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Abstract. In this paper, we study the stabilization of a linearized viscous Saint-Venant system by
constrained Dirichlet boundary control in infinite time horizon. We proved the well posedness
of the considered stabilization problem. Also, using an augmented state method, we were able
to determine the optimal control (the constrained control) as a feedback control law. Moreover,
thanks to the feedback control law, we proved the exponential stability of the solution to the
linearized viscous Saint-Venant system, (defined by an unbounded operator). Some numerical
experiments are given to illustrate the efficiency of the constrained Dirichlet boundary control.

1. Introduction

The stabilization of partial differential systems has been studied by several re-
searchers [1, 2, 3, 4, 7, 8, 10, 11, 15, 16]. For example, a fast boundary stabilization of
the wave equation has been studied in [17]. Also, in [18], the authors studied a bound-
ary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay
for small source terms. Moreover, the authors in [19] studied the Neumann bound-
ary feedback stabilization for a nonlinear wave equation by Lyapunov function, and a
boundary feedbcak stabilization of the telegraph equation has been investigated in [20].

In many cases, the stabilization has been established by feedback control law. In
fact, there are different methods that can be used to determine a control in the form of
feedback control law. Determining a control in feedback form is a challenge that has
attracted several authors [5, 10, 11, 19, 20]. In particular in [2] a Dirichlet boundary
feedback control law was determined by extension method. In [4], the author deter-
mines the feedback control law by using the Kernel of a feedback operator. In [6, 7, 8],
a feedback control law was determined for different partial differential systems by other
different methods. The common point between the different works cited above is that
the control variable is not subject to any constraints. In this case, the search for the
control in the form of feedback control law is practically without major difficulties.
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Following [21], one-dimensional shallow water flows may be modeled by the vis-
cous Saint-Venant system written in Eulerian coordinates in the form⎧⎪⎨

⎪⎩
∂t h+ ∂x(hu) = 0,

∂t(hu)+ ∂x(hu2)+ g
2 ∂x(h2) = 4μ∂x(h∂xu)−κu

(
1+ κh

3μ

)−1
,

h(x,0) = h0(x), u(x,0) = u0(x),

(1.1)

where (h,u) denotes the (water height, velocity) of the fluid, μ is the viscosity, g the
gravitation and κ and μ are the bottom friction factors [21].

We are interested in stabilizing this system by means of moving wall devices lo-
cated at the extremities of the channel. Therefore the corresponding equation will be
stated in a variable domain. In order to rewrite the system in a fixed domain, we will
transform the system (1.1) by using the mass Lagrangian coordinates (see [1, 22, 23]).
Considering the new fields

V (X ,t) =
1

h(x,t)
and U(X ,t) = u(x, t),

where (X , t) is the mass Lagrangian coordinates and (x,t) is the Eulerian coordinates.
The Saint-Venant system can be reformulated as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tV − ∂XU = 0,

∂tU +g∂X

(
1

2V2

)
= 4μ∂X

(
∂XU
V2

)
− κVU(

1+
κ

3μV

) ,

U(X ,0) = U0(X), V (X ,0) = V0(X).

(1.2)

For convenience, in the following we use the notation (x,t) instead of (X ,t) . Given
that the fluid equations are considered in a fixed bounded domain Ω =]r, �[ , (r < � ),
some boundary conditions must be added on the velocity U . If the channel walls are
not moving, then the boundary conditions for U are

U(r,t) = 0, U(�,t) = 0, t ∈ (0,∞). (1.3)

We are interested in stabilizing system (1.2) by a boundary control corresponding to
moving wall devices. Then, as mentioned before, we have a time-varying domain in
Eulerian coordinates, while the Lagrangian coordinates allow to work in a fixed domain.
Let qr(t) be the velocity of the left side wall of the channel and q�(t) the velocity of
the right side wall, then the homogeneous conditions (1.3) are replaced by

U(r,t) = qr(t), U(�,t) = q�(t).

In this paper, to stabilize system (1.2) in a neighbourhood of a steady state (Vs,Us) ≡
(c,0) , where c ∈ R

∗
+ , we study the stabilization of the flow described by the linearized

control system

∂tξ − ∂xζ = 0 in Ω∞, (1.4)

∂tζ −a∂xξ −ν∂xxζ = 0 in Ω∞, (1.5)

ζ (x,0) = ρ0(x), ξ (x,0) = σ0(x) in Ω, (1.6)

ζ (r,t) = qr(t), ζ (�,t) = q�(t) in (0,+∞). (1.7)
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The initial condition is given by

ρ0(x) = U0(x), σ0(x) = V0(x)−Vs,

the viscosity coefficient ν and the advection coefficient a are given by

a =
g

V 3
s

, ν =
4μ
V 2

s
,

and qr , q� are two boundary controls which belong to a set of admissible controls Uad .
In this work, we focus on the study of the stabilization problem of the linearized

viscous Saint-Venant system (1.4)–(1.7) by constrained Dirichlet boundary controls
qr,q� ∈ Uad in infinite time horizon. Our objective is to find a boundary controls in
feedback forms able to stabilize system (1.4)–(1.7) which is not stable but only stabi-
lizable see [2]. The problem that arises in this work is that the controls variables are
subjected to several constraints. This is obviously going to make the search for a feed-
back control law very difficult. To overcome this difficulty, we proposed an augmented
state technique allowing to transform the initial problem with constrained controls into
a new equivalent problem with unconstrained controls. The first difficulty encountered
is the writing of the optimality system. In fact, we can’t use the traditional techniques
to obtain the optimality system, because the linearized Saint-Venant system (1.4)–(1.7)
that we want to study is not stable, but only stabilizable (see [2]). Therefore, to resolve
this difficulty, we determine the optimality system associated with the control problem
posed in finite time horizon. Next, we use a passage to the limit, in time, in the optimal-
ity system. In fact, this technique has been used in [11]. From the optimality system
thus determined, we write the optimal controls as feedback control laws using a Riccati
operator who is solution of an algebraic Riccati equation ([5]).

To my acknowledgments, this kind of control problem, posed in infinite time hori-
zon, with constraints on the control variable and the search for a feedback control law
expressing the control as a function of the state of the system by Riccati operator, has
never been treated in the literature.

The new results established in this paper are as follows:

� Prove the existence and uniqueness of an optimal solution of the considered con-
trol problem, (see Section 4).

� Write the optimality conditions of the considered control problem posed in infi-
nite time horizon, (see Theorem 6.7).

� Prove the exponential stability of the optimal solution, (see Theorem 6.8).

� Write the optimal control as a feedback control law using a Riccati operator, (see
Theorem 6.10).

� Give some numerical experiments that illustrate the theoretical results.

The paper is organized as follows. In section 2, we formulate the constrained opti-
mal problem with boundary Dirichlet control. Then, we give the new boundary control
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problem with the new control and the augmented state. In section 3, we study the
augmented system. In section 4, we prove the existence and uniqueness of an optimal
solution to the control problem. The study of the adjoint system is acheved in section 5.
In section 6, we give the main result of this paper where we give the feedback control
law as a function of the Riccati operator and the solution of the state equations. Finally
in Section 7, some numerical experiments are given that illustrate the theoretical results.

2. Setting of the control problem

In this paper, we study the stabilization of the one-dimensional linearized Saint-
Venant system given by:

∂tξ − ∂κζ = 0 in Ω∞, (2.8)

∂tζ −a∂κξ −ν∂κκζ = 0 in Ω∞, (2.9)

ζ (κ,0) = ρ0(κ), ξ (κ,0) = σ0(κ) in Ω, (2.10)

ζ (0,t) = 0, ζ (�,t) = q(t) in (0,∞), (2.11)

where Ω =]0, �[ and Ω∞ = Ω× (0,∞) . The parameters ν > 0, a are the viscosity and
the advection coefficient, respectively. The boundary data q , given at κ = � , is the
control.

Since we are looking for a control q stabilizing the system (2.8)–(2.11) with the
exponential decay rate e−αt , it is convenient to formulate the control problem as fol-
lows: For any given α > 0, find q ∈Uad that minimizes the cost functional:

min
q∈Uad

{
jα (ξ ,ζ ,q) =

1
2

∫ ∞

0

(
‖ξ (t)‖2

L2(Ω) +‖ζ (t)‖2
L2(Ω) + [L(q(t))]2

)
e2αt dt

}
, (2.12)

where (ξ ,ζ ) is the solution to the problem (2.8)–(2.11), Uad is a set of admissible
controls and L is a linear invertible operator that will be determined later.

Knowing that q is the speed of displacement of the right side wall of the channel
during the disturbance of the fluid, then

∫ T
0 q(t)dt represents the distance traveled by

the right wall during the time interval [0,T ] in both directions (forward/backward)with
respect to its equilibrium position (where the speed is zero). Therefore, necessarily the
totality of the distance traveled will be zero when the state of the system is stable, i.e.

lim
T→∞

∫ T

0
q(t)dt = 0.

REMARK 2.1. If (σ0,ρ0) ∈ H1(Ω)×H1(Ω) , we are looking for a control q ∈
H1(0,∞) that stabilizes (2.8)–(2.11) and satisfies the constraints

∫ ∞

0
q(t)dt = 0 and q(0) = ρ0(�),

where q(0) = ρ0(�) is a compatibility condition between q and the initial condition
ζ (·,0) given by (2.10).
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So, we can deduce from Remark 2.1 that the set of admissible controls Uad can be
defined as follows:

Uad =
{

q ∈ H1(0,∞),
∫ ∞

0
q(t)dt = 0, q(0) = ρ0(�)

}
. (2.13)

REMARK 2.2. It’s not easy to determine the control q ∈ Uad in feedback form
for the stabilization problem (2.12). Indeed, we have many constraints on the control
q , (see (2.13)). To overcome this difficulty, we propose an augmented state technique
that consists in introducing a new state and formulating an augmented state system for
the control problem (2.8)–(2.12). For example, we consider that q is a solution of a
differential equation and choose the source term of this differential equation as a new
control variable. A possible choice of this differential equation is as follows: we look
for a control q in the form

L(q(t)) = u(t), ∀t � 0, (2.14)

where the linear operator L is defined as follows:

L : Uad −→ L2(0,+∞)

L(q(t)) = q′(t)+2
a
ν

q(t)+
a2

ν2

∫ t

0
q(s)ds, ∀t � 0.

Now, if we set

θ (t) =
∫ t

0
q(s)ds =⇒ θ ′(t) = q(t), ∀t � 0 (2.15)

and take into account equation (2.14), we can show that the state θ is the unique solu-
tion to the second order ordinary differential equation

L(θ ′(t)) = u(t), ∀t � 0,

or equivalently

θ ′′ +2
a
ν

θ ′ +
a2

ν2 θ = u in (0,∞),

with initial conditions
θ (0) = 0, θ ′(0) = ρ0(�),

where the source term u represents the new control variable and θ is a new state.

The new stabilization problem, defined by the new control variable u and the
augmented state (ξ , ζ , θ ), is now reformulated as follows: we want to determine a
control u , in feedback form, who is able to stabilize the Saint-Venant system (2.8)–
(2.11). So, the linear regulator problem (2.12) becomes:

(Qα ): For any given α > 0 , find u ∈ L2(0,∞) that minimizes the cost functional

min
u∈L2(0,∞)

{
Jα(ξ ,ζ ,θ ,u) =

1
2

∫ ∞

0

(
‖ξ (t)‖2

L2(Ω) +‖ζ (t)‖2
L2(Ω) +u2(t)

)
e2αt dt

}
(2.16)
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where the augmented state (ξ , ζ , θ ) is the solution of the linear system

∂tξ − ∂κζ = 0 in Ω∞, (2.17)

∂tζ −a∂κξ −ν∂κκζ = 0 in Ω∞, (2.18)

ζ (κ,0) = ρ0(κ), ξ (κ,0) = σ0(κ) in Ω, (2.19)

ζ (0,t) = 0, ζ (�,t) = θ ′(t) in (0,∞), (2.20)

θ ′′ +2
a
ν

θ ′ +
a2

ν2 θ = u(t) in (0,∞), (2.21)

θ (0) = 0, θ ′(0) = q(0). (2.22)

Notice that the new control variable u ∈ L2(0,∞) is unconstrained. This will make the
work easier later.

REMARK 2.3. Note that the control problem considered in (2.8)–(2.11) can be
defined by two controls q0 at κ = 0 and q1 at κ = � , but the fact of using a single
control has the reason of making the theoretical study easier and more readable. In fact,
the study made for a single control can be extended for the case of two controls without
difficulty.

2.1. Modified regulator problem

We consider the new state (σ , ρ , β ) and v which are defined as follows:

σ(κ, t) = ξ (κ,t)eαt , ρ(κ,t) = ζ (κ,t)eαt for all (κ, t) ∈ Ω∞,

β (t) = θ (t)eαt , v(t) = u(t)eαt for all t � 0. (2.23)

Then the problem (Qα ) becomes the following modified regulator problem:
(Q̂α ): For any given α > 0 , find v ∈ L2(0,∞) that minimizes the cost functional

min
v∈L2(0,∞)

{
J(σ ,ρ ,β ,v) =

1
2

∫ ∞

0

(
‖σ(t)‖2

L2(Ω) +‖ρ(t)‖2
L2(Ω) + v2(t)

)
dt

}
(2.24)

where the augmented state (σ , ρ , β ) is the solution of the regulator linear system

∂tσ − ∂κρ −ασ = 0 in Ω∞, (2.25)

∂tρ −a∂κσ −ν∂κκρ −αρ = 0 in Ω∞, (2.26)

ρ(κ,0) = ρ0(κ), σ(κ,0) = σ0(κ) in Ω, (2.27)

ρ(0,t) = 0, ρ(�,t) = q̂(t) in (0,∞), (2.28)

β ′′ −2
(

α − a
ν

)
β ′ +

(
α − a

ν

)2
β = v(t) in (0,∞), (2.29)

β (0) = 0, β ′(0) = q(0), (2.30)

where the Dirichlet condition q̂ , (in (2.28)), is given by the relation

q̂(t) = q(t)eαt , ∀t � 0.

In the following sections, we are interested in the study of the regulator problem
(Q̂α) . More precisely, we look for a control v ∈ L2(0,∞) in feedback form, able to
stabilize the system (2.25)–(2.30).
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2.2. Notations and assumptions

In the following, we define some spaces that will be used later.

1. The set L2
m(Ω) is given by:

L2
m(Ω) =

{
h ∈ L2(Ω) :

∫
Ω

h(s)ds = 0
}
.

2. The set:
H1

m(Ω) = H1(Ω)∩L2
m(Ω),

where H1(Ω) is the standard Sobolev space.

3. The spaces LLLLL2(Ω) = L2(Ω)× L2(Ω) and LLLLL2
m(Ω) = L2

m(Ω)× L2(Ω) with the
scalar product:

(WWWWW ,UUUUU)LLLLL2(Ω) = a
∫

Ω
σ(s)v(s)ds+

∫
Ω

ρ(s)w(s)ds,

where WWWWW = (σ ,ρ)T , UUUUU = (v,w)T .

4. The set HHHHH1
m(Ω) = H1

m(Ω)×H1
0 (Ω) on which we define a scalar product as fol-

lows:

((WWWWW ,UUUUU))HHHHH1
m(Ω) = a

∫
Ω

σ ′(s)v′(s)ds+
∫

Ω
ρ ′(s)w′(s)ds.

3. Study of the state equations

Let us consider the homogeneous Saint-Venant system defined by:

∂tσ − ∂κρ −ασ = 0 in Ω∞, (3.31)

∂tρ −a∂κσ −ν∂κκρ −αρ = 0 in Ω∞, (3.32)

ρ(κ,0) = ρ0(κ), σ(κ,0) = σ0(κ) in Ω, (3.33)

ρ(0,t) = 0, ρ(�,t) = 0 in (0,∞), (3.34)

If we noted WWWWW = (σ ,ρ) and WWWWW 0 = (σ0,ρ0) , then system (3.31)–(3.34) can be
rewritten as follows:

WWWWW ′(t)+AαWWWWW (t) = 0, ∀t > 0, (3.35)

WWWWW (0) = WWWWW 0, (3.36)

where Aα is an unbounded operator on LLLLL2(Ω) defined by

Aα =

⎛
⎝ −α − d

dκ

−a d
dκ

−ν d2

dκ2 −α

⎞
⎠ . (3.37)
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Moreover, we have

D(Aα) =
{
(σ ,ρ) ∈ LLLLL2(Ω) | ρ ∈ H1

0 (Ω), aσ + νρ ′ ∈ H1(Ω)
}
.

The operator (−Aα ,D(Aα)) generates a semigroup on LLLLL2(Ω) denoted by Sα(t) =
e−tAα , for all t � 0, (see [2]).

Now, let us consider the nonhomogeneous system, with Dirichlet condition q(t)
at κ = � , defined by the equations

∂tσ − ∂κρ −ασ = 0 in Ω∞, (3.38)

∂tρ −a∂κσ −ν∂κκρ −αρ = 0 in Ω∞, (3.39)

ρ(κ,0) = ρ0(κ), σ(κ,0) = σ0(κ) in Ω, (3.40)

ρ(0,t) = 0, ρ(�,t) = q(t) in (0,∞), (3.41)

REMARK 3.1. An existence and uniqueness result for the system (3.38)–(3.41)
has been proved in [2, Theorem 2]: for any WWWWW 0 = (σ0,ρ0)T ∈ H1

m(Ω)×H1
{0}(Ω) ,

(where H1
{0}(Ω) = {g∈H1(Ω) : g(0) = 0} ), and any q∈H1(0,+∞) such that ρ0(�) =

q(0) , the system (3.38)–(3.41) has a unique solution WWWWW ∈ C([0,+∞[,HHHHH1(Ω)) . More-
over, we have WWWWW ∈ L2(0,+∞;H1(Ω))×L2(0,+∞;H1(Ω)) .

From equations (2.29)–(2.30), we can verify that the state β has the following
expression

β (t) = te(α− a
ν )t q(0)+

∫ t

0
(t− s)e(α− a

ν )(t−s)v(s)ds in (0,∞), (3.42)

and we have the result.

LEMMA 3.1. For all α ∈ ]
0,

a
ν

[
and v ∈ L2(0,∞) , the Cauchy problem (2.29)–

(2.30) admits a unique solution β ∈ H2(0,∞) defined by (3.42) and verify the estima-
tion

‖β‖H2(0,∞) � C
(
|q(0)|+‖v‖L2(0,∞)

)
,

where the constant C is dependent only on the parameters a and ν .

REMARK 3.2. In the following, and until the end of this paper, the coefficient α
is taken under the condition

α ∈ ]
0,

a
ν

[
,

where a is the advection coefficient and ν is the viscosity coefficient, (see system
(2.8)–(2.11)).
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4. Existence and uniqueness of an optimal solution

In this section we prove that the minimization problem (2.24) has a unique optimal
solution. Let ϑ be the space defined by:

ϑ = L2(0,+∞;H1(Ω))×L2(0,+∞;H1(Ω)).

Then, we have the following result.

LEMMA 4.1. Let (vn)n be sequence in L2(0,∞) which converges to v for the
weak topology of L2(0,∞) . Let (σn,ρn,β n)n be the solution of the system (2.25)–
(2.30) corresponding to the sequence (vn)n . Then (σn,ρn,β n)n converges to (σ ,ρ ,β )
for the weak topology of ϑ ×H2(0,+∞) and (σ ,ρ ,β ) is the solution to the system
(2.25)–(2.30) associated with v.

Proof. From Theorem 2 in [2], Lemma 3.1 and the definition of the control v
given by the equations (2.25)–(2.30), we can deduce that the application

v ∈ L2(0,+∞) �−→ (σ ,ρ ,β ) ∈ ϑ ×H2(0,+∞)

is continuous. In addition, it is affine application. It is, therefore, weakly continuous.
So, if (vn)n weakly converges to v in L2(0,∞) , then (σn,ρn,β n)n weakly converges
to (σ ,ρ ,β ) in ϑ ×H2(0,+∞) and (σ ,ρ ,β ) is the solution to the system (2.25)–(2.30)
associated with v . �

THEOREM 4.1. The minimization problem (2.24) admits a unique solution

(σ ,ρ,β ,v) ∈ ϑ 2×H2(0,∞)×L2(0,∞).

Proof. Let F(v) = J(σv,ρv,βv,v) . The function F is coercive. Let (vn)n ∈
L2(0,+∞) be a minimizing sequence. We have

lim
n−→+∞

F(vn) = inf
v∈L2(0,+∞)

F(v).

Since F is coercive, then the sequence (vn)n is bounded in L2(0,+∞) . There is there-
fore an extracted sequence, noted again (vn)n , which converges to v for the weak topol-
ogy of L2(0,+∞) . Let (σn,ρn,β n)n be the solution of (2.25)–(2.30) associated with
(vn)n . The application

(σ ,ρ ,β ,v) �−→ 1
2

∫ ∞

0

(
‖σ(t)‖2

L2(Ω) +‖ρ(t)‖2
L2(Ω) + v2(t)

)
dt

is weakly lower semi-continuous. By Lemma 4.1, we have

F(v) � lim
n−→+∞

inf(F(vn)) = inf
v∈L2(0,+∞)

F(v).

So, (σ ,ρ ,β ,v) is a solution of the minimization problem (2.24). The uniqueness stems
from the strict convexity of the cost function J . �
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5. Study of the adjoint equations

The adjoint system of the state system (3.38)–(3.41) is given as follows

− ∂tϕ +a∂κψ −αϕ = f1 in Ω∞, (5.43)

−∂tψ + ∂κϕ −ν∂κκψ −αψ = f2 in Ω∞, (5.44)

ψ(κ,∞) = ϕ(κ,∞) = 0 in Ω, (5.45)

ψ(0,t) = ψ(�,t) = 0 in (0,∞). (5.46)

If we note φφφφφ = (ϕ ,ψ) and GGGGG = ( f1, f2) , then the above system can be rewritten as

− ∂tφφφφφ +A∗
αφφφφφ = GGGGG in (0,∞), φφφφφ (∞) = 0, (5.47)

where A∗
α is the adjoint operator of the unbounded operator Aα , and is completly de-

fined on LLLLL2(Ω) by

A∗
α =

⎛
⎝−α a d

dκ

d
dκ

−ν d2

dκ2 −α

⎞
⎠

with domain D(A∗
α) ⊂ LLLLL2(Ω) given by

D(A∗
α) =

{
(ϕ ,ψ) ∈ LLLLL2(Ω) | ψ ∈ H1

0 (Ω), ϕ −νψ ′ ∈ H1(Ω)
}

.

The unbounded operator (−A∗
α ,D(A∗

α )) generates a semigroup on LLLLL2(Ω) , given by

S∗α(t) = e−tA∗
α , ∀t � 0.

Let us mention that Aα and A∗
α have the same spectrum, then (Sα(t))t�0 and (S∗α(t))t�0

have the same properties. Consequently, the solution of (5.47) is as the following form:

φφφφφ(t) =
∫ ∞

t
S∗α(s− t)GGGGG(s)ds, ∀t � 0.

Let V be the space defined by:

V = L2(0,∞;L2
m(Ω))×L2(0,∞;L2(Ω)).

REMARK 5.1. We proved in [2, Proposition 2] that for any GGGGG ∈ V , the solution

φφφφφ ∈H1(0,∞;H1
m(Ω))×

[
H1(0,∞;L2(Ω))∩L2(0,∞;H2(Ω)∩H1

0 (Ω))
]

and satisfies the

estimation:

‖ϕ‖H1(0,∞;H1
m(Ω)) +‖ψ‖L2(0,∞;H2(Ω)) +‖ψ‖H1(0,∞;L2(Ω)) � C‖GGGGG‖V ,

where C is a constant.
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6. Feedback control

The system (2.25)–(2.30) is equivalent to the following

∂tσ − ∂κρ −ασ = 0 in Ω∞, (6.48)

∂tρ −a∂κσ −ν∂κκρ −αρ = 0 in Ω∞, (6.49)

β ′ −αβ − q̂ = 0 in (0,∞), (6.50)

q̂′ − (α −2
a
ν

)q̂+(
a
ν

)2β = v(t) in (0,∞), (6.51)

ρ(0,t) = 0, ρ(�,t) = q̂(t) in (0,∞), (6.52)

where the initial conditions are given by

ρ(κ,0) = ρ0(κ), σ(κ,0) = σ0(κ) in Ω, (6.53)

β (0) = β0 = 0, q̂(0) = q0 = q(0). (6.54)

Let us introduce some spaces that will be used later:

Z = LLLLL2(Ω)×R
2,

Hm
0 (Ω) = H1

m(Ω)×H1
{0}(Ω),

V m
0 (Ω) = Hm

0 (Ω)×R
2,

V (Ω) = H1(Ω)×H1(Ω)×R
2,

V (0,∞) =
(
L2(0,∞;H1(Ω))

)2×H2(0,∞;R)×H1(0,∞;R),

V (s,T ) =
(
L2(s,T ;H1(Ω))

)2 ×H2(s,T ;R)×H1(s,T ;R),

for any s ∈ [0,T ] .

REMARK 6.1. We proved in section 3, that the system (6.48)–(6.54) has a unique
solution (σ ,ρ ,β , q̂) ∈ V (0,∞) . Moreover, from Remark 3.1, we deduce that (σ ,ρ) ∈
C([0,+∞[,HHHHH1(Ω)) . Consequently, we get (σ ,ρ ,β , q̂)∈C([0,+∞[,HHHHH1(Ω))×C([0,+∞[,
R

2) .

6.1. Formulation of the problem by augmented state

By considering the augmented state wwwww = (σ ,ρ ,β , q̂) , the system (6.48)–(6.54) can
be rewritten as an abstract form as follows:

wwwww′ +Aαwwwww = Bv in (0,∞), wwwww(0) = wwwww0, (6.55)

where the initial condition wwwww0 = (σ0,ρ0,β0,q0) . The operators Aα and B are defined
as follows

Aα =

⎛
⎝Aα 0

0 ϒα

⎞
⎠ , B = (0,0,0,1)T .
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where Aα is given by the relation (3.37) and ϒα is defined by:

ϒα =

⎛
⎝−α −1

a2

ν2
2a
ν −α

⎞
⎠ .

So, we can deduce that the operator (−Aα ,D(Aα)) generates a semigroup, Sα(t)
= e−tAα , for all t > 0, on LLLLL2(Ω)×R

2 , where the domain D(Aα) is given by D(Aα) =
D(Aα)×R

2 . Moreover, this semigroup is not exponentially stable on Z and on V m
0 (Ω) ,

since the spectrum of Aα contains unstable eigenvalues (see [2]). So, the solution of
the system (6.55) is not stable, but only stabilizable on the space Z . Also, we can verify
that the control operator B belongs to L (R,V (Ω)) . The operator A ∗

α has comparable
properties to those of operator Aα on the space Z .

Using the augmented state wwwww , we write the cost functional defined by (2.24) as
follows

J(wwwww,v) =
1
2

∫ ∞

0
‖Cwwwww(t)‖2

Z dt +
1
2

∫ ∞

0
v2(t)dt, (6.56)

where C is an observation operator defined by C = diag(1,1,0,0) and verify C ∈
L (V (Ω)) . In this case, we can define a linear regulator problem, posed on infinite
time horizon, as follows:

(Q∞
wwwww0

) inf
{

J(wwwww,v) | (wwwww,v) ∈ V (0,∞)×L2(0,∞;R) is the solution to (6.55)
}

where the cost functional J(·, ·) is given by (6.56) and the pair (wwwww,v) verify the equa-
tion (6.55). The finite cost condition [9, p. 124] holds. Indeed, since (−Aα ,B) is
stabilizable in V m

0 (Ω) , then for all wwwww0 ∈ V m
0 (Ω) , there exists vwwwww0 ∈ L2(0,∞;R) such

that J(wwwwwwwwww0 ,vwwwww0) < ∞ . Thus, there exists a feedback operator K ∈ L (V (Ω),R) such
that Aα +BK is stable. If we choose the control v ∈ L2(0,∞;R) in the form:

v(t) = K wwwww(t), ∀t � 0, (6.57)

the system (6.55) becomes as follows:

wwwww′ +Aαwwwww = BK wwwww in (0,∞), wwwww(0) = wwwww0. (6.58)

THEOREM 6.1. There are positive constants ν0 and M independent of t such
that for all ω0 ∈ V m

0 (Ω) , the solution of the system (6.58) satisfies:

‖wwwww(t)‖V (Ω) � Me−ν0t‖wwwww0‖V m
0 (Ω).

Proof. The proof follows from [14, Theorem 6.1] �
Knowing that v(t) = eαt u(t) and

wwwww(·,t) = eαtyyyyy(·,t) (6.59)
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where yyyyy = (ξ ,ζ ,θ ,q) is the solution to the system (2.17)–(2.22), then we deduce from
(6.57) that

u(t) = K yyyyy(t), ∀t � 0.

Consequently, by using relations (2.15), (2.23) and (3.42), we can deduce easily that
the initial Dirichlet boundary control q can be rewritten in feedback form, as follows:

q(t) = ρ0(�)
(
1− a

ν
t
)

e−
a
ν t +

∫ t

0

(
1− a

ν
(t− s)

)
e−

a
ν (t−s)K yyyyy(s)ds, (6.60)

for t � 0 and where K is the feedback operator given by (6.57). Our goal, in the fol-
lowing, is the characterization of the operator K , and therefore the total determination
of the Dirichlet control q .

The system (2.25)–(2.28), (or the system (6.55)), is not stable, but it is only stabi-
lizable, (see [2]). Consequently, the optimality system of the problem (Q∞

wwwww0
) can not

be obtained by the classical techniques. The steps to be followed are as follows: we
approach the infinite time horizon control problem (Q∞

wwwww0
) , (t ∈ (0,∞)), by a finite time

horizon control problem posed on [s,T ] , for any T > 0, (s ∈ [0,T ]). Then, we pass to
the limit in the finite time horizon optimality system when T tends to infinity.

6.2. The finite time horizon control problem

We consider the following optimal control problem

(QT
s,ξ ) inf

{
JT (wwwww,v)| (wwwww,v) verify (6.61), v ∈ L2(s,T ;R)

}

where JT (·, ·) is the cost function given by

JT (wwwww,v) =
1
2

∫ T

s
‖Cwwwww(s)‖2

Z ds+
1
2

∫ T

s
v2(s)ds

and wwwww verify the system

wwwww′ +Aαwwwww = Bv in (s,T ), wwwww(s) = ξ . (6.61)

Our goal here is to determine optimality conditions for the problem (QT
s,ξ ) . Then, we

will prove that the optimal solution (wwwwws
ξ ,vs

ξ ) is written according to the Riccati operator
which will be determined later.

Characterization of the optimal solution of the problem (QT
s,ξ ) by Lagrangian

method: let us consider the problem (Q̂α ,T
s,ξ ) defined as follows: For any given α > 0,

find v ∈ L2(s,T ;R) minimizes the cost functional

min
v∈L2(s,T ;R)

{
JT (σ ,ρ ,β ,v) =

1
2

∫ T

s

(
‖σ(τ)‖2

L2(Ω) +‖ρ(τ)‖2
L2(Ω) + v2(τ)

)
dτ

}
(6.62)
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subject to the linear control system

∂tσ − ∂κρ −ασ = 0 in Ω× (s,T), (6.63)

∂tρ −a∂κσ −ν∂κκρ −αρ = 0 in Ω× (s,T), (6.64)

ρ(κ,s) = ξ1(κ), σ(κ,s) = ξ2(κ) in Ω, (6.65)

ρ(0,t) = 0, ρ(�,t) = q̂(t) in (s,T ), (6.66)

q̂′ − (α −2
a
ν

)q̂+(
a
ν

)2β = v(t) in (s,T ), (6.67)

β ′ −αβ − q̂ = 0 in (s,T ), (6.68)

β (s) = βs, q̂(s) = q(s) = qs. (6.69)

We consider the linear system:

− ∂tϕ +a∂κψ −αϕ = σ in Ω× (s,T ), (6.70)

−∂tψ + ∂κϕ −ν∂κκψ −αψ = ρ in Ω× (s,T ), (6.71)

ψ(κ,T ) = ϕ(κ,T ) = 0 in Ω, (6.72)

ψ(0,t) = ψ(�,t) = 0 in (s,T ), (6.73)

where the pair (σ ,ρ) is the solution of the system (6.63)–(6.66). Let us notice φφφφφ =
(ϕ ,ψ) , then the system (6.70)–(6.73) can be rewritten as

−φφφφφ ′ +A∗
αφφφφφ = YYYYY in (s,T ), φφφφφ(T ) = 0, (6.74)

where we recall that the state YYYYY = (σ ,ρ) . Let us mention that the equation (6.74) is
well studied in section 5, (if we take GGGGG =YYYYY ).

Let us introduce the operator B defined on D(A∗
α) by:

〈B,φφφφφ 〉LLLLL2(Ω) = (ϕ −ν∂κψ)(�), ∀φφφφφ ∈ D(A∗
α).

Here, the operator B is simply of the form:

B = (δ�,−νδ ′
�),

where δ ′
� is the derivative of the Dirac function δ� .

Then, we have the following result.

THEOREM 6.2. For all (ξ1,ξ2) ∈ Hm
0 (Ω) and (βs,qs) ∈H2(s,T )×H1(s,T ) , the

unique optimal solution (YYYYY ,β ,v) to the problem (6.63)–(6.69), is characterized by

vs
ξ = −rs

ξ in (s,T ),

where the function rs
ξ is the solution to the coupled system

−g′ +
(

α − a
ν

)2
r = −α〈B,φφφφφ s

ξ 〉LLLLL2(Ω) in (s,T ), g(T ) = 0,

−r′ −2
(

α − a
ν

)
r−g = −〈B,φφφφφ s

ξ 〉LLLLL2(Ω) in (s,T )), r(T ) = 0,
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and φφφφφ s
ξ is the solution to the adjoint system (6.74).

Reciprocally, if

(YYYYY s
ξ ,β s

ξ , q̂s
ξ ,φφφφφ s

ξ ,gs
ξ ,rs

ξ ) ∈
(
V (s,T )

)2

is the solution to the coupled system: ∀t ∈ (s,T )

YYYYY ′ +AαYYYYY = B(β ′ −αβ ), YYYYY (s) = (ξ1,ξ2),

q̂′ −
(

α −2
a
ν

)
q̂+

( a
ν

)2
β = −r, q̂(s) = qs,

β ′ −αβ − q̂ = 0, β (s) = βs,

−φφφφφ ′ +A∗
αφφφφφ = YYYYY , φφφφφ(T ) = 0, (6.75)

−g′+
(

α − a
ν

)2
r = −α〈B,φφφφφ 〉LLLLL2(Ω), g(T ) = 0, (6.76)

−r′ −2
(

α − a
ν

)
r−g = −〈B,φφφφφ 〉LLLLL2(Ω), r(T ) = 0, (6.77)

then (YYYYY s
ξ ,β s

ξ ,vs
ξ = −rs

ξ ) is the optimal solution of (6.62).

Proof. The proof can be established by a Lagrangienmethod. The regularity result
on φφφφφ can be deduced from Remark 5.1. �

The optimality conditions for the control problem (QT
s,ξ ) can also be given by the

following result.

THEOREM 6.3. For all s ∈ [0,T ] and for all ξ ∈ Hm
0 (Ω) , the problem (QT

s,ξ )
admits a unique solution (wwwwws

ξ ,vs
ξ ) and we have

vs
ξ = −B∗ΦΦΦΦΦs

ξ in (s,T ), (6.78)

where ΦΦΦΦΦs
ξ is the solution to the system

−ΦΦΦΦΦ′ = −A ∗
α ΦΦΦΦΦ+Cwwwwws

ξ in (s,T ), ΦΦΦΦΦ(T ) = 0.

Reciprocally, the system

wwwww′ = −Aαwwwww−BB∗ΦΦΦΦΦ in (s,T ), wwwww(s) = ξ (6.79)

−ΦΦΦΦΦ′ = −A ∗
α ΦΦΦΦΦ+Cwwwww in (s,T ), ΦΦΦΦΦ(T ) = 0 (6.80)

admits a unique solution

(wwwwws
ξ ,ΦΦΦΦΦs

ξ ) ∈
(
V (s,T )

)2

and (wwwwws
ξ ,−B∗ΦΦΦΦΦs

ξ ) is the optimal solution to the problem (QT
s,ξ ) .
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Proof. The existence of a unique solution (wwwwws
ξ ,vs

ξ ) to the problem (QT
s,ξ ) is es-

tablished in section 4. Let us set

lT (v) = JT (wwwwwv,v), v ∈ L2(s,T ;R).

The differentiation of the function lT gives

l′T (v)u =
∫ T

s

∫
Ω

Cwwwwwv · zzzzzdxdt +
∫ T

s
vudt, for all u ∈ L2(s,T ;R)

where zzzzz is the solution to

zzzzz′ = −Aαzzzzz+Bu in (s,T ), zzzzz(s) = 0.

Let ΦΦΦΦΦ be the solution to the equation

−ΦΦΦΦΦ′ = −A ∗
α ΦΦΦΦΦ+Cwwwww in (s,T ), ΦΦΦΦΦ(T ) = 0. (6.81)

The system (6.81) has a unique solution ΦΦΦΦΦ ∈ V (s,T ) . Indeed, we can verify, without
any difficulty, that the systems (6.75)–(6.77) and (6.81) have the same solution and
then ΦΦΦΦΦ = (φφφφφ ,g,r) . Therefore, the regularity of ΦΦΦΦΦ follows from Remark 5.1. As a
result B∗ΦΦΦΦΦ ∈ L2(s,T ;R) . Then, zzzzz and ΦΦΦΦΦ satisfy the relation:

∫ T

s

∫
Ω

Cwwwwwv · zzzzzdxdt =
∫ T

s
〈Bu,ΦΦΦΦΦ〉(D(A ∗))′,D(A ∗) dt =

∫ T

s
uB∗ΦΦΦΦΦdt.

It follows then:

l′T (v)u =
∫ T

s
uB∗ΦΦΦΦΦdt +

∫ T

s
vudt (6.82)

If (wwwwws
ξ ,vs

ξ ) is the solution to the problem (QT
s,ξ ) , we have l′T (v)u = 0, which gives

vs
ξ = −B∗ΦΦΦΦΦs

ξ in (s,T ).

Now we can deduce that (wwwwws
ξ ,ΦΦΦΦΦs

ξ ) is a solution to the system (6.79)–(6.80). If

(wwwww,ΦΦΦΦΦ) is a solution of system (6.79)–(6.80) and if v = −B∗ΦΦΦΦΦs
ξ , with (6.82) we can

verify that l′T (v) = 0, which implies that v = vs
ξ . Thus wwwww = wwwwws

ξ and ΦΦΦΦΦ = ΦΦΦΦΦs
ξ . �

LEMMA 6.1. For all s∈ [0,T ] and for all ξ ∈Hm
0 (Ω) , the pair (ΦΦΦΦΦs

ξ ,v)∈C ([s,T ],
V (Ω))×C ([s,T ],R) .

Proof. Knowing that the state ΦΦΦΦΦs
ξ = (φφφφφ s

ξ ,gs
ξ ,rs

ξ ) , then the regularity of ΦΦΦΦΦs
ξ is

deduced from the regularity of φφφφφ s
ξ in Remark 5.1 and the regularity of (gs

ξ ,rs
ξ ) in

Theorem 6.2. The regularity of v can be deduced from the relation v = −B∗ΦΦΦΦΦs
ξ . �
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COROLLARY 6.1. For all s ∈ [0,T ] and for all ξ ∈ Hm
0 (Ω) , the unique solution

(wwwwws
ξ ,vs

ξ ) to problem (QT
s,ξ ) and the corresponding solution (wwwwws

ξ ,ΦΦΦΦΦs
ξ ) to system (6.79)–

(6.80) obeys

JT (wwwwws
ξ ,vs

ξ ) =
1
2

∫
Ω

ΦΦΦΦΦs
ξ (s).ξ .

Proof. We multiply equation (6.61), whose solution is (wwwwws
ξ ,vs

ξ ) , by ΦΦΦΦΦs
ξ , we in-

tegrate in space and time, using integration by parts, and considering equation (6.80)
whose solution is ΦΦΦΦΦs

ξ , we can show that:

∫
Ω

ΦΦΦΦΦs
ξ (s).ξ = −(B∗ΦΦΦΦΦs

ξ ,vs
ξ )L2(s,T) + (Cwwwwws

ξ ,wwwwws
ξ )Z.

Next, using (6.78) we can establish the relation of the corollary. The proof is com-
pleted. �

Let Π(s) be the operator defined by

Π(s) : ξ �→ ΦΦΦΦΦs
ξ (s), (6.83)

where (wwwwws
ξ ,ΦΦΦΦΦs

ξ ) is the solution to the system (6.79)–(6.80). From Theorem 6.3, we
deduce that Π(s) ∈ L (Hm

0 (Ω),V (Ω)) . By Lemma 6.1, we can show that the series
of operators (Π(s))s∈[0,T ] given in (6.83) belongs to Cs([0,T ];L (V (Ω))) (the set of
functions Π from [0,T ] to L (V (Ω)) such that: for any ggggg ∈ V (Ω) , Π(·)ggggg is con-
tinuous from [0,T ] to V (Ω)). Then, by using the equations (6.79)–(6.80), we can
prove that Π is the unique solution in Cs([0,T ];L (V (Ω))) to the Riccati differential
equation:

Π′(t) = A ∗
α Π(t)+ Π(t)Aα + Π(t)B∗BΠ(t)−C,

Π(T ) = 0, (6.84)

Π∗(t) = Π(t), Π(t) � 0, ∀t ∈ [0,T ],
‖Π(t)ggggg‖V (Ω) � C0‖ggggg‖V (Ω), ∀ggggg ∈ V m

0 (Ω) ⊂ V (Ω).

The existence and uniqueness of a solution to the Riccati equation (6.84) is given in [9,
Theorem 1.2.2.1]. For more details about existence, uniqueness and regularity of the
solution to the Riccati differential equation, we refer the authors to [24, 25, 26, 27, 28].

THEOREM 6.4. The solution (wwwww,v) to the problem (QT
0,wwwww0

) belongs to C ([0,T ];
V (Ω))×C ([0,T ];R) , satisfies the following feedback law

v(t) = −B∗Π(t)wwwww(t), for all t ∈ [0,T ],

and the optimal cost is given by

J(wwwww,v) =
1
2

(
Π(0)wwwww0,wwwww0

)
V (Ω)

.
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Proof. From Theorem 6.3, Lemma 6.1, Corollary 6.1 and the definition of Π , we
can prove this theorem. �

If we set Π̂(t) = Π(T − t) , then Π̂ is the unique solution in C ([0,T ];L (V (Ω)))
to the Riccati differential equation:

Π̂′(t) = A ∗
α Π̂(t)+ Π̂(t)Aα + Π̂(t)B∗BΠ̂(t)−C,

Π̂(0) = 0,

Π̂∗(t) = Π̂(t), Π̂(t) � 0, ∀t ∈ [0,T ],

Π(0) = Π̂(T ),

‖Π̂(t)ggggg‖V (Ω) � C0‖ggggg‖V (Ω), ∀ggggg ∈ V m
0 (Ω).

where Π̂∗(t) = Π̂(t) and Π̂(t) � 0, for all t ∈ [0,T ] . From the definition of Π̂ it comes
that Π(0) = Π̂(T ) .

6.3. The infinite time horizon control problem

In this section, we want to study the control problem posed in infinite time horizon
(Q∞

wwwww0
) , as well as the regularity of its solution according to that of the initial condition

wwwww0 . So, the problem we consider is

(Q∞
wwwww0

) inf
{

J(wwwww,v) | (wwwww,v) satisfies (6.85)
}

with the cost functional

J(wwwww,v) =
1
2

∫ ∞

0
‖Cwwwww(t)‖2

Z dt +
1
2

∫ ∞

0
v2(t)dt

and wwwww is solution to the equation

wwwww′ +Aαwwwww = Bv in (0,∞), wwwww(0) = wwwww0. (6.85)

Therefore, the problem (Qk
s,ξ ) , for (0 � s < k < ∞), is defined by:

(Qk
s,ξ ) inf

{
Jk(s,wwwww,v)| (wwwww,v) satisfies (6.86), v ∈ L2(s,k;R)

}
with

Jk(s,wwwww,v) =
1
2

∫ k

s
‖Cwwwww(t)‖2

Z dt +
1
2

∫ k

s
v2(t)dt

and

wwwww′ +Aαwwwww = Bv in (s,k), wwwww(s) = ξ . (6.86)
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REMARK 6.2. Let us notice that the problem (Qk
s,ξ ) has been studied in section

6.2. Therefore, the results obtained in section 6.2 will be used here to prove some
results.

THEOREM 6.5. For all wwwww0 ∈ V m
0 (Ω) , the problem (Q∞

wwwww0
) admits a unique solu-

tion (wwwwwwwwww0 ,vwwwww0) .

Proof. In fact, we have not null controlability for the system (2.25)–(2.28), con-
trary to [11]. However, we showed in [2], that the system (2.25)–(2.28) is stabilizable in
Hm

0 (Ω) . We deduce from it that there exists a control v ∈ L2(0,∞;R) such that (wwwwwv,v) ,
the solution to (6.85) correspendant to v , obeys

J(wwwwwv,v) < ∞.

The existence of a unique solution (wwwwwwwwww0 ,vwwwww0) to the minimization problem (Q∞
wwwww0

) is
done by classical arguments, (see section 4). �

THEOREM 6.6. For all wwwww0 ∈V m
0 (Ω) , there exists Π∈L (V (Ω)) satisfying Π∗ =

Π � 0 , such that the optimal cost is given by

J(wwwwwwwwww0 ,vwwwww0) =
1
2
(Πwwwww0,wwwww0)V (Ω),

where (wwwwwwwwww0 ,vwwwww0) is the unique optimal solution to the problem (Q∞
wwwww0

) .

Proof. The dynamic programming principle shows that the mapping:

T �−→ (Π̂(T )wwwww0,wwwww0)V (Ω)

is nondecreasing. Moreover, we have:

1
2
(Π̂(T )wwwww0,wwwww0)V (Ω) � J(wwwwwwwwww0 ,vwwwww0) < ∞.

Referring to [9, 24, 25, 26, 27, 28], we can prove that there exists an operator Π ∈
L (V (Ω)) such that Π = Π∗ � 0 and

Πwwwww0 = lim
T �→∞

Π̂(T )wwwww0, for all wwwww0 ∈ V m
0 (Ω).

In the following, we show that J(wwwwwwwwww0 ,vwwwww0) = 1
2(Πwwwww0,wwwww0)V (Ω) . The problem (Qk

0,wwwww0
)

has a unique solution (wwwwwk,vk) that satisfies the following system:

wwwww′
k = −Aαwwwwwk +Bvk in (0,k), wwwwwk(0) = wwwww0, (6.87)

−ΦΦΦΦΦ′
k = −A ∗

α ΦΦΦΦΦk +Cwwwwwk in (0,k), ΦΦΦΦΦk(k) = 0, (6.88)

vk = −B∗ΦΦΦΦΦk. (6.89)
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Let (w̃wwwwk, ṽk) be the extension by zero of (wwwwwk,vk) to the interval (k,∞) . We have:∫ k

0
‖Cwwwwwk(t)‖2

Z dt +
∫ k

0
v2
k(t)dt �

∫ ∞

0
‖Cwwwwwwwwww0(t)‖2

Z dt +
∫ ∞

0
v2
wwwww0

(t)dt, (6.90)

then the sequence (w̃wwwwk)k is bounded in L2(0,∞;V (Ω)) and the sequence (ṽk)k is
bounded in L2(0,∞;R) . Thus, there exists (ŵwwww, v̂) ∈ L2(0,∞;V (Ω))×L2(0,∞;R) such
that:

w̃wwwwk ⇀ ŵwwww weakly in L2(0,∞;V (Ω)),
ṽk ⇀ v̂ weakly in L2(0,∞;R).

By passing to the limit in the relation (6.90), we get:∫ ∞

0
‖Cŵwwww(t)‖2

Z dt +
∫ ∞

0
v̂(t)dt �

∫ ∞

0
‖Cwwwwwwwwww0(t)‖2

Z dt +
∫ ∞

0
v2
wwwww0

(t)dt, (6.91)

Moreover, when k tends to ∞ in equation (6.87), we get:

ŵwwww′ = −Aαŵwwww+Bv̂ in (0,∞), ŵwwww(0) = wwwww0.

So, we deduce that (ŵwwww, v̂) is admissible and then we have (ŵwwww, v̂) = (wwwwwwwwww0 ,vwwwww0) , because
of inequality (6.91): J(ŵwwww, v̂) � J(wwwwwwwwww0 ,vwwwww0) . Therefore, we can claim that:

w̃wwwwk −→ wwwwwwwwww0 in L2(0,∞;V (Ω)),

ṽk −→ vwwwww0 in L2(0,∞;R).

Since

Jk(0,wwwwwk,vk) =
1
2
(Π̂(k)wwwww0,wwwww0)V (Ω),

when k tends to ∞ , we get:

J(wwwwwwwwww0 ,vwwwww0) =
1
2
(Πwwwww0,wwwww0)V (Ω).

The proof is completed. �

THEOREM 6.7. For all wwwww0 ∈ V m
0 (Ω) , the system:

wwwww′ = −Aαwwwww−BB∗ΦΦΦΦΦ in (0,∞), wwwww(0) = wwwww0, (6.92)

−ΦΦΦΦΦ′ = −A ∗
α ΦΦΦΦΦ+Cwwwww in (0,∞), ΦΦΦΦΦ(∞) = 0, (6.93)

ΦΦΦΦΦ(t) = Πwwwww(t) for all t ∈ (0,∞), (6.94)

admits a unique solution:

(wwwww,ΦΦΦΦΦ) ∈
(
V (0,∞)

)2
.

Moreover, we have the following estimation:

‖wwwww(t)‖V (Ω) +‖ΦΦΦΦΦ(t)‖V (Ω) � C0‖wwwww0‖V m
0 (Ω), for all t ∈ (0,∞) (6.95)

and the pair (wwwww,−B∗ΦΦΦΦΦ) is the optimal solution to the problem (Q∞
wwwww0

) .
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Proof. We denoted by (wwwwwt
k ,v

t
k ) the solution of (Qk

t ,wwwwwk(t )
) and ΦΦΦΦΦt

k the adjoint state

associated with (wwwwwt
k ,v

t
k ) . Also, (wwwwwk,vk) represents the solution of (Qk

0,wwwww0
) that is given

by the system:

wwwww′
k = −Aαwwwwwk +Bvk in (0,k), wwwwwk(0) = wwwww0,

−ΦΦΦΦΦ′
k = −A ∗

α ΦΦΦΦΦk +Cwwwwwk in (0,k), ΦΦΦΦΦk(k) = 0,

vk = −B∗ΦΦΦΦΦk in (0,k).

Then, by dynamic programming principle we have: (wwwwwt
k ,v

t
k ,ΦΦΦΦΦ

t
k )(t) = (wwwwwk,vk,ΦΦΦΦΦk)(t) ,

∀t ∈ ( t ,k) . Now, following the idea of the proof of [11, Lemma 4.2], we can establish
the proof of the theorem. �

THEOREM 6.8. For all 0 < α < a
ν and for all yyyyy0 ∈ V m

0 (Ω) , there exists a control
u ∈ L2(0,∞) for which the solution yyyyy to the problem (2.16)–(2.22) satisfies

‖yyyyy(t)‖V (Ω) � C0‖yyyyy0‖V m
0 (Ω)e

−αt , for all t ∈ (0,∞). (6.96)

Proof. From estimation (6.95), we deduce that

‖wwwww(t)‖V (Ω) � C0‖wwwww0‖V m
0 (Ω), for all t ∈ (0,∞). (6.97)

Thus, using relation (6.59) and the above estimation (6.97), we can prove the identity
(6.96). �

From Theorem 6.6, Theorem 6.7 and [5, 10, 26], we have the following result for
the regulator problem (Q∞

wwwww0
) .

THEOREM 6.9. The linear regulator problem (Q∞
wwwww0

) has a unique optimal con-
trol v ∈ L2(0,∞;R) given by

v(t) = −B∗Πwwwww(t), t � 0,

where wwwww is the corresponding optimal solution, B∗ is the adjoint operator of B and
Π ∈ L (V (Ω)) is the unique nonnegative selt-adjoint operator satisfying the algebric
Riccati equation

A ∗
α Π + ΠAα + ΠB∗BΠ−C = 0. (6.98)

The main result of this paper is given below.

THEOREM 6.10. The optimal control u is given as a feedback control law solu-
tion to the problem (2.16) by:

u(t) = −B∗Πyyyyy(t), ∀t � 0.
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Consequently, the optimal control q of the problem (2.8)–(2.12) is given in feedback
control law as follows:

q(t) = ρ0(�)
(
1− a

ν
t
)

e−
a
ν t −

∫ t

0

(
1− a

ν
(t− s)

)
e−

a
ν (t−s)B∗Πyyyyy(s)ds,

for t � 0 and where the state yyyyy = (ξ ,ζ ,θ ,q) is the optimal solution to the problem
(2.16)–(2.22) and the operator Π is the solution to the equation (6.98).

Proof. The proof follows from relations (2.23), (6.57), (6.59), (6.60) and Theorem
6.9. �

7. Illustrative example

In this section, we present an effective example that illustrates the theoretical re-
sults obtained previously.

Let Ω =]0,1[ . Consider the following system:

∂tξ − ∂κζ = 0, (7.99)

∂tζ −a∂κξ −ν∂κκζ = 0, (7.100)

ζ (κ,0) = ρ0(κ), ξ (κ,0) = σ0(κ), (7.101)

ζ (0,t) = q0(t), ζ (1,t) = q1(t), (7.102)

where we consider the following data:

α = 0.3, ν = 0.02, a = 1.75.

The initial conditions are given by:

ρ0(κ) = 15cos(9πκ), σ0(κ) = 0.

Note that in this example we consider two controls: q0 at κ = 0 and q1 at κ = 1.
The initial perturbation was plotted in Figure 1. Note that this initial condition has a
very large amplitude −15 � ρ0(κ) � 15 for κ ∈ [0,1] . Figure 2 shows that the natural
stabilization (without controls) starts from t = 6. We have plotted the curves of the
states ξ and ζ at different time t = 1.8,2.0 in Figure 3 and Figure 4, respectively. It’s
clear that the stabilization by the two boundary controls is very fast, (see curves in the
right in Figures 3 and 4), than the natural stabilization (without controls q0 = q1 = 0),
(see curves in the left in Figures 3 and 4). Also, we have plotted the curves of the
two controls in Figure 5. In fact, this example shows the robustness of the boundary
controls that we applied for the stabilizability of the dynamical system (7.99)–(7.102).
This result illustre well the exponential decay of the state (ξ ,ζ ) given by Theorem 6.8.
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Figure 1: The initial state ζ (κ,0) = ρ0(κ) for κ ∈ [0,1] .
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Figure 2: The states ξ and ζ without controls.
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Figure 3: The state ξ : the curve in the left without controls and the curve in the right with
controls q0 and q1 .
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Figure 4: The state ζ : the curve in the left without controls and the curve in the right with
controls q0 and q1 .
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Figure 5: The controls q0(t) and q1(t) for t ∈ [0,2] .

8. Conclusion

In this paper, we have studied a boundary Dirichlet control problem where the
control variable q is subjected to some constraints. In this case and using an augmented
state technique, we succeeded in determining the control in feedback form explicitly
according to the state of the system thanks to the Riccati operator which is solution of
an algebraic Riccati equation, and we proved in this case that the state of the system is
exponentially stable.

A great challenge in the future is to study the same problem above using frac-
tional time derivatives such as Caputo time fractional derivative, generalized fractional
derivative [12, 13]. Also, the numerical solution of the fractional control problem is a
very important task.
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