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(Communicated by D. Kimsey)

Abstract. Let T : D(T ) → H2 be a densely defined closed operator with domain D(T ) ⊂ H1 .
We say T to be absolutely minimum attaining if for every non-zero closed subspace M of
H1 with D(T )∩M �= {0} , the restriction operator T |M : D(T )∩M → H2 attains its minimum
modulus m(T |M) . That is, there exists x ∈D(T )∩M with ‖x‖ = 1 and ‖T (x)‖= inf{‖T (m)‖ :
m ∈ D(T )∩M : ‖m‖ = 1} . In this article, we prove several characterizations of this class of
operators and show that every operator in this class has a nontrivial hyperinvariant subspace.
One such important characterization is that an unbounded operator belongs to this class if and
only if its null space is finite dimensional and its Moore-Penrose inverse is compact.

We also prove a spectral theorem for unbounded normal operators of this class. It turns
out that every such operator has a compact resolvent.

1. Introduction

The class of absolutely minimum attaining unbounded operators was introduced
in [12] where its basic properties and structure were described under some additional
assumptions. On the other hand, similar studies in the case of bounded absolutely
minimum operators were carried out in [8,2]. There is a significant difference between
the bounded absolutely minimum attaining operators and the unbounded ones. The
results in the present article improve results from [12]. It is interesting to note that this
class contains densely defined closed operators with finite-dimensional null space and a
compact generalized inverse. A complete characterization, structure, spectral properties
and hyperinvariant subspaces are studied in [8, 2, 3]. A class larger than the absolutely
norm attaining operators is explored in [19, 20]. Hence in this article we exclusively
study the class of absolutely minimum attaining operators in the unbounded setting.
Since the methods of the bounded case do not work in this case, we adopt different
methods for proving our results.

The class of minimum attaining unbounded operators has been recently studied
in [12, 13]. It is proved that this class is dense in the class of densely defined closed
operators with respect to the gap metric. This result can be compared with the Linden-
strauss theorem of norm attaining operators. Moreover, a quantitative version of the
Lindenstrauss theorem for minimum attaining operators is discussed in [1].
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In this article we prove that a densely defined closed operator is absolutely min-
imum attaining if and only if it has a finite-dimensional null space and the Moore-
Penrose inverse (generalized inverse) of the operator is compact. Using this character-
ization we study some properties of this class of operators. In particular, we prove a
spectral theorem for absolutely minimum attaining unbounded normal operators. The
Spectral Theorem for unbounded normal operators is already available in the literature,
for example, in [22]. Since the class considered by us is a subclass of this class, we need
to emphasize that the spectral theorem proved by us is of a different type and should be
compared with the spectral theorem for compact normal operators. In the end, we show
that every such operator has a non-trivial hyperinvariant subspace.

In the second section we provide basic results which will be used throughout the
article. In the third section, we prove main results of this paper.

2. Preliminaries

In this section we give details of basic notations, definitions and results which we
need to prove our main results.

Throughout we work with infinite-dimensional complex Hilbert spaces denoted
by H,H1,H2 etc. The inner product and the induced norm on these spaces are denoted
by 〈·〉 and ‖.‖ , respectively. If T is a linear operator with domain D(T ) , a subspace
of H1 and taking values in H2 , then T is said to be densely defined if D(T ) is dense
in H1 . The graph G(T ) of T is defined by G(T ) := {(x,Tx) : x ∈ D(T )} ⊆ H1 ⊕H2 .
We say T to be a closed operator if G(T ) is closed. Equivalently, we can say that T
is closed if and only if for every sequence (xn) in D(T ) such that xn → x ∈ H1 and
Txn → y ∈ H2 , then x ∈ D(T ) and Tx = y .

The closed graph Theorem [22] assert that an everywhere defined closed operator
is bounded. That is, the domain of an unbounded closed operator must be a proper
subspace of a Hilbert space.

The space of all bounded operators between H1 and H2 is denoted by B(H1,H2)
and the class of all closed operators between H1 and H2 is denoted by C(H1,H2) . We
write B(H) for B(H,H) and C(H) for C(H,H) . We denote the space of all compact
operators between H1 and H2 by K(H1,H2) and K(H,H) by K(H) . Let us denote
by F(H1,H2) , the space of all finite rank bounded operators from H1 into H2 and by
F(H) , the space of all finite rank bounded operators on H .

The unit sphere of a subspace M of H is defined by SM := {x ∈ M : ‖x‖ = 1} . If
M is closed, then the othogonal projection of H onto M is denoted by PM .

The null space and the range space of T ∈ C(H1,H2) are denoted by N(T ) and
R(T ) respectively and the space C(T ) := D(T )∩N(T )⊥ is called the carrier of T . In
fact, D(T ) = N(T )⊕⊥C(T ) [4, page 340].

If S and T are closed operators with the property that D(T ) ⊆ D(S) and Tx = Sx
for all x ∈ D(T ) , then T is called the restriction of S denoted by T ⊆ S , and S is
called an extension of T , which is denoted by T ⊆ S . Furthermore, S = T if and only
if S ⊆ T and T ⊆ S .
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If S,T ∈C(H) , then S+T and ST are defined by

D(S+T )(x) : = Sx+Tx, for all x ∈ D(S+T ) := D(S)∩D(T ),
(ST )(x) : = S(Tx), for all x ∈ D(ST ) := {x ∈ D(T ) : Tx ∈ D(S)},

respectively.
If T is a densely defined operator, then there exists a unique linear operator (in

fact, a closed operator) T ∗ : D(T ∗) → H1 , with

D(T ∗) := {y ∈ H2 : x → 〈Tx,y〉 for allx ∈ D(T ) is continuous} ⊆ H2

satisfying 〈Tx,y〉 = 〈x,T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗) .
A densely defined operator T ∈ C(H) is said to be

1. Normal if T ∗T = TT ∗ . Equivalently, T is normal if and only if D(T ) = D(T ∗)
and ‖Tx‖ = ‖T ∗x‖ for each x ∈ D(T ) .

2. Self-adjoint if T = T ∗ .

3. Positive if 〈Tx,x〉 � 0 for all x ∈ D(T ) .

4. Symmetric if T ⊆ T ∗ . In other words, T is symmetric if 〈Tx,y〉 = 〈x,Ty〉 for
every x,y ∈ D(T ) .

If T is positive, then there exists a unique positive operator S such that T = S2 .
The operator S is called the square root of T and it is denoted by S = T

1
2 .

A bounded operator V ∈B(H1,H2) is said to be a partial isometry if ‖Vx‖2 = ‖x‖1

for all x∈N(V )⊥ . In this case N(V )⊥ is called the initial space of V and R(V ) is called
the final space of V .

If T ∈ C(H1,H2) is densely defined, then the operator |T | := (T ∗T )
1
2 is called

the modulus of T . There exists a unique partial isometry V : H1 → H2 with the initial
space R(T ∗) and the final space R(T ) such that T = V |T | . This factorization of T is
called the polar factorization or the polar decomposition of T .

It can be verified that D(|T |) = D(T ) and N(|T |) = N(T ) and R(|T |) = R(T ∗) .
Let T ∈ C(H) be densely defined. The resolvent of T is defined by

ρ(T ) := {λ ∈ C : (T −λ I)−1 ∈ B(H)}.
The set σ(T ) = C\ρ(T) is called the spectrum of T . The set

σp(T ) = {λ ∈ C : T −λ I : D(T ) → H is not one-to-one}
is called the point spectrum of T .

For a self-adjoint operator T ∈ C(H) , the discrete spectrum σd(T ) is defined as
the set of all isolated eigenvalues of T with finite multiplicity. The set σess(T ) =
σ(T ) \σd(T ) is called the essential spectrum of T . For more details of this concept
we refer [23, Definition 8.3, page 178].

We refer [25, 10, 22, 5, 23] for the above basics of unbounded operators.
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Here we recall the definition and properties of the Moore-Penrose inverse (or gen-
eralized inverse) of a densely defined closed operator that we need for our purpose.

If T ∈ C(H1,H2) is densely defined, then there exists a unique densely defined
operator T † ∈ C(H2,H1) with domain D(T †) = R(T )⊕⊥R(T )⊥ and has the following
properties:

1. TT †y = PR(T) y, for all y ∈ D(T †) .

2. T †Tx = PN(T )⊥ x, for all x ∈ D(T ) .

3. N(T †) = R(T )⊥ .

The operator T † is called the Moore-Penrose inverse of T . An alternative definition of
T † is given below.

For every y ∈ D(T †) , let

L(y) :=
{

x ∈ D(T ) : ‖Tx− y‖ � ‖Tu− y‖ for all u ∈ D(T )
}

.

Here any u ∈ L(y) is called a least square solution of the operator equation Tx = y .
The vector x = T †y ∈ L(y), and ‖T †y‖ � ‖x‖ for all u ∈ L(y) and it is called the
least square solution of minimal norm. A different treatment of T † is given in [4, pages
314, 318–320], where the authors call this as “the Maximal Tseng generalized Inverse”.

Next we define minimum attaining operators and the absolutely minimum attain-
ing operators.

DEFINITION 2.1. [4, 10] Let T ∈ C(H1,H2) be densely defined. Then

m(T ) := inf{‖Tx‖ : x ∈ SD(T)}

is called the minimum modulus of T . The operator T is said to be bounded below if
and only if m(T ) > 0.

REMARK 2.2. If T ∈ C(H1,H2) is densely defined, then the following holds.

(i) m(T ) > 0 if and only if R(T ) is closed and T is one-to-one.

(ii) Since D(T ) = D(|T |) and ‖Tx‖ = ‖T |x‖ for all x ∈D(T ) , we can conclude that
m(T ) = m(|T |) .

DEFINITION 2.3. Let T ∈ C(H1,H2) be densely defined. Then T is said to be

1. minimum attaining if there exists x0 ∈ SD(T) such that ‖Tx0‖= m(T)= inf{‖Tx‖ :
x ∈ SD(T)}

2. absolutely minimum attaining if for every non-zero closed subspace M of H1

with D(T )∩M �= {0} , the operator T |M : M∩D(T )→H2 is minimum attaining.
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We denote the set of all densely defined closed absolutely minimum attaining operators
between H1 and H2 by AMc(H1,H2) and the set of all densely defined minimum
attaining closed operators by Mc(H1,H2) . We write AMc(H,H) and Mc(H,H) by
AMc(H) and Mc(H) , respectively.

In particular, if T ∈ B(H1,H2) , then T is called minimum attaining if there exists
x ∈ H1 with ‖x‖ = 1 such that ‖Tx‖ = m(T ) . We say T to be absolutely minimum
attaining if for every closed subspace M of H1 , the restriction operator T |M : M → H2

is minimum attaining. This class is denoted by AM(H1,H2) . If H1 = H2 = H , then
we denote AM(H1,H2) by AM(H) .

Let M be a closed subspace of H and T ∈ C(H) be densely defined. Then M is
said to be invariant under T , if T (M∩D(T )) ⊆ M . Further, M is said to be reducing
subspace for T if both M and M⊥ are invariant under T .

Let P := PM . If P(D(T )) ⊆ D(T ) and (I−P)(D(T )) ⊆ D(T ) , then

T =
(

T11 T12

T21 T22

)
,

where Ti j = PiTPj|Mj (i, j = 1,2) , M1 = P(D(T )) and M2 = (I − P)(D(T )) . Here
P1 = P and P2 = I−P . It is known that M is invariant under T if and only if T21 = 0.
Also, M reduces T if and only if T21 = 0 and T12 = 0.

3. Main results

In this section we prove our main results. First we recall a few basic results on
absolutely minimum attaining and absolutely norm attaining operators, that we use
frequently. Recall that T ∈ B(H1,H2) is norm attaining if there exists x ∈ SH1 such
that ‖Tx‖ = ‖T‖ . We say T to be absolutely norm attaining if for every non-zero
closed subspace M of H1 , the restriction operator T |M : M → H2 is norm attaining.
We denote the set of all absolutely norm attaining operators by AN (H1,H2) . For more
details of this class operators we refer to [18].

THEOREM 3.1. [8, Theorem 5.14] Let T ∈ B(H1,H2) . Then the following are
equivalent;

1. T ∈ AM(H1,H2) .

2. T ∗T ∈ AM(H1) .

THEOREM 3.2. [12, Theorem 4.6] Let T ∈ C(H) be densely defined and T−1 ∈
B(H) . Then T ∈ AMc(H) if and only if T−1 ∈ AN (H) .

Let T ∈ C(H) be a densely defined closed operator. Then ZT = T (I +T ∗T )−
1
2 is

called the bounded transform of T . Here we list a few important properties of ZT .
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THEOREM 3.3. [23, page 90] Let T ∈ C(H) be densely defined. Then we have

1. ‖ZT‖ � 1 .

2. (ZT )∗ = ZT ∗ .

3. Z∗
T ZT = I− (I +T∗T )−1 .

It is to be noted that in particular, T ∈ B(H) if and only ‖ZT‖ < 1 (see [24,
Corollary 2.1]). Also we can easily prove that N(ZT ) = N(T ) and R(T ) = R(ZT )
(see [17]).

THEOREM 3.4. [21, theorem VIII.3] Let S be a densely defined closed symmet-
ric operator. Then

‖(S+ iI)x‖2 = ‖Sx‖2 +‖x‖2, for all x ∈ D(S). (3.1)

THEOREM 3.5. Let S be a densely defined closed symmetric operator. Then the
following are true;

1. m(S+ iI) =
√

1+m(S)2 .

2. S ∈Mc(H) if and only if S+ iI ∈Mc(H) .

3. S ∈ AMc(H) if and only if S+ iI ∈ AMc(H) .

Proof. All the proofs directly follow by Equation 3.1 and the definitions of the
minimum modulus, minimum attaining property and the absolutely minimum attaining
property, respectively. �

THEOREM 3.6. Let T be a positive and unbounded operator. Then the following
are equivalent;

1. T ∈ AMc(H) .

2. T 2 + I ∈ AMc(H) .

3. ZT ∈ AM(H) .

Proof. Proof of (1) if and only (2): By Theorem 3.5, we know that T ∈AMc(H)
if and only T + iI ∈ AMc(H) . Since T + iI is one-to-one, by applying [12, Theorem
4.10], we can conclude that T + iI ∈ AMc(H) if and only if T 2 + I = (T + iI)∗(T +
iI) ∈ AMc(H) .

To prove the equivalence of (2) and (3), first we observe that

Z∗
T ZT = T 2(I +T 2)−1 = I− (I +T 2)−1. (3.2)
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Now, if I + T 2 ∈ AMc(H) , then (I + T 2)−1 is absolutely norm attaining, by Theo-
rem 3.2. Hence by [26, Theorem 2.5], there exists a compact positive operator K and
positive finite rank operator F and α � 0 such that

(I +T 2)−1 = αI +K−F (3.3)

with KF = 0 and F � αI . Now, by Equation 3.2, we have that Z∗
T ZT = (1−α)I−K +

F . Our idea is to apply [8, Theorem 5.8] and conclude Z∗
T ZT ∈ AM(H) . Then this

will imply ZT ∈ AM(H) . For this purpose, we need to prove that ‖K‖ � 1−α . By
post multiplying Equation 3.3 and using the facts that KF = 0 and K commute with
(I +T 2)−1 , we get

(I +T 2)−1K = (αI +K)K. (3.4)

Since ‖(I +T 2)−1‖ � 1, we have (I +T 2)−1K � K or (αI +K)K � K . This implies
that K2 � (1−α)K � (1−α)‖K‖I . From this we can conclude that ‖K2‖ = ‖K‖2 �
(1−α)‖K‖ or ‖K‖ � 1−α .

To prove the implication (3) ⇒ (2) , let ZT ∈ AM(H) . Then Z∗
T ZT ∈ AM(H) .

Hence there exists K ∈K(H)+, F ∈F(H)+ and β � 0 satisfying KF = 0 and K � β I
such that Z∗

T ZT = β I−K +F . Hence by Equation 3.2, we have that

(T 2 + I)−1 = (1−β )I+K−F ∈ AN (H),

by [15, Theorem 5.2]. Now by Theorem 3.2, we can conclude that I +T 2 ∈AMc(H) .
�

Our next goal before proving the spectral theorem is to show that an absolutely
minimum attaining closed operator can either have a finite-dimensional null space or
a finite-dimensional range space. This property is helpful in deciding the spectrum of
such an operator. To achieve this we prove the following results.

LEMMA 3.7. Let T ∈ C(H) be densely defined. If ZT is norm attaining, then
T ∈ B(H) .

Proof. We know that ‖ZT‖ � 1. If ‖ZT‖ < 1, then clearly T ∈ B(H) , by [24,
Corollary 2.1]. Next assume that ‖ZT‖ = 1. Since ZT is norm attaining, there exists
x0 ∈ SH such that Z∗

T ZT x0 = x0 . That is, (I− (I+T ∗T )−1)x0 = x0 or (I +T ∗T )−1x0 =
0. This imply that x0 = 0, a contradiction. Hence, the assumption that ‖ZT‖ = 1 is
wrong. That is, ‖ZT‖ < 1. Now the conclusion follows by the earlier case. �

PROPOSITION 3.8. Let T ∈ C(H1,H2) be densely defined. If T has finite rank,
then T ∈ B(H1,H2) .

Proof. Since T is closed, N(T ) is closed and hence D(T ) = N(T )⊕C(T ) , where
C(T ) = D(T )∩N(T )⊥ . Note that T0 = T |C(T ) is a bijection from C(T ) onto R(T ) .
This implies that C(T ) is finite-dimensional and hence T0 is bounded. Suppose its
norm is M and consider any x in the domain D(T ) of T . Then x can be written
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uniquely as x = u+v with u∈N(T ) and v∈C(T ) . Since D(T ) is a subspace, v = x−u
is in D(T ) . Now

‖T (x)‖ = ‖T (v)‖ � M‖v‖ � M‖x‖.
This shows that T is bounded on D(T ) . Since D(T ) is an orthogonal direct sum of a
closed subspace N(T ) and a finite-dimensional subspace C(T ) , it is closed. As T is
densely defined, we obtain that D(T ) = H . �

COROLLARY 3.9. Let T ∈ C(H1,H2) be densely defined and unbounded. Then
R(T ) must be infinite-dimensional.

To prove the converse of Lemma 3.7, we need the following result.

THEOREM 3.10. Let T be an unbounded positive operator T ∈AMc(H) . Then
N(T ) is finite-dimensional.

Proof. It is clear that R(T ) is infinite dimensional by Corollary 3.9. Suppose
that N(T ) is infinite-dimensional. Then N(ZT ) is infinite-dimensional and hence ZT ∈
F(H) by [2, Remark 3.2]. Since R(T ) = R(ZT ) , T is a finite rank operator. Since ZT

is norm attaining, by Lemma 3.7, we can conclude that T is bounded, a contradiction.
This completes the proof. �

COROLLARY 3.11. Let T ∈ AMc(H1,H2) be densely defined and unbounded.
Then N(T ) is finite-dimensional.

Proof. Since T ∈AMc(H1,H2) , we have |T | ∈AMc(H1) and by Theorem 3.10,
we can conclude that N(|T |) = N(T ) is finite dimensional. �

REMARK 3.12. If A ∈ AM(H1,H2) , then either R(A) or N(A) is finite-dimen-
sional (see [8, Proposition 5.19] for details). But Corollary 3.11 says that if A is un-
bounded, then N(A) is finite-dimensional. The reason for this difference is that the
finite rank operators are included in the class of bounded absolutely minimum attaining
operators.

Next, we describe the structure of unbounded positive absolutely minimum attain-
ing operators. This result generalizes that of [12, Theorem 4.8].

THEOREM 3.13. Let T ∈ AMc(H) be positive and unbounded. There exists an
unbounded (increasing) sequence {λn} of eigenvalues of T with corresponding or-
thonormal eigenvectors {φn} such that

1. D(T ) =

{
x ∈ H :

∞

∑
n=1

λ 2
n |〈x,φn〉|2 < ∞

}
and

Tx =
∞

∑
n=1

λn〈x,φn〉φn, for all x ∈ D(T ).
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2. σ(T ) ⊆ {λn : n ∈ N}∪{0} = σp(T )∪{0} .

3. If μ ∈ σp(T ) , then it is an eigenvalue with finite multiplicity.

4. span{φn : n ∈ N} = N(T )⊥ .

5. T is diagonalizable. That is, there exists an orthonormal basis of H consisting
of eigenvectors of T .

6. For every subset S of N∪{0} , we have

inf{λn : n ∈ S} = min{λn : n ∈ S}.

Proof. If T is one-to-one then the statements (1) to (4) follow from [12, Theorem
4.8]. If T is not one-to-one, then by Corollary 3.11, N(T ) is finite-dimensional. That
is, 0 ∈ σp(T ) . Since T = 0⊕ T |N(T )⊥ , applying [12, Theorem 4.8] to T |N(T )⊥ , the
conclusion follows.

The proof of (5) follows by taking an orthonormal basis of N(T ) and adjoining
it to the eigenbasis of N(T )⊥ obtained in (4). To prove (6), first note that by (5), T
is diagonalizable. First assume that N(T ) �= {0} . Then N(T ) is finite-dimensional
and hence 0 ∈ σd(T ) . In this case σ(T ) = σd(T ) = {λn : n ∈ N} ∪ {0} . We write
T = 0⊕T0 , where T0 = T |N(T )⊥ . Since T0 ∈AM(N(T )⊥) and R(T0) = R(T ) is closed
as T ∈ AMc(H) , we conclude that T0 has a bounded inverse and by Theorem 3.2, we
have T−1

0 ∈ AN (N(T )⊥) . Hence σ(T−1
0 ) = {λ−1

n : n ∈ N} . Let S ⊆ N . By [15,
Theorem 3.8(i)], we have max{λ−1

k : k ∈ S} = sup{λ−1
k : k ∈ S} . From this we get

that inf{λk : k ∈ S} = min{λk : k ∈ S} . Next, assume that 0 ∈ σ(T ) and S ⊆ N∪{0} .
Let us write λ0 = 0. Then we have

inf{λk : k ∈ S∪{0}} = 0 = min{λk : k ∈ S∪{0}}.

This completes the proof. �

COROLLARY 3.14. Let T ∈ C(H1,H2) be densely defined and unbounded. Then
T ∈AMc(H1,H2) if and only if D(T ) does not contain an infinite-dimensional closed
subspace.

Proof. We have that T ∈AMc(H1,H2) if and only if |T | ∈ AMc(H1) . By Theo-
rem 3.13, this is equivalent to the fact that |T | has pure discrete spectrum. By [23, page
113, Exercise 25], this is equivalent to the fact that D(|T |) = D(T ) does not contain an
infinite-dimensional closed subspace. �

PROPOSITION 3.15. Let T ∈C(H) be positive and unbounded. If T ∈AMc(H) ,
then T 2 ∈ AMc(H) .
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Proof. Note that if T is one-to-one, then the result holds true by [12, Theorem
4.10]. So let us assume that N(T ) �= {0} . Then T = 0⊕T0 , where T0 = T |N(T )⊥ . By

Corollary 3.11, N(T ) is finite-dimensional. Clearly, by definition, T0 ∈AMc(N(T )⊥)
and consequently by [12, Theorem 4.10], T 2

0 ∈ AMc(N(T )⊥) . Hence by Theorem
3.6, ZT 2

0
∈AM(N(T )⊥) . Since N(ZT 2) = N(T 2) = N(T ) is finite-dimensional, by [2,

Proposition 3.6], we can conclude that ZT 2 = 0⊕ZT 2
0
∈ AM(H) . Now the conclusion

follows by Theorem 3.6. �

PROPOSITION 3.16. If T ∈ AMc(H) is positive, unbounded and α > 0, then
T + αI ∈AMc(H) .

Proof. First note that since T ∈ AMc(H) , it follows that R(T ) is closed. Also,
N(T ) is finite-dimensional by Theorem 3.10. Since N(T ) is a reducing subspace

for T , we have that T =
(

0 0
0 T0

)
, where T0 = T |N(T )⊥ . Since T0 is bijective and

T0 ∈ AMc(N(T )⊥) , it follows that T0 + αIN(T )⊥ ∈ AMc(N(T )⊥) . Hence by [12,

Theorem 4.8], we can conclude that (T0 + αIN(T )⊥)−1 ∈ K(N(T )⊥) . Hence we have

(T + αI)−1 =
(

αIN(T ) 0
0 (T0 + αIN(T)⊥)−1

)
∈ K(H) . Now the conclusion follows by

[12, Theorem 4.8]. �

COROLLARY 3.17. Let T ∈C(H) be positive and unbounded. If T 2 ∈AMc(H) ,
then T ∈ AMc(H) .

Proof. If T 2 ∈ AMc(H) , then T 2 + I ∈ AMc(H) by Proposition 3.16. But we
have T 2 + I = (T − iI)(T + iI) = (T + iI)∗(T + iI) ∈ AMc(H) . Since T + iI is one-
to-one, by [12, Theorem 4.11], we have T + iI ∈AMc(H) . Next, by Theorem 3.5, we
can conclude that T ∈ AMc(H) . �

COROLLARY 3.18. Let T ∈ C(H1,H2) be densely defined and unbounded. Then
T ∈ AMc(H1,H2) if and only if T ∗T ∈ AMc(H1) .

Proof. We know that T ∈AMc(H1,H2) if and only if |T | ∈ AMc(H1) . Now the
result follows by Corollary 3.17 and Proposition 3.15. �

THEOREM 3.19. Let T ∈ C(H) be positive. Then T ∈ K(H) if and only if ZT ∈
K(H) .

Proof. Assume that T ∈ K(H) . Since (I + T 2)−
1
2 ∈ B(H) , we get that ZT =

T (I +T 2)−
1
2 ∈ K(H) . Next assume that ZT ∈ K(H) . That is ZT is norm attaining.

Hence by Lemma 3.7, it is clear that T ∈ B(H) . Hence (I + T 2)1/2 ∈ B(H) . Thus
T = ZT (I +T 2)1/2 ∈ K(H) . �

The following result is proved in [12, Theorem 4.16]. Here we give a simple proof
in a particular case.
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PROPOSITION 3.20. Let T ∈ C(H) be positive and unbounded. If T ∈AMc(H)
then N(T ) is finite-dimensional and T † ∈ K(H) .

Proof. If T ∈AMc(H) , then N(T ) is finite-dimensional. If T is one-to-one, then
the conclusion follows by [12, Theorem 4.10]. Next, assume that N(T ) �= {0} . Then

T has the representation

(
0 0
0 T0

)
, where T0 = T |N(T )⊥ . Clearly, T0 ∈ AMc(N(T )⊥) .

Hence T−1
0 ∈K(N(T )⊥) , by [12, Theorem 4.8]. Hence T † = 0⊕T−1

0 is compact. �

Next we illustrate the above result with an example.

EXAMPLE 3.21. Define

A(x1,x2,x3, . . .) = (x1,2x2,3x3, . . .), (xn) ∈ D(A),

where D(A) = {(xn) ∈ �2 : (nxn) ∈ �2}. It can be shown that A is a densely defined
closed operator. In fact, A is positive and invertible with A−1 : �2 → �2 given by

A−1(y1,y2,y3, . . .) =
(
y1,

y2

2
,
y3

3
, . . .

)
, (yn) ∈ �2.

Let H = �2⊕�2 . Define T on D := �2⊕D(A)⊂H by T = 0⊕A . Then T † = 0⊕A−1 .
Clearly, T ∈ C(H) and densely defined. It can be easily seen that N(T ) = �2 ⊕{0}
which is infinite-dimensional. Also, T † ∈ K(H) . We claim that T /∈ AMc(H) . It is
clear that N(T ) is a reducing subspace for T . It can be easily shown that ZT = 0⊕ZA .
A routine computation shows that ZA is defined on the standard orthonormal basis
{en : n ∈ N} of �2 by

ZA(en) =
n√

1+n2
en, n ∈ N.

Note that 1 is the limit point of the point spectrum

σp(ZA) =
{

n√
1+n2

: n ∈ N

}
.

Hence σess(ZA) = {1} and since 0 is an eigenvalue of ZT with infinite multiplicity,
we can conclude that 0 ∈ σess(T ) . So σess(ZT ) = {0,1} . By [2, Theorem 3.10], ZT /∈
AM(H) . Now, by Theorem 3.6, we can conclude that T /∈ AMc(H) .

PROPOSITION 3.22. Let T ∈ AMc(H1,H2) be densely defined and unbounded.
Then N(T ) is finite-dimensional and T † ∈ K(H2,H1) .

Proof. It is clear that N(T ) is finite-dimensional by Corollary 3.11. As T ∈
AMc(H1,H2) , we have |T | ∈ AMc(H1) . This implies that |T |† = |(T ∗)†| ∈ K(H1) .
From this we can conclude that T † ∈ K(H2,H1) . �

The following question is asked in [12, Question 4.17].
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QUESTION 3.23. Let T ∈ C(H) be densely defined, unbounded and T † ∈K(H) .
Is it true that T ∈ AMc(H)?

The Example 3.21 shows that the answer to Question 3.23 need not be affirmative.
But we have an affirmative answer in a particular case, when N(A) is finite-dimensional
as the following Proposition shows.

PROPOSITION 3.24. Let T ∈ C(H) be positive, unbounded and N(T ) be finite-
dimensional. If T † ∈K(H) , then T ∈ AMc(H) .

Proof. Since N(T ) reduces T , with respect to the subspaces N(T ) and N(T )⊥ ,
we can write T by T = 0⊕T0 , where T0 = T |N(T )⊥ . As N(T ) = N(ZT ) , we have that

ZT = 0⊕ZT0 . As T−1
0 ∈K(N(T )⊥) , we can conclude that ZT0 ∈K(N(T )⊥) . As N(ZT )

is finite-dimensional, by [2, Proposition 3.6], it follows that ZT ∈ AM(H) . Now by
Theorem 3.6, we can conclude that T ∈ AMc(H) . �

PROPOSITION 3.25. Let T ∈C(H1,H2) be densely defined, unbounded and N(T )
be finite-dimensional. If T † ∈ K(H2,H1) , then T ∈ AM(H1,H2) .

Proof. If T † ∈ K(H2,H1) , then |(T †)∗| ∈ K(H2) . But by [12, Proposition 3.19],
we have |T |† = |(T †)∗| . Since N(T ) = N(|T |) , by Proposition 3.24, we have |T | ∈
AMc(H1) . Hence T ∈ AMc(H1,H2) . �

By combining Propositions 3.22 and 3.25, we can state the following theorem.

THEOREM 3.26. Let T ∈ C(H1,H2) be densely defined and unbounded. Then
T ∈ AMc(H1,H2) if and only if N(T ) is finite-dimensional and T † ∈ K(H2,H1) .

Next we ask whether the AM -property of an operator implies the AM -property
of its adjoint. This question in the case of bounded operators is answered in [2, Propo-
sition 3.11]. The unbounded case is discussed in [12] by assuming an extra condition,
namely the invertibility of the operator.

THEOREM 3.27. [12, Theorem 4.11] If T ∈ C(H) is densely defined, unbounded
and has a bounded inverse, then T ∈AMc(H) if and only if T ∗ ∈ AMc(H) .

Here we improve the above result by dropping the invertibility condition.

THEOREM 3.28. Let T ∈ C(H1,H2) be densely defined and unbounded. Assume
that both N(T ) and N(T ∗) are finite-dimensional. Then T ∈AMc(H1,H2) if and only
if T ∗ ∈ AMc(H2,H1) .

Proof. First assume that T ∈ AMc(H1,H2) . Then by Proposition 3.22, T † ∈
K(H2,H1) . This implies that (T ∗)† = (T †)∗ ∈K(H1,H2) . As N(T ∗) is finite-dimensio-
nal, by Proposition 3.24, we can conclude that T ∗ ∈ AM(H2,H1) . The converse fol-
lows easily by applying the above argument to T ∗ and using the hypothesis that N(T )
is finite-dimensional. �
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Next we prove the spectral theorem for unbounded self-adjoint absolutely mini-
mum attaining operators.

THEOREM 3.29. (Spectral theorem for self-adjoint AM -operators) Let H be an
infinite-dimensional Hilbert space and T ∈ C(H) be self-adjoint. Assume that T is un-
bounded. Then the following statements are equivalent.

1. T ∈ AMc(H) .

2. T † ∈K(H) and N(T ) is finite-dimensional.

3. There exists a sequence (λn) of real numbers and an orthonormal subset {vn : n ∈ N}
of H such that lim

n→∞
|λn| → ∞ and Tvn = λnvn for each n ∈ N . In this case,

D(T ) =

{
x ∈ H :

∞

∑
n=1

λ 2
n |〈x,vn〉|2 < ∞

}
and

Tx =
∞

∑
n=1

λn〈x,vn〉vn, for all x ∈ D(T ).

4. T is diagonalizable, that is, H has an orthonormal basis consisting of eigenvec-
tors of T and each eigenvalue of T has finite multiplicity.

5. σ(T ) ⊆ {0}∪{λn : n ∈ N} and every spectral value is an eigenvalue with finite
multiplicity, that is, σ(T ) = σd(T ) .

6. The resolvent Rλ (T ) = (T −λ I)−1 is compact for one, hence for all, λ ∈ ρ(T ) .

7. The embedding JT : (D(T ),‖·‖T )→H is compact. Here ‖x‖T = (‖x‖2+‖Tx‖2)
1
2

for all x ∈ D(T ) .

Proof. If N(T ) = {0} , then the result follows from [12, Theorem 4.18]. Next
assume that N(T ) �= {0} . Then the equivalence of (1) and (2) follows by Propositions
3.25 and 3.22. Since N(T ) is finite-dimensional and N(T ) reduces T , we have that
T = 0⊕T0 , where T0 = TN(T )⊥ , equivalence of the other statements follows by applying

[12, Theorem 4.18] to T0 since T0 is bijective and T0 ∈ AMc(N(T )⊥) .
To find D(T ) in (3), we argue as follows; x ∈ D(T ) if and only if Tx ∈ H if and

only if

Tx =
∞

∑
n=1

〈Tx,vn〉vn

=
∞

∑
n=1

〈x,Tvn〉vn

=
∞

∑
n=1

λn〈x,vn〉vn.



666 S. H. KULKARNI AND G. RAMESH

It is clear that Tx ∈ H if and only if
∞

∑
n=1

λ 2
n |〈x,vn〉|2 < ∞ . Hence

D(T ) =

{
x ∈ H :

∞

∑
n=1

λ 2
n |〈x,vn〉|2 < ∞

}

and Tx =
∞

∑
n=1

λn〈x,vn〉vn, for all x ∈ D(T ). �

It is natural to ask whether Theorem 3.29 holds true for normal operators. Here
we answer this question.

THEOREM 3.30. (Spectral theorem for unbounded normal AM -operators) Let H
be an infinite-dimensional Hilbert space and T ∈ C(H) be normal. Assume that T is
unbounded. Then the following statements are equivalent.

1. T ∈ AMc(H) .

2. T † ∈K(H) and N(T ) is finite-dimensional.

3. There exists a sequence (λn) of complex numbers and an orthonormal subset
{ϕn : n ∈ N} of H such that limn→∞ |λn| → ∞ and Tϕn = λnϕn for each n ∈ N .

In this case, D(T ) =

{
x ∈ H :

∞

∑
n=1

|λn|2|〈x,ϕn〉|2 < ∞

}
and

Tx =
∞

∑
n=1

λn〈x,ϕn〉ϕn, for all x ∈ D(T ).

4. T is diagonalizable, that is, H has an orthonormal basis consisting of eigenvec-
tors of T and each eigenvalue of T has finite multiplicity.

5. σ(T ) ⊆ {0}∪{λn : n ∈ N} and every spectral value is an eigenvalue with finite
multiplicity, that is, σ(T ) = σd(T ) .

6. The resolvent Rλ (T ) = (T −λ I)−1 is compact for one, hence for all, λ ∈ ρ(T ) .

7. The embedding JT : (D(T ),‖·‖T )→H is compact. Here ‖x‖T = (‖x‖2+‖Tx‖2)
1
2

for all x ∈ D(T ) .

Proof. Equivalence of (1) and (2) follows by Theorem 3.26. Next assume that
(2) is true. They by the spectral theorem for compact normal operators, there exists a
sequence (μn) of complex numbers and an orthonormal system {φn} such that

T †y =
∞

∑
n=1

μn〈y,φn〉φn, for all x ∈ H.
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From the above equation it is clear that T †(φn) = μnφn for each n ∈ N . That is, φn ∈
R(T †) = C(T ) . It is also clear that T †(y) ∈ C(T ) . Since T is normal, it is easy to
observe that N(T ) = N(T ∗) = N(T †) . Note that φn = PR(T)(φn) = TT †(φn) for all
n ∈ N . Hence we have Tφn = λnφn for all n ∈ N , where

λn =

{
0 if μn = 0,

μ−1
n if λn �= 0.

Since T †y ∈C(T ) , TT †y is meaningful. Following the similar steps as in (3) of The-
orem 3.29, we can determine D(T ) easily. On the other hand, following similar argu-
ments about T and T † , we can easily prove the implication (3) ⇒ (2) .

Proof of (3) ⇔ (4) : By (3) it is clear that T |R(T) is diagonalizable. Observe that
if 0 ∈ σ(T ) and as it is an isolated point, it must be an eigenvalue of T and R(T )
must be closed. So we have H = R(T )⊕R(T)⊥ = R(T )⊕N(T ) . As N(T ) is finite
dimesnsional, we can take an orthonormal basis of it and adjoin it with the orthonormal
basis {φn : n ∈ N} of R(T ) so that we can obtain an orthonormal basis of H consisting
of eigenvectors of T .

On the other hand, since T is not bounded, we can conclude that σ(T ) is un-
bounded. It is easy to establish the representation of T and determine the domain.

Proof of (4) ⇔ (5) : the implication (4) ⇒ (5) is easy to prove. To prove the
other way implication, let us assume that σ(T ) = σd(T ) . Let σ(T ) = {λ1,λ2,λ3, . . .} .
Write Gn = N(T − λnI) . It is easy to prove that each Gn reduces T . By using the

Zorn’s Lemma, we can show that H =
∞⊕

n=1

Gn from which we can conclude that T is

diagonalizable.
Proof of (5)⇔ (6) : Let us assume that σ(T ) = σd(T ) = {λ1,λ2,λ3, . . .} . Since T

is unbounded, σ(T ) is unbounded closed subset of C . Hence Tx =
∞

∑
n=1

λnPnx , where

Pn is an orthogonal projection onto N(T −λnI) with

D(T ) =

{
x ∈ H :

∞

∑
n=1

|λn|2‖Pnx‖2 < ∞

}
.

Hence if λ ∈ ρ(T ) , then

(T −λ I)−1 =
∞

∑
n=1

(λn−λ )−1Pn.

It is easy to see that |(λn − λ )−1| → 0 as n → ∞ . From this it is easy to see that
(T −λ I)−1 ∈ K(H) .

Proof of (6) ⇔ (7) : the proof of this follows along the similar lines of the self-
adjoint case. We refer to [23, Theorem 5.12] for details. �

Next, we turn our attention to invariant and hyperinvariant subspaces. Recall that a
closed subspace M of H is said to be invariant under a densely defined closed operator
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T if T (D(T )∩M) ⊆ M , and hyperinvariant if M is invariant under every A ∈ B(H)
such that AT ⊆ TA .

If T ∈AMc(H) is unbounded and has a bounded inverse, then T has a nontrivial
hyperinvariant subspace [12, Theorem 4.14]. Here we remove the invertibility condition
and prove the same result.

PROPOSITION 3.31. If T ∈AMc(H) is densely defined and unbounded, then T
has a non trivial hyperinvariant subspace.

Proof. If T is bijective, then T−1 ∈ B(H) . Hence by [12, Theorem 4.14], T
has a hyperinvariant subspace. So assume that T is not bijective. Note that R(T ) is
closed by [12, Proposition 4.2]. If T is one-to-one but not onto, then R(T ) is a non
trivial hyperinvariant subspace for T . If T is onto but not one-to-one, then N(T ) is a
hyperinvariant subspace for T . �

COROLLARY 3.32. Assume T ∈ C(H) is densely defined, unbounded. If R(T )
is closed and T † ∈K(H) , then T has a hyperinvariant subspace.

Proof. First note that if N(T ) �= {0} , then clearly N(T ) is a hyperinvariant sub-
space for T . So assume that N(T ) = {0} . By Theorem 3.25, it follows that T ∈
AMc(H) . Hence by Theorem 3.31, it is clear that T has a hyperinvariant subspace. �
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