , by the Pythagoras’s theorem∥∥∥(

λ I−A1/2T (A1/2)†
)

x
∥∥∥2

= |λ |2 ‖x1‖2 +
∥∥∥(

λ I−A1/2T (A1/2)†
)

x2

∥∥∥2
.

The above equality together with (3.10) entail that

|λ |2 ‖x1‖2 +
1
c2 ‖x2‖2 �

∥∥∥(
λ I−A1/2T (A1/2)†

)
x
∥∥∥2

� |λ |2 ‖x1‖2 + c2‖x2‖2
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Set c1 = min(|λ |, 1
c ) and c2 = max(|λ |,c) , we infer that

c1‖x‖ �
∥∥∥(

λ I−A1/2T (A1/2)†
)

x
∥∥∥ � c2‖x‖ (3.12)

for any x ∈ N (A1/2)⊕⊥R(A) . We have N (A1/2)⊕⊥R(A) is dense in H and by [2,
Proposition 2.3] the operator A1/2T (A1/2)† is bounded. It follows from (3.12) that

c1‖x‖ �
∥∥∥(

λ I−A1/2T (A1/2)†
)

x
∥∥∥ � c2‖x‖, (x ∈H). (3.13)

In particular λ I−A1/2T (A1/2)† is one to one and R
(

λ I−A1/2T (A1/2)†
)

is closed.

As R(
λ I−A1/2T (A1/2)†

)
is dense, we infer that λ I−A1/2T (A1/2)† is invertible in

B(H) . Hence λ /∈ σ
(
A1/2T (A1/2)†

)
.

So we have shown that

σ
(
A1/2T (A1/2)†

)
\{0} ⊆ σA(T )\{0}.

Since T ∈ BA1/2(H) there exists S ∈ BA1/2(H) so that A1/2S = T ∗A1/2 . Hence

A1/2T (A1/2)† = S∗A1/2(A1/2)† = S∗P|D((A1/2)†).

The uniqueness of the extension of a bounded densely defined operator entails that
A1/2T (A1/2)† = S∗P and then

σ
(
A1/2T (A1/2)†

)
\{0} = σ(PS∗)\{0}.

This establishes (3.7). It remains to show that σA(T )\{0} = σ(PT )\{0} if R(A) is
closed. To that end, note in this case we have B̃(R(A1/2)) = B(R(A1/2)) . Further, by
[7, Lemma 5.5], we know that σA(T ) = σA(PT ) . Using the fact that α is a homomor-
phism together with Theorem 3.1, we infer that σA(T )⊂ σ(PT ) for any T ∈BA1/2(H) .
This together with (3) and (3.6) imply that

σ(PS∗)\{0} ⊆ σ(PT )\{0}. (3.14)

Replacing T by S , a similar reasoning implies that σ(PT ∗)\{0}⊆σ(PS)\{0} . Whence

σ(TP)\{0} ⊆ σ(S∗P)\{0}. (3.15)

Keeping in mind that σ(XY )\{0} = σ(YX)\{0} for any X ,Y ∈ B(H) we infer that
σA(T )\{0} = σ(TP)\{0} . This completes the proof. �

REMARK 3.3. Below are a few highlights of the aforementioned theorems.

(i) Observe that it may happen that σA(T ) �= σ(PT ) . For instance, if the range of A
is not dense in H , then σ(P) = {0,1} but σA(P) = {1} since AP = AP2 = A .
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(ii) The following example shows that the equality σA(T ) = σ(α(T )) in Theorem
3.1 may not remains valid if R(A) is not supposed to be closed.

EXAMPLE 3.4. Consider the Hilbert space H = �2(N) and let A be the multi-
plication operator defined on H by A(xn) = (a2

nxn) where an = 1
2n for any n � 0.

Consider the unilateral weighted forward shift (resp. the unilateral weighted backward)
shift operator T (resp. S ) given by

T (xn) =
2
5

(0,x0,x1, · · ·) (resp. S(xn) =
1
5

(x1,x2, · · ·))

for all (xn)n�0 ∈ H . Straightforward computations show that T ∗A1/2 = A1/2S . In
particular T,S are in BA1/2(H) . Further, since A is injective, then P = I and

‖T‖A = ‖S‖=
1
5

and ‖S‖A = ‖T‖ =
2
5
.

We claim that either σA(T ) �= σ(α(T )) or σA(S) �= σ(α(S)) . Indeed suppose that
σA(T ) = σ(α(T )) and σA(S) = σ(α(S)) . It is well known that the spectrum σ(α(T ))
(resp. σ(α(S))) of T (resp. of S ) is a closed subset of the disc in the plane of centre
the origin and radius ‖α(T )‖B(R(A1/2)) (resp. ‖α(S)‖B(R(A1/2)) ); see for instance [12,
Lemma 1.2.4]. Since ‖T‖A = ‖α(T )‖B(R(A1/2)) and ‖S‖A = ‖α(S)‖B(R(A1/2)) , it yields
from Lemma 2.3 that

|λ | � min(‖T‖A,‖S‖A) =
1
5

(3.16)

for any λ ∈ σA(T ) = σA(S) . But, by Theorem 3.2, we have σ(T ∗) ⊂ σA(S) . Keeping
in mind Eq. (3.16), we get r(T ) � 1

5 . Here r(T ) denotes the spectral radius of T . This
is a contradiction, since r(T ) = 2

5 ; see for instance [8].

REMARK 3.5. It is worth observing that, for the operator T in Example 3.4 and
using similar technique as Example 3.4, we can shows that σA(T ) � σ(α(T )) or
σA(S) � σ(α(S)) .

The next Proposition tells us that if T ∈ BA(H) is A-invertible then all A-inverses
are also in BA(H) .

PROPOSITION 3.6. If T ∈ BA(H) is A-invertible in BA1/2(H) then all of the A-
inverses of T are in BA(H) .

In particular, if S is an A-inverse of T then S ∈ BA(H) and S� is an A inverse of
T � .

Proof. Since T ∈BA(H) , there is X ∈BA(H) such that AX = T ∗A. It then follows
that

Ae f f Xe f f = (T ∗)e f f Ae f f .
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Further, easy computation shows that X is also A-invertible. Hence, by Lemma 2.4,
Te f f and Xe f f are both invertible. Therefore T ∗

e f f = (Te f f )∗ is also invertible. It follows
that

Ae f f X
−1
e f f = (T ∗

e f f )
−1Ae f f .

Now, let S =
[
S1 S2

0 T−1
e f f

]
be an A-inverse of T . We get AS =YA with Y =

[
0 0
0 T−1

e f f

]
which belongs to B(H) . Hence S ∈ BA(H).

Finally, assume that T ∈ BA(H) is A-invertible and S ∈ BA(H) is an A-inverse.
Recall that T �A = A†T ∗A and S�A = A†S∗A . Therefore

AT �AS�A = AA†T ∗AA†S∗A
= PT ∗PS∗A
= T ∗S∗A, (since R(S∗A) ⊆R(A) and R(S∗A) ⊆R(A))
= A, (since AST = A).

Whence AT �AS�A = A . Similarly we can show that AS�AT �A = A and the proof is thus
complete. �

Observe that, when A has a closed range and using Theorem 3.7, the proofs of
some results of [7] may be shortened. For instance it is easy to see that σA(T ) is non
empty, compact subset of C and |λ | � ‖T‖A for any λ ∈ σA(T ) .

In what follows we give other applications of the above results. Some of which
could be of independent interest. In the sequel we assume that A has a closed range.

The first corollary is a Beurling formula for A-bounded operators.

COROLLARY 3.7. If T is an element of BA1/2(H) , then

rA(T ) := sup
λ∈σA(T )

|λ | = lim
n
‖α(T )n‖

1
n

B(R(A1/2))
.

for any T ∈ BA1/2(H) .

Proof. We have

lim
n
‖Tn‖

1
n
A = lim

n
‖α(T )n‖

1
n

B(R(A1/2))
, (by (2.1)-(iii))

= sup
λ∈σ(α(T))

|λ |, (by Beurling theorem (see [12, Theorem 1.2.7])

= sup
λ∈σA(T )

|λ |, (since σA(T ) = σ(α(T ))). �

An element T ∈ BA(H) is said to be A-normal (resp. A-self-adjoint) if T �AT =
TT �A (resp. if AT is self-adjoint. That is T �A = T ).
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It is well known that V (T ) is a convex compact set which contains σ(T ) . Also,
if T ∈ B(H) is normal, then by [13] we have

V (T ) = conv(σ(T )). (3.17)

The following corollary gives a similar result for any T ∈ BA1/2(H) .

COROLLARY 3.8. The following assertions hold.

1. σA(T ) ⊆V (T ) for every T ∈ BA1/2(H) .

2. If T ∈ BA(H) is A-normal, then V (T ) = conv(σ(T )) .

Proof. Let T ∈ BA1/2(H) . By [1, Theorem 2.9] (see also [5, Lemma 1.]) and
[13, Theorem 1], we know that VA(T ) = V (α(T )) and σ(α(T )) ⊂ V (α(T )) . Hence,
Theorem 3.7 entails that σA(T ) ⊆VA(T ) .

Now, assume that T is A-normal and then α(T ) in normal in B(R(A1/2)) , by
[4, Theorem 3.11]. Whence, Theorem 8 in [13] implies V (α(T )) = convσ(α(T )) .
Theorem 3.7 and the fact that V (α(T )) = VA(T ) concludes the proof. �

COROLLARY 3.9. For every x,y ∈H we have σA(x⊗A y) ⊂ {0, [Ax,Ay]} .

Proof. Follows from Lemma 2.1-(iv). �

COROLLARY 3.10.

1. If T ∈ BA(H) , then σA(X) = σA(T �A) = σA(T )∗ :=
{

λ : λ ∈ σA(T )
}

, for any

A-adjoint X of T .

2. If T is A-selfadjoint then σA(T ) ⊆ R .

Proof. Since AX = T ∗A , then by Proposition 3.10 of [4], we have α(X) = α(T )∗ .
Therefore

σA(X) = σ (α(X)) = σ (α(T )∗) = σ (α(T ))∗ = σA(T )∗. �
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