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MINIMAL GENERATING AND SEPARATING SETS

FOR O(3)–INVARIANTS OF SEVERAL MATRICES

RONALDO JOSÉ SOUSA FERREIRA AND ARTEM LOPATIN ∗

(Communicated by I. Klep)

Abstract. Given an algebra F[H]G of polynomial invariants of an action of the group G over
the vector space H , a subset S of F[H]G is called separating if S separates all orbits that can be
separated by F[H]G . A minimal separating set is found for some algebras of matrix invariants
of several matrices over an infinite field of arbitrary characteristic different from two in case of
the orthogonal group. Namely, we consider the following cases:

• GL(3) -invariants of two matrices;

• O(3) -invariants of d > 0 skew-symmetric matrices;

• O(4) -invariants of two skew-symmetric matrices;

• O(3) -invariants of two symmetric matrices.

A minimal generating set is also given for the algebra of orthogonal invariants of three 3× 3
symmetric matrices.

1. Introduction

1.1. Definitions

All vector spaces, algebras, and modules are over an infinite field F of an arbitrary
characteristic p = charF � 0, unless otherwise stated. By an algebra we always mean
an associative algebra.

Given n > 1 and d � 1, we consider the polynomial algebras

R = F[xi j(k) | 1 � i, j � n, 1 � k � d];

R+ = F[xi j(k) | 1 � j � i � n, 1 � k � d];

R− = F[xi j(k) | 1 � j < i � n, 1 � k � d].

together with n× n generic matrices Xk , symmetric generic matrices Yk and skew-
symmetric generic matrices Zk :

(Xk)i j = xi j(k), (Yk)i j =
{

xi j(k), if i � j
x ji(k), if i < j

, (Zk)i j =

⎧⎨
⎩

xi j(k), if i > j
0, if i = j

−x ji(k), if i < j
.
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Here (A)i j stands for the (i, j)th entry of a matrix A . The t th coefficient of the char-
acteristic polynomial of an n× n matrix A is denoted by σt(A) . As an example,
tr(A) = σ1(A) and det(A) = σn(A) . Denote by M(n) the space of all n× n ma-
trices over F , S+(n) = {A ∈ M(n) |AT = A} , S−(n) = {A ∈ M(n) |AT = −A} and
O(n) = {A ∈ M(n) |AAT = In} . Consider the algebras of matrix invariants RGL(n) ,

RO(n) , RO(n)
+ , RO(n)

− , respectively, that are generated by σt(b) , where 1 � t � n and b
ranges over all monomials in

• X1, . . . ,Xd (see [22], [20], [7]),

• X1, . . . ,Xd ,XT
1 , . . . ,XT

d (see [20], [29]), where p �= 2,

• Y1, . . . ,Yd (see [30] or [14]), where p �= 2,

• Z1, . . . ,Zd (see [30] or [14]), where p �= 2,

respectively. Note that in case p = 0 or p > n the algebras of invariants considered
above are generated by tr(b) , where b is the same as above. In what follows, whenever

we consider the orthogonal group O(n) or algebras RO(n) , RO(n)
+ , RO(n)

− , we assume
that p �= 2. The ideal of relations between the generators of RGL(n) was described
in [21, 20, 28]. In case p = 0 relations between generators of RO(n) were computed
in [20] and in case p �= 2 relations between generators of matrix O(n)-invariants were
obtained in [16] and [17].

The elements of R , R+ , R− , respectively, can be interpreted as polynomial func-
tions from

• H = M(n)⊕·· ·⊕M(n) ,

• H+ = S+(n)⊕·· ·⊕S+(n) ,

• H− = S−(n)⊕·· ·⊕S−(n) ,

respectively, to F as follows: xi j(k) sends u = (A1, . . . ,Ad) ∈ H to (Ak)i, j . We can
consider H as GL(n)-module by the formula: g · v = (gA1g−1, . . . ,gAdg−1) for g ∈
GL(n) and v = (A1, . . . ,Ad) ∈ H . Then H+ and H− are O(n)-modules.

Assume that (G,A,V ) is one of the following triples: (GL(n),R,H) , (O(n),R,H) ,
(O(n),R+,H+) , (O(n),R−,H−) . Then

AG = { f ∈ A | f (g · v) = f (v) for all g ∈ G, v ∈V}

(see the papers above mentioned, where the generators for the algebras of invariants
were found).

The notion of separating invariants was introduced in 2002 by Derksen and Kem-
per [2] as a weaker concept than generating invariants. Given a subset S of AG , we say
that elements u,v of V are separated by S if exists an invariant f ∈ S with f (u) �= f (v) .
If u,v ∈ V are separated by AG , then we simply say that they are separated. A sub-
set S ⊂ AG of the invariant ring is called separating if for any u,v from V that are
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separated we have that they are separated by S . Separating sets over finite fields were
studied in a recent paper [10].

It follows from more general result of Domokos [3] and Draisma, Kemper, Wehlau
[8] that for any n > 1 there exists C(n) , which does not depend on d , such that the set
of all elements of AG of degree less than C(n) is separating for all d . On the other
hand, in case 0 < p � n a similar statement is not valid for generating systems for
RGL(n) (see [4]) and RO(n) (see [19]).

In [9] it was established that the set

tr(Xi), det(Xi), 1 � i � d,

tr(XiXj), 1 � i < j � d,

tr(XiXjXk), 1 � i < j < k � d.

is a minimal (by inclusion) separating set for the algebra of matrix invariants RGL(2) for
any d � 1. The case of three nilpotent 3×3 matrices over an algebraically closed field
of zero characteristic was considered in [1]. A minimal separating set for the algebra
RSL(2)×SL(2) of semi-invariants of 2×2 matrices over an arbitrary algebraically closed
field was explicitly described in [5, 6].

In this paper we will establish minimal (by inclusion) separating sets for the fol-
lowing algebras of invariants:

• RGL(3) for d = 2 (see Theorem 3.1), namely,

σt(Xi), i = 1,2, t = 1,2,3;

tr(X1X2), tr(X2
1 X2),

tr(X1X2
2 ), tr(X2

1 X2
2 ), tr(X2

1 X2
2 X1X2);

• RO(3)
− for all d > 0, where p �= 2 (see Theorem 4.2), namely,

σ2(Zi);
tr(ZiZ j), i < j; tr(ZiZ jZk), i < j < k,

where 1 � i, j,k � d ;

• RO(4)
− for d = 2, where p �= 2 (see Theorem 5.1), namely,

σ2(Zi), det(Zi), i = 1,2;

tr(Z1Z2), σ2(Z1Z2), tr(Z2
1Z2

2), tr(Z3
1Z2), tr(Z1Z3

2);

• RO(3)
+ for d = 2, where p �= 2 (see Theorem 6.1), namely,

σt(Yi), i = 1,2, t = 1,2,3; tr(Y1Y2), tr(Y 2
1 Y2), tr(Y1Y 2

2 ), tr(Y 2
1 Y 2

2 ).

We will establish that the last set is a minimal generating set for RO(3)
+ for d = 2.
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We will also construct a minimal generating set for RO(3)
+ for d = 3 (see Theo-

rem 7.1), namely,

σt(Yi), i, t ∈ {1,2,3}; tr(YiYj), tr(Y 2
i Yj), tr(YiY 2

j ), tr(Y 2
i Y 2

j ), 1 � i < j � 3;

tr(Y1Y2Y3),

tr(Y 2
1 Y2Y3), tr(Y 2

2 Y1Y3), tr(Y 2
3 Y1Y2), tr(Y 2

1 Y 2
2 Y3), tr(Y 2

1 Y 2
3 Y2), tr(Y 2

2 Y 2
3 Y1).

Note that over a field of real numbers a minimal generating set for RO(3)
+ for each

d > 0 was constructed by Spencer and Rivlin in series of papers [23, 24, 25, 26] (see
also [27]).

1.2. Notations

For a monomial c ∈ R denote by degc its degree and by mdegc its multidegree,
i.e., mdegc = (t1, . . . ,td) , where tk is the total degree of the monomial c in xi j(k) ,
1 � i, j � n , and degc = t1 + · · ·+ td . Obviously, the algebras RGL(n) , RO(n) , RO(n)

+ ,

RO(n)
− have N-grading by degrees and N

d -grading by multidegrees.
Denote by Ei j the matrix such that the (i, j)th entry is equal to one and the rest of

entries are zeros. For short, we write J3 for E12 +E23 .

2. Decomposable invariants

In this section we assume n = 3 and d > 0. We consider some fact about decom-
posable invariants that we are going to apply later.

Assume that a triple (G,A,V ) is the same as in Section 1. We say that an N-
homogeneous invariant f ∈ AG is decomposable and write f ≡ 0 if f is a polynomial
in N-homogeneous invariants of AG of strictly lower degree. If f is not decomposable,
then we say that f is indecomposable and write f �≡ 0. In case f − h ≡ 0 we write
f ≡ h . Denote by PF the ring of polynomials in Y1, . . . ,Yd without free terms and by P
the set of (non-empty) products of Y1, . . . ,Yd and set P1 = P�{I3} .

Consider the surjective homomorphism Ψ : RGL(n) → RO(n)
+ defined by xi j(k) →

xi j(k) in case i � j and by xi j(k)→ x ji(k) otherwise. Note that the image of tr(Xi1 · · ·Xik)
with respect to Ψ is tr(Yi1 · · ·Yik) .

LEMMA 2.1. Assume p �= 2 , x,y ∈ P and q ∈ PF . Then the next formulas hold in

RO(3)
+ :

(a) tr(xyx2q) ≡− tr(x2yxq);

(b) tr(Y 2
1 Y i

2Y1Y
j

3 ) ≡ 0 for i, j = 1,2 ;

(c) tr(Y 2
1 Y 2

2 Y1Y2) ≡ 0 ;

(d) tr(Y 2
1 Y 2

2 Y 2
3 ) ≡ 0 if p �= 3 ;
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(e) tr(y2x2yxq) ≡− tr(x2y2xyq);

(f) tr(Y 2
1 Y 2

2 Y1Y2Y i
3) ≡ 0 for i = 1,2 ;

Proof. (a) Applying the homomorphism Ψ to formula (20) of [12] we obtain the
required.

For the sake of completeness, we show that part (a) can also be proven by straight-
forward calculations. Namely, part (a) follows from the next equality, which holds for
every 3×3 matrices A,B,C over any commutative ring:

tr(A2BAC)+ tr(ABA2C)

= tr(A)
(
− tr(A2CB)+ tr(ABAC)+ tr(BA2C)− tr(AB) tr(AC)− tr(B) tr(A2C)

)

+σ2(A)
(

tr(ACB)− tr(BAC)+ tr(B) tr(AC)
)

−det(A) tr(BC)+ tr(A3C) tr(B)+ tr(A2C) tr(AB)+ tr(AC) tr(A2B).

(b) Applying the equality tr(AT ) = tr(A) that holds for any matrix A and part (a) of
the lemma we obtain

tr(Y 2
1 Y i

2Y1Y
j

3 ) = tr(Y j
3 Y1Y

i
2Y

2
1 ) = tr(Y1Y

i
2Y

2
1 Y j

3 ) ≡− tr(Y 2
1 Y i

2Y1Y
j

3 )

in RO(3)
+ . Since p �= 2, the proof of part (b) is completed.

(c) Making the substitution Y3 → Y2 in part (b) of this lemma, where i = 2 and j = 1,
we obtain the required.

(d) Since p �= 3, applying the homomorphism Ψ to part 7 of Lemma 18 from [13] we
obtain

tr(Y 2
1 Y 2

2 Y 2
3 ) ≡− tr(Y 2

1 Y 2
3 Y 2

2 ) = − tr(Y 2
1 Y 2

2 Y 2
3 ).

Since we also have that p �= 2, the proof of part (d) is completed.

(e) Formula (14) of [12], which is valid for any p , together with Lemma 3 of [12]
imply that the analogue of part (e) of this lemma is valid for RGL(3) . The application of
homomorphism Ψ concludes the proof of part (e).

(f) Applying two times part (a) of the lemma to f = tr(Y i
3Y2Y1Y 2

2 Y 2
1 ) we obtain that

f ≡ tr(Y i
3Y

2
2 Y 2

1 Y2Y1) ≡− tr(Y i
3Y

2
1 Y 2

2 Y1Y2),

where the second equivalence follows from part (e) of the lemma. On the other hand,
f = tr(Y i

3Y
2
1 Y 2

2 Y1Y2) and the proof of part (f) is completed. �
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3. Invariants of two 3×3 matrices

THEOREM 3.1. For d = 2 the following set is a minimal separating set for the
algebra RGL(3) of GL(3)-invariants of two matrices:

tr(Xi), σ2(Xi), det(Xi), i = 1,2,

tr(X1X2), tr(X2
1 X2), tr(X1X2

2 ), tr(X2
1 X2

2 ),

tr(X2
1 X2

2 X1X2).

Proof. Denote the set from the formulation of the theorem by S . It is well-known
that S generates RGL(3) (for example, see [11]). Thus S is a separating set. To prove
that S is a minimal separating set we will show that for any element f ∈ S the set
S0 = S\{ f} is not separating.

The case of f from the list tr(Xi) , σ2(Xi) , det(Xi) (i = 1,2) is obvious.
Assume f = tr(X1X2) . Then for A1 = B1 = J3 (see Section 1.2), A2 = E32 ,

B2 = E12 we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates
(A1,A2) and (B1,B2) . Thus S0 is not a separating set.

Assume f = tr(X2
1 X2) . Then for

A1 = B1 = J3, A2 =

⎛
⎝0 1 1

0 1 −1
0 1 −1

⎞
⎠ , B2 =

⎛
⎝ 0 0 0

1 0 0
−1 0 0

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set. Similarly, we consider the case of
f = tr(X1X2

2 ) .
Assume f = tr(X2

1 X2
2 ) . Then for

A1 = B1 = J3, A2 =

⎛
⎝0 1 0

0 −1 0
1 1 1

⎞
⎠ , B2 =

⎛
⎝0 1 0

1 0 0
1 0 0

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set.

Assume f = tr(X2
1 X2

2 X1X2) . Then for

A1 = B1 = J3, A2 =

⎛
⎝1 0 0

1 −1 0
1 −1 0

⎞
⎠ , B2 =

⎛
⎝−1 0 0

0 0 1
1 0 1

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set. The theorem is proven. �
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4. Orthogonal invariants of several 3×3 skew-symmetric matrices

LEMMA 4.1. The set

σ2(Z1), σ2(Z2), tr(Z1Z2)

is a minimal separating set for the algebra I = RO(3)
− for d = 2 in case p �= 2 .

Proof. Denote the set from the formulation of the lemma by S . The set S gen-
erates the algebra of invariants I (for example, see Theorem 1.4 of [15]). Thus S is a
separating set. To prove that S is a minimal separating set we will show that for any
element f ∈ S the set S0 = S\{ f} is not separating.

The case of f = σ2(Zi) ( i = 1,2) is obvious.
Assume f = tr(Z1Z2) . Then for A1 = A2 = B1 = −B2 = E12−E21 we have that

(A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2) and (B1,B2) .
Thus S0 is not a separating set. The lemma is proven. �

THEOREM 4.2. Assume d > 0 and p �= 2 . Then the set

σ2(Zi), 1 � i � d,

tr(ZiZ j), 1 � i < j � d,

tr(ZiZ jZk), 1 � i < j < k � d,

is a minimal separating set for the algebra RO(3)
− of O(3)-invariants of d skew-symmetric

matrices.

Proof. Denote the set from the formulation of the theorem by S . By Theorem 1.4

of [15] the set S generates the algebra of invariants RO(3)
− . Hence S is a separating set

for RO(3)
− . Applying Lemma 4.1 we obtain that to prove that S is a minimal separating

set it is enough to show that in case d = 3 the set S0 = S\{tr(Z1Z2Z3)} is not separating.
For A1 = B1 = E12−E21 , A3 = B3 = E13−E31 , and

A2 =

⎛
⎝ 0 0 1

0 0 1
−1 −1 0

⎞
⎠ , B2 =

⎛
⎝ 0 0 1

0 0 −1
−1 1 0

⎞
⎠

we have that u = (A1,A2,A3) and v = (B1,B2,B3) are not separated by S0 , but tr(Z1Z2Z3)
separates u and v in case p �= 2. Thus S0 is not a separating set. The theorem is
proven. �

5. Orthogonal invariants of two 4×4 skew-symmetric matrices

THEOREM 5.1. Assume d = 2 and p �= 2 . Then the set

σ2(Zi), det(Zi), i = 1,2,

tr(Z1Z2), σ2(Z1Z2), tr(Z2
1Z2

2), tr(Z3
1Z2), tr(Z1Z3

2),
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is a minimal separating set for the algebra RO(4)
− of O(4)-invariants of two skew-

symmetric matrices.

Proof. Assume d = 2. Denote the set from the formulation of the theorem by S .

By Theorem 1.1 of [18], the set S generates the algebra of invariants RO(4)
− . Hence S

is a separating set for RO(4)
− . To prove that S is a minimal separating set we will show

that for any element f ∈ S the set S0 = S\{ f} is not separating.
If f is σ2(Z1) or tr(Z1Z2) , then S0 is not separating by Lemma 4.1.
Assume f = det(Z1) . For

A1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠ , B1 =

⎛
⎜⎜⎝

0 1 0 1
−1 0 0 0
0 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

A2 = B2 = 0 we have that u = (A1,A2) and v = (B1,B2) are not separated by S0 , but
det(Z1) separates u and v . Thus S0 is not a separating set.

Assume f = σ2(Z1Z2) . For

A1 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , A2 = B2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , B1 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

we have that u = (A1,A2) and v = (B1,B2) are not separated by S0 , but σ2(Z1Z2)
separates u and v . Thus S0 is not a separating set.

Assume f = tr(Z2
1Z2

2) . For

A1 =

⎛
⎜⎜⎝

0 1 1 1
−1 0 −1 −2
−1 1 0 −1
−1 2 1 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 −1 0 1
1 0 0 0
0 0 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎝

0 −2 0 −1
2 0 0 2
0 0 0 0
1 −2 0 0

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
−1 0 0 1
0 0 −1 0

⎞
⎟⎟⎠

we have that u = (A1,A2) and v = (B1,B2) are not separated by S0 , but tr(Z2
1Z2

2)
separates u and v . Thus S0 is not a separating set.

Assume f = tr(Z1Z3
2) . For

A1 = B1 =

⎛
⎜⎜⎝

0 0 1 1
0 0 1 1
−1 −1 0 0
−1 −1 0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 1 0 1
−1 0 0 −1
0 0 0 1
−1 1 −1 0

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

0 1 0 −1
−1 0 0 1
0 0 0 1
1 −1 −1 0

⎞
⎟⎟⎠
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we have that u = (A1,A2) and v = (B1,B2) are not separated by S0 , but tr(Z1Z3
2)

separates u and v . Thus S0 is not a separating set. The case of f = tr(Z3
1Z2) is similar.

The theorem is proven. �

6. Orthogonal invariants of two 3×3 symmetric matrices

THEOREM 6.1. Assume that p �= 2 and d = 2 . Then the set

tr(Yi), σ2(Yi), det(Yi), i = 1,2,

tr(Y1Y2), tr(Y 2
1 Y2), tr(Y1Y 2

2 ), tr(Y 2
1 Y 2

2 )

is a minimal generating set and a minimal separating set for the algebra of O(3)-
invariants RO(3)

+ of two symmetric matrices.

Proof. Denote by S the set from the formulation of the theorem and by SX the re-
sult of substitutions Yi → Xi ( i = 1,2) in S . It is well-known that SX ∪{tr(X2

1 X2
2 X1X2)}

generates RGL(3) in case d = 2 (for example, see [11]). Considering the surjective

homomorphism Ψ from Section 2 we obtain that S∪ f generates RO(3)
+ , where f =

tr(Y 2
1 Y 2

2 Y1Y2) . Since f is decomposable in RO(3)
+ by part (b) of Lemma 2.1, then S

generates RO(3)
+ . Thus S is a separating set. To prove that S is a minimal separating set

we will show that for any element f ∈ S the set S0 = S\{ f} is not separating.
Assume f = tr(Y1Y2) . Then for

A1 = B1 =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ , A2 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , B2 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set.

Assume f = tr(Y 2
1 Y2) . Then for

A1 = B1 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , A2 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , B2 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set. The case of f = tr(Y1Y 2

2 ) is similar.
Assume f = tr(Y 2

1 Y 2
2 ) . Then for

A1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , A2 = B1 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , B2 =

⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠

we have that (A1,A2) and (B1,B2) are not separated by S0 , but f separates (A1,A2)
and (B1,B2) . Thus S0 is not a separating set.
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The cases of f = σk(Yi) ( i = 1,2, k = 1,2,3) are trivial. For the sake of com-
pleteness, we point out that in case f = det(Y1) we consider

A1 = −B1 =

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ , A2 = B2 = 0.

Therefore, S is a minimal separating set. This result together with the fact that S

is a generating set imply that S is a minimal generating set for RO(3)
+ . �

7. Orthogonal invariants of three 3×3 symmetric matrices

THEOREM 7.1. For d = 3 consider the following set S:

tr(Yi), σ2(Yi), det(Yi), i = 1,2,3,

tr(YiYj), tr(Y 2
i Yj), tr(YiY 2

j ), tr(Y 2
i Y 2

j ), 1 � i < j � 3,

tr(Y1Y2Y3),

tr(Y 2
1 Y2Y3), tr(Y 2

2 Y1Y3), tr(Y 2
3 Y1Y2),

tr(Y 2
1 Y 2

2 Y3), tr(Y 2
1 Y 2

3 Y2), tr(Y 2
2 Y 2

3 Y1).

Then the set

• S , if p �= 2,3 ,

• S∪{tr(Y 2
1 Y 2

2 Y 2
3 )} , if p = 3 ,

is a minimal generating set for the algebra of O(3)-invariants RO(3)
+ of three symmetric

matrices.

Proof. Denote by S1 the set from the formulation of the theorem. We split the

proof into two parts, namely, at first we show that S1 generates RO(3)
+ and then we

prove that S1 is minimal.

(a) We apply Ψ to the (minimal) generating set for RGL(3) from Theorem 1 of [11] and

obtain that RO(3)
+ is generated by S∪G1 in case p �= 2,3 and by S∪G1 ∪G2 in case

p = 3. Here G1 is the set

fi j = tr(Y 2
i Y 2

j YiYj), i < j; tr(Y1Y3Y2); h1 = tr(Y 2
1 Y 2

2 Y 2
3 );

tr(Y 2
i YjYk), j > k; tr(Y 2

i Y 2
j Yk), i > j;

ri jk = tr(Y 2
i YjYiYk), j < k; si jk = tr(Y 2

i Y 2
j YiYk),

where 1 � i, j,k � 3 are pairwise different, and G2 is the set

h2 = tr(Y 2
1 Y 2

3 Y 2
2 ),

ai jk = tr(YiY 2
j Y

2
k YjYk), bi jk = tr(Y 2

i Y 2
j YiY 2

k ), ci jk = tr(Y 2
i Y 2

j Y
2
k YjYk),
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where j < k , 1 � i, j,k � 3 are pairwise different. Parts (b), (c), (f) of Lemma 2.1 imply

that fi j , ri jk , si jk , ai jk , bi jk , ci jk are decomposable in RO(3)
+ . It follows from part (d) of

Lemma 2.1 that h1 and h2 are decomposable in RO(3)
+ in case p �= 3. Finally, the equal-

ities tr(Y1Y3Y2) = tr(Y1Y2Y3) ∈ S , tr(Y 2
i YjYk) = tr(Y 2

i YkYj) , tr(Y 2
i Y 2

j Yk) = tr(Y 2
j Y

2
i Yk) ,

and h1 = h2 imply that S1 generates the algebra RO(3)
+ .

(b) Since all elements of S have pairwise different multidegrees, to show that S is a
minimal generating set it is enough to establish that all elements of S1 are indecompos-

able in RO(3)
+ . Then by Theorem 6.1 we can only verify the following claims:

(1) f1 = tr(Y1Y2Y3) is indecomposable,

(2) f2 = tr(Y 2
1 Y2Y3) is indecomposable,

(3) f3 = tr(Y 2
1 Y 2

2 Y3) is indecomposable,

(4) f4 = tr(Y 2
1 Y 2

2 Y 3
3 ) is indecomposable in case p = 3.

Assume that f1 is decomposable, i.e., f1 is a polynomial in invariants of lower
degree. Then it is easy to see that

tr(A1A2A3) = 0 (1)

for all nilpotent matrices A1,A2,A3 ∈ S+(3) with entries in F . Moreover, equality (1)
is valid for any extension of F . In particular, we can assume that F is algebraically
closed.

We will use the following symmetric nilpotent matrices as tests:

R1 =

⎛
⎝0 1 0

1 0 I

0 I 0

⎞
⎠ , R2 =

⎛
⎝1 1 0

1 −3 2I
√

2
0 2I

√
2 2

⎞
⎠ , R3 =

⎛
⎝ 0 −1 0

−1 0 I

0 I 0

⎞
⎠

T1 =

⎛
⎝1 I 0

I −1 0
0 0 0

⎞
⎠ , T2 =

⎛
⎝ 1 −I 0

−I −1 0
0 0 0

⎞
⎠ , T3 =

⎛
⎝1 0 I

0 0 0
I 0 −1

⎞
⎠ ,

where I
2 = −1. Note that T 2

i = 0 for i = 1,2,3.
We have tr(T1T2T3) = 2 �= 0; a contradiction to equality (1).
Assume that f2 is decomposable. Then it is easy to verify that there exists α ∈ F

such that
tr(A2

1A2A3) = α tr(A1A2) tr(A1A3) (2)

for all nilpotent matrices A1,A2,A3 ∈ S+(3) with entries in F , which we assume to be
algebraically closed. For A = (A1,A2,A3) = (T1,T2,T3) equality (2) implies α = 0.
Hence for A = (R1,R2,T1) equality (2) imply 1+(1−2

√
2)I = 0. It is easy to see that

the obtained equality does not hold in case p �= 2.
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Assume that f3 is decomposable. Then it is easy to verify that there exist α,β ,γ ∈
F such that

tr(A2
1A

2
2A3) = α tr(A1A2) tr(A1A2A3)+ β tr(A1A3) tr(A1A

2
2)+ γ tr(A2A3) tr(A2

1A2) (3)

for all nilpotent matrices A1,A2,A3 ∈ S+(3) with entries in F , which we assume to be
algebraically closed. Considering A = (T1,T2,T3) in equality (3) we obtain α = 0. For
A = (T1,R1,T2) equality (3) implies β = 0. If A = (R1,T1,T2) in equality (3), then we
have γ = 0. Finally, for A = (R1,R2,T1) equality (3) imply 2(I− 1)(

√
2− 1) = 0; a

contradiction.
Assume that f4 is decomposable. It is easy to verify that there exist αi,βi,γ,δ ∈ F

( i = 1,2,3) such that tr(A2
1A

2
2A

3
3) =

α1 tr(A2
1A2A3) tr(A2A3)+ α2 tr(A2

2A1A3) tr(A1A3)+ α3 tr(A2
3A1A2) tr(A1A2)

+β1 tr(A2
1A3) tr(A2

2A3)+ β2 tr(A2
1A2) tr(A2

3A2)+ β3 tr(A2
2A1) tr(A2

3A1)

+γ tr(A1A2A3)2 + δ tr(A1A2) tr(A1A3) tr(A2A3)

for all nilpotent matrices A1,A2,A3 ∈ S+(3) with entries in F , which we assume to
be algebraically closed. Making the substitution A = (T1,T2,T3) in the above equality
we obtain δ = −γ . Then, consequently considering substitutions A = (R1,T1,T2) ,
A = (T1,R1,T2) and A = (T1,T2,R1) we obtain that α1 = α2 = α3 = 2γ . Similarly,
substitutions A = (R1,R2,T1) , A = (R1,T1,R2) and A = (T1,R1,R2) imply that β1 =
β2 = β3 = −γ . Finally, applying the substitution A = (R1,R2,R3) we get 6γ = −1,
which is a contradiction in case p = 3. Therefore, S1 is a minimal generating set for

RO(3)
+ . �
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