ON 2×2 POSITIVE MATRICES OF τ-MEASURABLE OPERATORS

Bahargul Nurahemet and Myrzagali N. Ospanov*

(Communicated by F. Hansen)

Abstract. Let \mathscr{M} be a semi-finite von Neumann algebra. We proved the following inequalities are hold and equivalent:
(i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then $y \preccurlyeq \log x$.
(ii) If $a, b \in \mathscr{M}, x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
a^{*} z b+b^{*} z^{*} a \preccurlyeq \log a^{*} x a+b^{*} y b .
$$

(iii) If $x, y, z \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*}+z \preccurlyeq \log x+y$.
(iv) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are positive operators, then $x-y \preccurlyeq{ }_{\log } x+y$.
(v) If $x, y, z \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*} \oplus z \preccurlyeq_{\log } x \oplus y$.
(vi) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are normal operators and $z \in L_{\log _{+}}(\mathscr{M})$ is positive operator, then for any contraction $a \in \mathscr{M}$,

$$
\left|z a(x+y) a^{*} z\right| \preccurlyeq \log z a(|x|+|y|) a^{*} z .
$$

1. Introduction

We denote the set of all $n \times n$ complex matrices by \mathbb{M}_{n} and by $\mathbb{M}_{2}\left(\mathbb{M}_{n}\right)$ the set of all 2×2 block matrices, i.e.,

$$
\mathbb{M}_{2}\left(\mathbb{M}_{n}\right)=\left\{\left(\begin{array}{ll}
x_{1,1} & x_{1,2} \\
x_{2,1} & x_{2,2}
\end{array}\right), x_{i, j} \in \mathbb{M}_{n}, i, j=1,2\right\}
$$

We use the direct sum notation $x \oplus y$ for the block-diagonal matrix $\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$. Bourin proved that if $\left(\begin{array}{cc}a & c \\ c^{*} & b\end{array}\right)$ and $\left(\begin{array}{ll}a & c^{*} \\ c & b\end{array}\right)$ are positive block-matrix with entries in \mathbb{M}_{n}, then

$$
\begin{equation*}
\prod_{j=1}^{k} s_{j}(c) \leqslant \prod_{j=1}^{k} s_{j}\left(a^{\frac{1}{2}} b^{\frac{1}{2}}\right), \quad k=1,2, \cdots, n \tag{1}
\end{equation*}
$$

[^0]where $s_{j}(x)(j=1,2, \cdots, n)$ is singular value of $x \in \mathbb{M}_{n}$ (see [12, Theorem 4.1]).
Let $x, y \in \mathbb{M}_{n}$ be Hermitian matrices such that $\pm y \leqslant x$. In general,
$$
s_{j}(y) \leqslant s_{j}(x), \quad j=1,2, \cdots, n
$$
not holds (see [3, p. 121]). But, Bourin, Hirzallah and Kittaneh [1] proved that the following relation holds.
\[

$$
\begin{equation*}
\prod_{j=1}^{k} s_{j}(y) \leqslant \prod_{j=1}^{k} s_{j}(x), \quad k=1,2, \cdots, n \tag{2}
\end{equation*}
$$

\]

Notice that (2) can also be concluded from the inequality (2.4) in [10] (also see [3, Theorem 4.1]). On the other hand,

$$
0 \leqslant \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
x+y & 0 \\
0 & x-y
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right)
$$

and $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ is a unitary operator in $\mathbb{M}_{2}(\mathscr{M})$, where 1 is the identity matrix in \mathbb{M}_{n}. Hence, we have that for $x, y \in \mathbb{M}_{n}$ are Hermitian matrices $\pm y \leqslant x$ if and only if $\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \geqslant 0$ (see [7]). Therefore, (2) also follows from (1).

If $x, y \in \mathbb{M}_{n}$ are positive matrices, then $x-y, x+y$ are Hermitian matrices such that $\pm(x-y) \leqslant x+y$. By (2),

$$
\begin{equation*}
x-y \preccurlyeq \log x+y . \tag{3}
\end{equation*}
$$

Conversely, if $x, y \in \mathbb{M}_{n}$ are Hermitian matrices $\pm y \leqslant x$, then $\frac{x-y}{2}, \frac{x+y}{2} \in \mathbb{M}_{n}$ are positive matrices. Using (3), one get (2). In [2, Proposition 1.1], Bourin and Lee proved that if $a \in \mathbb{M}_{n}$ is positive and $x, y \in \mathbb{M}_{n}$ are normal matrices, then for all $p \geqslant 1$,

$$
\begin{equation*}
\prod_{j=1}^{k} s_{j}\left(|a(x+y) a|^{p}\right) \leqslant \prod_{j=1}^{k} s_{j}\left(2^{p-1} a^{p}\left(|x|^{p}+|y|^{p}\right) a^{p}\right), \quad k=1,2, \cdots, n \tag{4}
\end{equation*}
$$

It is clear that (4) implies (3).
Let (\mathscr{M}, τ) be a semi-finite von Neumann algebra. We denote by $L_{0}(\mathscr{M})$ the set of all τ-measurable operators and by $\mu_{t}(x)$ the generalized singular number of $x \in L_{0}(\mathscr{M})$. In this paper, we generalize (4) for operators in $L_{\log _{+}}(\mathscr{M})$ (see next section for definition). We prove the following inequalities are equivalent:
(i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then $y \preccurlyeq{ }_{\log } x$.
(ii) If $a, b \in \mathscr{M}, x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
a^{*} z b+b^{*} z^{*} a \preccurlyeq \log a^{*} x a+b^{*} y b
$$

(iii) If $x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*}+z \preccurlyeq \log x+y$.
(iv) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are positive operators, then $x-y \preccurlyeq \log x+y$.
(v) If $x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{rr}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*} \oplus z \preccurlyeq \log x \oplus y$.
(vi) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are normal operators and $z \in L_{\log _{+}}(\mathscr{M})$ is positive operator, then for any contraction $a \in \mathscr{M}$,

$$
\left|z a(x+y) a^{*} z\right| \preccurlyeq \log z a(|x|+|y|) a^{*} z .
$$

Using this result and an Araki-Lieb-Thirring type inequality in the τ-measurable operator case ([8, Lemma 3.1]), we extend the (4) and [2, Corollary 2.10 and 2.13] to the τ-measurable case.

2. Preliminaries

Let $\Omega=(0, \alpha)(0<\alpha \leqslant \infty)$ be equipped with the usual Lebesgue measure μ. We denote by $L_{0}(\Omega)$ the space of μ-measurable real-valued functions f on Ω such that $\mu(\{\omega \in \Omega:|f(\omega)|>s\})<\infty$ for some s. The decreasing rearrangement function $f^{*}:[0, \infty) \mapsto[0, \infty]$ for $f \in L_{0}(\Omega)$ is defined by

$$
f^{*}(t)=\inf \{s>0: \mu(\{\omega \in \Omega:|f(\omega)|>s\}) \leqslant t\}
$$

for $t \geqslant 0$. If $f, g \in L_{0}(\Omega)$ such that $\int_{0}^{t} f^{*}(s) d s \leqslant \int_{0}^{t} g^{*}(s) d s$ for all $t \geqslant 0, f$ is said to be majorized by g, denoted by $f \preccurlyeq g$. Let E be a quasi-Banach subspace of $L_{0}(\Omega)$, simply called a quasi-Banach function space on Ω in the sequel. E is said to be symmetric if, for $f \in E$ and $g \in L_{0}(\Omega)$ such that $g^{*}(t) \leqslant f^{*}(t)$ for all $t \geqslant 0$, one has $g \in E$ and $\|g\|_{E} \leqslant\|f\|_{E} ; E$ is fully symmetric if, for $f \in L_{0}(\Omega)$ and $g \in E$ such that $f \preccurlyeq g$, we have $f \in E$ and $\|f\|_{E} \leqslant\|g\|_{E}$.

We always denote by \mathscr{M} a semi-finite von Neumann algebra with a faithful normal finite trace τ and by $L_{0}(\mathscr{M})$ the set of all τ-measurable operators associated with (\mathscr{M}, τ). For $x \in L_{0}(\mathscr{M})$, the distribution function $\lambda .(x)$ of x is defined by $\lambda_{t}(x)=$ $\tau\left(e_{(t, \infty)}(|x|)\right)$ for $t>0$, where $e_{(t, \infty)}(|x|)$ is the spectral projection of $|x|$ in the interval (t, ∞), and the generalized singular numbers μ. (x) of x by

$$
\mu_{t}(x)=\inf \left\{s>0: \lambda_{s}(x) \leqslant t\right\} \quad \text { for } \quad t>0
$$

Let E be a symmetric quasi-Banach function space on $(0, \alpha)(\tau(1)=\alpha)$. Define

$$
E(\mathscr{M}, \tau)=\left\{x \in L_{0}(\mathscr{M}):\|\mu(x)\|_{E}<\infty\right\}, \quad\|x\|_{E}=\|\mu(x)\|_{E}
$$

Then $\left(E(\mathscr{M}, \tau),\|\cdot\|_{E}\right)$ is a quasi-Banach space. We call it noncommutative symmetric space and denote by $E(\mathscr{M})$ (see $[15,17]$).

If $x, y \in L_{0}(\mathscr{M})$, then we shall say that x is submajorized by y, written $x \preccurlyeq y$, if and only if $\mu(x) \preccurlyeq \mu(y)$.

Let

$$
L_{\log _{+}}(\mathscr{M})=\left\{x \in L_{0}(\mathscr{M}): \log _{+}|x| \in L_{1}(\mathscr{M})+\mathscr{M}\right\}
$$

where $\log _{+} t=\{\log t, 0\}, t>0$. We recall that $L_{\log _{+}}(\mathscr{M})$ is a $*$-algebra and

$$
L_{1}(\mathscr{M})+\mathscr{M} \subset L_{\log _{+}}(\mathscr{M}) \subset L_{0}(\mathscr{M})
$$

For $x \in L_{\log _{+}}(\mathscr{M})$ and $t \in(0, \tau(1))$, the determinant function associated with x is defined by

$$
\Delta_{t}(x)=e^{\int_{0}^{t} \log \mu_{s}(x) d s}
$$

From the definition and [6, Lemma 2.5], we easy deduce that if $x \in L_{\log _{+}}(\mathscr{M})$ and $t>0$, then

$$
\begin{equation*}
\Delta_{t}(x)=\Delta_{t}\left(x^{*}\right)=\Delta_{t}(|x|) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{t}\left(x^{r}\right)=\Delta_{t}(x)^{r}, \quad \text { if } r>0 \text { and } x \text { is positive. } \tag{6}
\end{equation*}
$$

For the determinant function, we have the following Weyl inequality:

$$
\begin{equation*}
\Delta_{t}(x y) \leqslant \Delta_{t}(x) \Delta_{t}(y), \quad \forall x, y \in L_{\log _{+}}(\mathscr{M}), \quad \forall t>0 \tag{7}
\end{equation*}
$$

(see [4, Theorem 4.2]). Recall that if $x, y \in L_{\log _{+}}(\mathscr{M})$ and the product $x y$ is self adjoint, then

$$
\begin{equation*}
\Delta_{t}(x y) \leqslant \Delta_{t}(y x), \quad t>0 \tag{8}
\end{equation*}
$$

If $x, y \in L_{\log _{+}}(\mathscr{M})$ such that

$$
\int_{0}^{t} \log \mu_{s}(x) d s \leqslant \int_{0}^{t} \log \mu_{s}(y) d s, \quad t>0
$$

x is said to be logarithmically submajorized by y, denoted by $x \preccurlyeq \log y$. It is clear that $x \preccurlyeq \log y$ if and only if $\Delta_{t}(x) \leqslant \Delta_{t}(y)$ for all $t>0$. For $f(t)=e^{t}$ using [5, Lemma 4.1], we get that $x \preccurlyeq \log y$ implies $x \preccurlyeq y$.

We recall the well-known equality:

$$
\begin{align*}
& e^{\frac{1}{t} \int_{0}^{t} \log |f(s)| d s}=\lim _{p \rightarrow 0}\left(\frac{1}{t} \int_{0}^{t} \left\lvert\, f\left(\left.s\right|^{p} d s\right)^{\frac{1}{p}}\right.\right. \tag{9}\\
& \text { if } \int_{0}^{t} \mid f\left(\left.s\right|^{p} d s<+\infty \text { for some } p>0\right.
\end{align*}
$$

(see page 71 of [13]).
We remark that if $\mathscr{M}=\mathbb{M}_{m}$ and τ is the standard trace, then

$$
\mu_{t}(x)=s_{j}(x), \quad t \in[j-1, j), \quad j=1,2, \cdots, m
$$

Hence, if $x, y \in \mathbb{M}_{m}$, then $x \preccurlyeq y$ is equivalent to

$$
\sum_{j=1}^{k} s_{j}(x) \leqslant \sum_{j=1}^{k} s_{j}(y), \quad 1 \leqslant k \leqslant m
$$

$x \preccurlyeq \log y$ is equivalent to

$$
\prod_{j=1}^{k} s_{j}(x) \leqslant \prod_{j=1}^{k} s_{j}(y), \quad 1 \leqslant k \leqslant m
$$

We will denote the semi-finite von Neumann algebra

$$
\mathbb{M}_{2}(\mathscr{M})=\left\{\left(\begin{array}{ll}
x_{1,1} & x_{1,2} \\
x_{2,1} & x_{2,2}
\end{array}\right), x_{i, j} \in \mathscr{M}, i, j=1,2\right\}
$$

on Hilbert space $\mathscr{H} \oplus \mathscr{H}$ by $\mathbb{M}_{2}(\mathscr{M})$, which is associated with the semi-finite trace $\operatorname{Tr} \otimes \tau$.

We will use the following result (see [14, Proposition 3]), if $x \in L_{0}(\mathscr{M})$, then

$$
\begin{equation*}
\mu_{t}\left(x \oplus x^{*}\right)=\mu_{\frac{t}{2}}(x), \quad t>0 \tag{10}
\end{equation*}
$$

3. Main results

First, we extend (2) to the semi-finite von Neumann algebra case.
Lemma 1. Let $x, y \in \mathscr{M}$ be self-adjoint operators such that $\pm y \leqslant x$. Then

$$
y \preccurlyeq_{\log } x
$$

Proof. We use the method in the proof of [1, inequality (1.6)]. It is clear that

$$
0 \leqslant \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
x+y & 0 \\
0 & x-y
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right),
$$

$\left(\begin{array}{cc}x+y & 0 \\ 0 & x-y\end{array}\right) \geqslant 0$ and $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ is a unitary operator in $\mathbb{M}_{2}(\mathscr{M})$. It follows that $\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \geqslant 0$. Using [9, Lemma 2.2], we obtain that there exists a contraction a such that $y=x^{\frac{1}{2}} a x^{\frac{1}{2}}$. By (7) and (8), we get that

$$
\begin{aligned}
\Delta_{t}(y) & =\Delta_{t}\left(x^{\frac{1}{2}} a x^{\frac{1}{2}}\right) \leqslant \Delta_{t}(x a) \\
& =e^{\int_{0}^{t} \log \mu_{s}(x a) d s} \leqslant e^{\int_{0}^{t} \log \|a\| \mu_{s}(a) d s} \\
& \leqslant e^{\int_{0}^{t} \log \mu_{s}(x) d s}=\Delta_{t}(x), \quad t>0 .
\end{aligned}
$$

Lemma 2. Let $x, y \in L_{\log _{+}}(\mathscr{M})$ be positive operators. Then $x-y \preccurlyeq \log x+y$.

Proof. First assume that x, y are self-adjoint operators in \mathscr{M}. Since $\pm(x-y) \leqslant$ $x+y$, by Lemma 1, the result holds.

If $x, y \in L_{\log _{+}}(\mathscr{M})$. Set $x_{n}=x e_{[0, n]}(x), y_{n}=y e_{[0, n]}(y)$ for $n \in \mathbb{N}$. Then $x_{n}, y_{n} \in \mathscr{M}$ are positive operators, $x_{n} \leqslant x, y_{n} \leqslant y, x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in measure. Using [6, Lemma 3.4 and 2.5 (iii)], Fatou's lemma and the first case, we get

$$
\begin{aligned}
\int_{0}^{t} \log \mu_{s}(x-y) d s & \leqslant \int_{0}^{t} \liminf _{n \rightarrow \infty} \log \mu_{s}\left(x_{n}-y_{n}\right) d s \leqslant \liminf _{n \rightarrow \infty} \int_{0}^{t} \log \mu_{s}\left(x_{n}-y_{n}\right) d s \\
& \leqslant \liminf _{n \rightarrow \infty}^{t} \log \mu_{s}\left(x_{n}+y_{n}\right) d s \leqslant \int_{0}^{t} \log \mu_{s}(x+y) d s .
\end{aligned}
$$

THEOREM 1. The following statements are equivalent:

(i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then $y \preccurlyeq \log x$.
(ii) If $a, b \in \mathscr{M}, x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
a^{*} z b+b^{*} z^{*} a \preccurlyeq \log a^{*} x a+b^{*} y b
$$

(iii) If $x, y, z \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*}+z \preccurlyeq \log x+y$.
(iv) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are positive operators, then $x-y \preccurlyeq{ }_{\log } x+y$.
(v) If $x, y, z \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then $z^{*} \oplus z \preccurlyeq \log x \oplus y$.
(vi) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are normal operators and $z \in L_{\log _{+}}(\mathscr{M})$ is positive operator, then for any contraction $a \in \mathscr{M}$,

$$
\left|z a(x+y) a^{*} z\right| \preccurlyeq \log z a(|x|+|y|) a^{*} z .
$$

Proof. (i) \Rightarrow (ii) If $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, we use the method in the proof of [3, Theorem 3.2 and 4.4] to obtain that

$$
\left(\begin{array}{cc}
a^{*} x a+b^{*} y b+a^{*} z b+b^{*} z^{*} & a \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a^{*} & b^{*} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & z \\
z^{*} & y
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right) \geqslant 0
$$

and

$$
\left(\begin{array}{cc}
a^{*} x a+b^{*} y b-a^{*} z b-b^{*} z^{*} & a \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a^{*} & -b^{*} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & z \\
z^{*} & y
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
-b & 0
\end{array}\right) \geqslant 0 .
$$

Hence, $a^{*} x a+b^{*} y b \geqslant \pm\left(a^{*} z b+b^{*} z^{*} a\right)$, so by (i), we obtain (ii).
(ii) \Rightarrow (iii) is clear.
(iii) \Rightarrow (i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then $\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \geqslant 0$. By (iii), we deduce that (i) holds.
(i) \Rightarrow (iv) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are positive operators, then $\pm(x-y) \leqslant x+y$. By (i), we obtain (iv).
(iv) \Rightarrow (i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then $x-y \geqslant 0, x+y \geqslant 0$. By (iv), we obtain (i).
(i) \Rightarrow (v) Since $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$ and $\left(\begin{array}{cc}x & -z \\ -z^{*} & y\end{array}\right) \geqslant 0$, we get that

$$
\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) \geqslant \pm\left(\begin{array}{cc}
0 & z \\
z^{*} & 0
\end{array}\right)
$$

Hence, by (i), $z^{*} \oplus z \preccurlyeq \log x \oplus y$.
(v) \Rightarrow (vi) Let $x=u|x|$ be the polar decomposition of x. Then $x=\left.|x|^{\frac{1}{2}} u\right|^{\frac{1}{2}}$ and

$$
\left(\begin{array}{cc}
|x| & x \\
x^{*} & |x|
\end{array}\right)=\left(\begin{array}{cc}
|x|^{\frac{1}{2}} & 0 \\
0 & |x|^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
u^{*} & 1
\end{array}\right)\left(\begin{array}{cc}
|x|^{\frac{1}{2}} & 0 \\
0 & |x|^{\frac{1}{2}}
\end{array}\right)
$$

It is clear that $\left(\begin{array}{cc}1 & u \\ u^{*} & 1\end{array}\right) \geqslant 0$, and so $\left(\begin{array}{cc}|x| & x \\ x^{*} & |x|\end{array}\right) \geqslant 0$. Similarly, $\left(\begin{array}{cc}|y| & y \\ y^{*} & |y|\end{array}\right) \geqslant 0$. Hence, $\left(\begin{array}{cc}|x|+|y| & x+y \\ x^{*}+y^{*} & |x|+|y|\end{array}\right) \geqslant 0$. Therefore,

$$
\left(\begin{array}{cc}
z a(|x|+|y|) a^{*} z & z a(x+y) a^{*} z \\
z a\left(x^{*}+y^{*}\right) a^{*} z & z a(|x|+|y|) a^{*} z
\end{array}\right)=\left(\begin{array}{cc}
z a & 0 \\
0 & z a
\end{array}\right)\left(\begin{array}{cc}
|x|+|y| & x+y \\
x^{*}+y^{*} & |x|+|y|
\end{array}\right)\left(\begin{array}{cc}
a^{*} z & 0 \\
0 & a^{*} z
\end{array}\right) \geqslant 0 .
$$

Using (v) and (10), we obtain that

$$
\begin{aligned}
\Delta_{\frac{t}{2}}\left(z a(x+y) a^{*} z\right)^{2} & =\Delta_{t}\left(z a(x+y) a^{*} z \oplus z a\left(x^{*}+y^{*}\right) a^{*} z\right) \\
& \leqslant \Delta_{t}\left(z a(|x|+|y|) a^{*} z \oplus z a(|x|+|y|) a^{*} z\right) \\
& =\Delta_{t}\left(z a(|x|+|y|) a^{*} z\right)^{2}, \quad t>0 .
\end{aligned}
$$

It follows that

$$
z a(x+y) a^{*} z \preccurlyeq \log z a(|x|+|y|) a^{*} z .
$$

(vi) \Rightarrow (iv) is trivial.

REMARK 1. From (v) of Theorem 1 it follows that [11, Theorem 3.1] holds for operators in $L_{\log _{+}}(\mathscr{M})$.

Now, we extend [2, Corollary 2.10 and 2.13] to the τ-measurable case.

Proposition 1. Let $p \geqslant 1, z \in L_{\log _{+}}(\mathscr{M})$ be positive operator and $a \in \mathscr{M}$ be a contraction.
(i) If $x_{i} \in L_{\log _{+}}(\mathscr{M}), i=1,2, \cdots, m$ are normal operators, then

$$
\left|z a\left(\frac{\sum_{i=1}^{m} x_{i}}{m}\right) a^{*} z\right|^{p} \preccurlyeq \log \left(z a\left(\frac{\sum_{i=1}^{m}\left|x_{i}\right|}{m}\right) a^{*} z\right)^{p} \preccurlyeq \log z^{p} a\left(\frac{\sum_{i=1}^{m}\left|x_{i}\right|^{p}}{m}\right) a^{*} z^{p} .
$$

(ii) If $x \in L_{\log _{+}}(\mathscr{M})$, then

$$
\left|z a\left(\frac{x+x^{*}}{2}\right) a^{*} z\right|^{p} \preccurlyeq \log \left(z a\left(\frac{|x|+\left|x^{*}\right|}{2}\right) a^{*} z\right)^{p} \preccurlyeq \log z^{p} a\left(\frac{|x|^{p}+\left|x^{*}\right|^{p}}{2}\right) a^{*} z^{p} .
$$

Proof. (i) Let $Z=\left(\begin{array}{cccc}z & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right), X=\left(\begin{array}{cccc}x_{1} & 0 & \cdots & 0 \\ 0 & x_{2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & x_{m}\end{array}\right), A=\frac{1}{\sqrt{m}}\left(\begin{array}{cccc}a & a & \cdots & a \\ 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right)$. By (vi) of Theorem 1,

$$
\left|Z A X A^{*} Z\right| \preccurlyeq \log Z A|X| A^{*} Z,
$$

hence,

$$
\left|z a\left(\frac{\sum_{i=1}^{m} x_{i}}{m}\right) a^{*} z\right|^{p} \preccurlyeq \log \left(z a\left(\frac{\sum_{i=1}^{m}\left|x_{i}\right|}{m}\right) a^{*} z\right)^{p}
$$

Using [8, Lemma 3.1], we deduce that for any $r>0$,

$$
\left[\left(Z A|X| A^{*} Z\right)^{p}\right]^{r} \preccurlyeq\left(Z^{p} A|X|^{p} A^{*} Z^{p}\right)^{r}
$$

Applying (9), we obtain that $\left|Z A X A^{*} Z\right|^{p} \preccurlyeq \log \left(Z A|X| A^{*} Z\right)^{p}$, i.e.,

$$
\left(z a\left(\frac{\sum_{i=1}^{m}\left|x_{i}\right|}{m}\right) a^{*} z\right)^{p} \preccurlyeq \log z^{p} a\left(\frac{\sum_{i=1}^{m}\left|x_{i}\right|^{p}}{m}\right) a^{*} z^{p} .
$$

(ii) From the proof of $(v) \Rightarrow$ (vi) of Theorem 1, we know that $\left(\begin{array}{cc}\left|x^{*}\right| & x \\ x^{*} & |x|\end{array}\right) \geqslant 0$. Hence,

$$
\left(\begin{array}{cc}
|x| & x^{*} \\
x & \left.\right|^{*} x \mid
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\mid x^{*} & x \\
x^{*} & |x|
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \geqslant 0
$$

and so $\left(\begin{array}{cc}z a\left(\frac{|x|+\left|x^{*}\right|}{2}\right) z a^{*} & z a\left(\frac{x^{*}+x}{2}\right) z a^{*} \\ z a\left(\frac{x+x^{*}}{2}\right) z a^{*} & z a\left(\frac{\left.\left\lvert\, \frac{x^{*}|+|x|}{2}\right.\right) z a^{*}}{}\right.\end{array}\right) \geqslant 0$. Using (iii) of Theorem 1, we deduce that

$$
z a\left(\frac{x^{*}+x}{2}\right) z a^{*} \preccurlyeq \log z a\left(\frac{|x|+\left|x^{*}\right|}{2}\right) z a^{*}
$$

So, it follows that $\left|z a\left(\frac{x+x^{*}}{2}\right) a^{*} z\right|^{p} \preccurlyeq \log \left(z a\left(\frac{|x|+\left|x^{*}\right|}{2}\right) a^{*} z\right)^{p}$.
Let $Z=\left(\begin{array}{ll}z & 0 \\ 0 & 0\end{array}\right), X=\left(\begin{array}{cc}|x| & 0 \\ 0 & \left|x^{*}\right|\end{array}\right)$ and $A=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}a & a \\ 0 & 0\end{array}\right)$. The remainder of the proof follows exactly the same way as in the proof of (i).

COROLLARY 1. The following statements are equivalent:
(i) If $x, y \in \mathbb{M}_{n}$ are Hermitian matrices and $\pm y \leqslant x$, then

$$
\prod_{j=1}^{k} s_{j}(y) \leqslant \prod_{j=1}^{k} s_{j}(x), \quad k=1,2, \cdots, n
$$

(ii) If $x, y, z, a, b \in \mathbb{M}_{n}$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
\prod_{j=1}^{k} s_{j}\left(a^{*} z b+b^{*} z^{*} a\right) \leqslant \prod_{j=1}^{k} s_{j}\left(a^{*} x a+b^{*} y b\right), \quad k=1,2, \cdots, n
$$

(iii) If $x, y, \in \mathbb{M}_{n}$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
\prod_{j=1}^{k} s_{j}\left(z+z^{*}\right) \leqslant \prod_{j=1}^{k} s_{j}(x+y), \quad k=1,2, \cdots, n
$$

(iv) If $x, y \in \mathbb{M}_{n}$ are positive semi-definite matrices, then

$$
\prod_{j=1}^{k} s_{j}(x-y) \leqslant \prod_{j=1}^{k} s_{j}(x+y), \quad k=1,2, \cdots, n
$$

(v) If $x, y, z \in \mathbb{M}_{n}$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
\prod_{j=1}^{k} s_{j}\left(z \oplus z^{*}\right) \leqslant \prod_{j=1}^{k} s_{j}(x \oplus y), \quad k=1,2, \cdots, n
$$

(vi) If $x, y \in \mathbb{M}_{n}$ are normal matrix and $z \in \mathbb{M}_{n}$ is positive matrix, then for any contraction matrix $a \in \mathbb{M}_{n}$,

$$
\prod_{j=1}^{k} s_{j}\left(z a(x+y) a^{*} z\right) \leqslant \prod_{j=1}^{k} s_{j}\left(z a(|x|+|y|) a^{*} z\right), \quad k=1,2, \cdots, n
$$

THEOREM 2. Let E be a fully symmetric Banach function space on $(0, \alpha)$ and f be a continuous increasing function on $(0, \alpha)$ such that $f(0)=0$ and $t \rightarrow f\left(e^{t}\right)$ is convex. The following holds:
(i) If $x, y \in L_{\log _{+}}(\mathscr{M})$ are self-adjoint operators such that $\pm y \leqslant x$, then

$$
\|f(|y|)\|_{E} \leqslant\|f(|x|)\|_{E}
$$

(ii) If $a, b \in \mathscr{M}, x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
\left\|f\left(\left|a^{*} z b+b^{*} z^{*} a\right|\right)\right\|_{E} \leqslant\left\|f\left(\left|a^{*} x a+b^{*} y b\right|\right)\right\|_{E}
$$

(iii) If $x, y \in L_{\log _{+}}(\mathscr{M})$ and $\left(\begin{array}{cc}x & z \\ z^{*} & y\end{array}\right) \geqslant 0$, then

$$
\left\|f\left(\left|z^{*} \oplus z\right|\right)\right\|_{E} \leqslant\|f(|x \oplus y|)\|_{E}
$$

Corollary 2. Let E be a fully symmetric Banach function space on $(0, \alpha)$ and f be a continuous increasing function on $(0, \alpha)$ such that $f(0)=0$ and $t \rightarrow f\left(e^{t}\right)$ is convex. Then for any $x, y \in E(\mathscr{M})$,

$$
\left\|f\left(\left|x+x^{*}\right|\right)\right\|_{E} \leqslant\left\|f\left(|x|+\left|x^{*}\right|\right)\right\|_{E}
$$

and

$$
\left\|f\left(\left|x+y+x^{*}+y^{*}\right|\right)\right\|_{E} \leqslant \min \left\{\left\|f\left(|x+y|+\left|x^{*}+y^{*}\right|\right)\right\|_{E},\left\|f\left(|x|+\left|x^{*}\right|+|y|+\left|y^{*}\right|\right)\right\|_{E}\right\} .
$$

In the matrix case, the first inequality of Corollary 2 follows from [2, Corollary 2.13].

Proof. Since $\left(\begin{array}{cc}|x|+\left|x^{*}\right| & x^{*}+x \\ x+x^{*} & \left|x^{*}\right|+|x|\end{array}\right) \geqslant 0$, by (iii) of Theorem 1 and [5, Lemma 4.1], we obtain that $\left\|f\left(\left|x+x^{*}\right|\right)\right\|_{E} \leqslant\left\|f\left(\left|x^{*}\right|+|x|\right)\right\|_{E}$. Similarly,

$$
\left(\begin{array}{cc}
|x|+\left|x^{*}\right|+|y|+\left|y^{*}\right| & x^{*}+x+y^{*}+y \\
x+x^{*}+y+y^{*} & \left|x^{*}\right|+|x|+\left|y^{*}\right|+|y|
\end{array}\right) \geqslant 0
$$

and

$$
\left(\begin{array}{cc}
|x+y|+\left|x^{*}+y^{*}\right| & x^{*}+y^{*}+x+y \\
x+y+x^{*}+y^{*} & \left|x^{*}+y^{*}\right|+|x+y|
\end{array}\right) \geqslant 0
$$

From these we get the second inequality.

Corollary 3. Let E be a fully symmetric Banach function space on $(0, \alpha)$ and f be a continuous increasing function on $(0, \alpha)$ such that $f(0)=0$ and $t \rightarrow f\left(e^{t}\right)$ is convex. Then for any $a, b, c, d \in E(\mathscr{M})$,

$$
\max \left\{\begin{array}{l}
\left\|f\left(\left|a b^{*}+b a^{*}+c d^{*}+d c^{*}\right|\right)\right\|_{E}, \\
\left\|f\left(\left|a c^{*}+c a^{*}+b d^{*}+d b^{*}\right|\right)\right\|_{E}, \\
\left\|f\left(\left|a d^{*}+d a^{*}+b c^{*}+c b^{*}\right|\right)\right\|_{E}
\end{array}\right\} \leqslant\left\|f\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2} \mid\right)\right\|_{E}
$$

Proof. Since $\left(\begin{array}{ll}a^{*} & c^{*} \\ b^{*} & d^{*}\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}|a|^{2}+|c|^{2} & a^{*} b+c^{*} d \\ b^{*} a+d^{*} c & |b|^{2}+|d|^{2}\end{array}\right) \geqslant 0$, using (iii) of Theorem 1 and [5, Lemma 4.1], we obtain that

$$
\left\|f\left(\left|a b^{*}+b a^{*}+c d^{*}+d c^{*}\right|\right)\right\|_{E} \leqslant\left\|f\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2} \mid\right)\right\|_{E} .
$$

Similarly,

$$
\left\|f\left(\left|a c^{*}+c a^{*}+b d^{*}+d b^{*}\right|\right)\right\|_{E} \leqslant\left\|f\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2} \mid\right)\right\|_{E}
$$

and

$$
\left\|f\left(\left|a d^{*}+d a^{*}+b c^{*}+c b^{*}\right|\right)\right\|_{E} \leqslant\left\|f\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2} \mid\right)\right\|_{E} .
$$

Acknowledgement. We thank the reviewer for useful comments. This research was funded by the Science Committee of the Ministry of Science and High Education of the Republic of Kazakhstan (Grant No. AP14871523).

REFERENCES

[1] J.-C. Bourin, O. Hirzallah and F. Kittaneh, Jensen matrix inequalities and direct sums, Linear and Multilinear Algebra 58, 5 (2010), 645-652.
[2] J.-C. Bourin, E.-Y. Lee, Matrix inequalities from a two variables functional, Internat. J. Math. 27, 9 (2016), 1650071 (19 pages).
[3] A. BURQAN AND F. Kittaneh, Singular value and norm inequalities associated with 2×2 positive semidefinite block matrices, Electronic Journal of Linear Algebra 32, April (2017), 116-124.
[4] P. Dodds, T. Dodds, F. Sukochev and D. Zanin, Logarithmic submajorization, uniform majorization and Hölder type inequalities for τ-measurable operators, Indag. Math. 31, 5 (2020), 809830.
[5] T. FACK, Sur la notion de valeur caractéristique, J. Operator Theory 7, 2 (1982), 307-333.
[6] T. Fack and H. Kosaki, Generalized s-numbers of τ-measurable operators, Pac. J. Math. 123, 2 (1986), 269-300.
[7] C. H. Fitzgerald and R. A. Horn, On the structure of Hermitian-symmetric inequalities, J. London Math. Soc. s2-15, 3 (1977), 419-430.
[8] Y. Han, On the Araki-Lieb-Thirring inequality in the semifinite von Neumann algebra, Ann. Funct. Anal. 7, 4 (2016), 622-635.
[9] Y. Han, Submajorization and p-norm inequalities associated with τ-measurable operators, Linear and Multilinear Algebra 65, 11 (2017), 2199-2211.
[10] R. A. Horn and R. Mathias, Cauchy-Schwarz inequalities associated with positive semidefinite matrices, Linear Algebra Appl. 142, December (1990), 63-82.
[11] S. Junis And A. OSHANOVA, On submajorization inequalities for matrices of measurable operators, Adv. Oper. Theory 6, Article 8 (2021).
[12] M. Lin, Inequalities related to 2-by-2 block PPT matrices, Oper. Matrices 9, 4 (2015), 917-924.
[13] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York, 1987.
[14] B. K. Sageman and T. N. Bekjan, On some inequalities for norms of commutators, Acta Anal. Funct. Appl. 9, 1 (2007), 21-28.
[15] F. SUKOCHEV, Completeness of quasi-normed symmetric operator spaces, Indag. Math. 25, 2 (2014), 367-388.
[16] O. E. Tikhonov, Continuity of operator functions in topologies connected to a trace on a von Neumann algebra, Izv. Vyssh. Uchebn. Zaved. Mat (Soviet Math.) (31), 1 (1987), 77-79 (110-114).
[17] Q. Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Camb. Phil. Soc. 109, 3 (1991), 541-563.
(Received September 17, 2022)
Bahargul Nurahemet
School of Mathematics and Statistics
Yili Normal University
Yining 835000, China
e-mail: 2423883975@qq.com
Myrzagali N. Ospanov
Faculty of Mechanics and Mathematics
L. N. Gumilyov Eurasian National University Astana 010008, Kazakhstan
e-mail: Ospanov_mn@enu.kz

[^0]: Mathematics subject classification (2020): 46L52, 47L05.
 Keywords and phrases: Generalized singular value, τ-measurable operator, semi-finite von Neumann algebra.

 This research was funded by the Science Committee of the Ministry of Science and High Education of the Republic of Kazakhstan (Grant No. AP14871523).

 * Corresponding author.

