CONVERSE OF FUGLEDE THEOREM

Hranislav Stanković
(Communicated by R. Curto)

Abstract

In this paper, we investigate when subnormal operators T_{1} and T_{2} are quasinormal provided their product is quasinormal. Also, we obtain as a corollary that subnormal n-th roots of a quasinormal operator are quasinormal, and thus we answer the question asked by Curto et al. in [4]. Also, we give sufficient conditions for quasinormal (subnormal) operators T_{1} and T_{2} to be normal if their product is normal. In other words, we find sufficient conditions for the converse of the Fuglede Theorem and also make a connection with the theory of subnormal pairs.

1. Introduction

Let \mathscr{H} be a complex Hilbert space and let $\mathfrak{B}(\mathscr{H})$ denote the algebra of bounded linear operators on \mathscr{H}. An operator T is said to be normal if $T^{*} T=T T^{*}$, quasinormal if T commutes with $T^{*} T$, i.e., $T T^{*} T=T^{*} T^{2}$, subnormal if $T=\left.N\right|_{\mathscr{H}}$, where N is normal and $N(\mathscr{H}) \subseteq \mathscr{H}$, and hyponormal if $T^{*} T \geqslant T T^{*}$. It is well known that

$$
\text { normal } \Rightarrow \text { quasinormal } \Rightarrow \text { subnormal } \Rightarrow \text { hyponormal. }
$$

Obviously, if T is a subnormal operator, then its normal extension N is an uppertriangular operator matrix given by

$$
N=\left[\begin{array}{cc}
T & A \\
0 & B^{*}
\end{array}\right]:\binom{\mathscr{H}}{\mathscr{H} \perp} \mapsto\binom{\mathscr{H}}{\mathscr{H} \perp},
$$

for some $A \in \mathfrak{B}\left(\mathscr{H}^{\perp}, \mathscr{H}\right)$ and $B \in \mathfrak{B}\left(\mathscr{H}^{\perp}\right)$. For more information on theory of upper-triangular operator matrices we refer a reader to [10].

For $S, T \in \mathfrak{B}(\mathscr{H})$ let $[S, T]=S T-T S$. We say that an n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ of operators on \mathscr{H} is (jointly) hyponormal if the operator matrix

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left[\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \cdots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \cdots & {\left[T_{n}^{*}, T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \cdots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right]
$$

[^0]is positive on the direct sum of n copies of \mathscr{H} (cf. [1], [5], [6]). The n-tuple \mathbf{T} is said to be normal if \mathbf{T} is commuting and each T_{i} is normal, and subnormal if \mathbf{T} is the restriction of a normal n-tuple to a common invariant subspace. For $i, j, k \in\{1,2, \ldots, n\}$, \mathbf{T} is called matricially quasinormal if each T_{i} commutes with each $T_{j}^{*} T_{k}, \mathbf{T}$ is (jointly) quasinormal if each T_{i} commutes with each $T_{j}^{*} T_{j}$, and spherically quasinormal if each T_{i} commutes with $\sum_{j=1}^{n} T_{j}^{*} T_{j}$. As shown in [2] and [13], we have
\[

$$
\begin{aligned}
\text { normal } & \Rightarrow \text { matricially quasinormal } \\
& \Rightarrow \text { (jointly) quasinormal } \\
& \Rightarrow \text { spherically quasinormal }
\end{aligned}
$$ \Rightarrow subnormal. . ~ \$
\]

On the other hand, the results in [7] and [13] show that the inverse implications do not hold.

In a recent paper [4], R. E. Curto, S. H. Lee and J. Yoon, partially motivated by the results of their previous articles [8, 9], asked the following question:

Problem 1. Let T be a subnormal operator, and assume that T^{2} is quasinormal. Does it follow that T is quasinormal?

With the additional assumption of left invertibility they showed that a left invertible subnormal operator T whose square T^{2} is quasinormal must be quasinormal (see [4, Theorem 2.3]). It remained an open question whether this is true in general without any assumption about left invertibility until the paper [14] was published. Moreover, the authors proved even stronger result:

THEOREM 2. [14] Let $T \in \mathfrak{B}(\mathscr{H})$ be a subnormal operator such that T^{n} is quasinormal for some $n \in \mathbb{N}$. Then T is quasinormal.

In Section 2, we give a generalization of Theorem 2. The crucial step is the following observation:

We can reformulate Problem 1 as follows: Let $\mathbf{T}=(T, T)$ be a subnormal pair and assume that $T \cdot T$ is quasinormal. Does it follow that T is quasinormal?

This also gives us the motivation for the following problems:
Problem 3. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair such that $T_{1} T_{2}$ is quasinormal. Find sufficient conditions for T_{1} and T_{2} to be quasinormal.

Problem 4. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a (jointly) quasinormal pair such that $T_{1} T_{2}$ is normal. Find sufficient conditions for T_{1} and T_{2} to be normal.

Problem 5. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair such that $T_{1} T_{2}$ is normal. Find sufficient conditions for T_{1} and T_{2} to be normal.

Problem 3-5 are closely related to celebrated Fuglede Theorem, and especially with its most famous corollary:

Theorem 6. [12] Let T and N be bounded operators on a complex Hilbert space with N being normal. If $T N=N T$, then $T N^{*}=N^{*} T$.

THEOREM 7. [12] If M and N are commuting normal operators, then $M N$ is also normal.

Thus, Problem 5 can be treated as a converse of Fuglede Theorem.

2. Results

The starting point in our discussion will be the following lemma:
Lemma 1. [4] Let $T \in \mathfrak{B}(\mathscr{H})$ be a subnormal operator with normal extension

$$
N=\left[\begin{array}{cc}
T & A \\
0 & B^{*}
\end{array}\right]:\binom{\mathscr{H}}{\mathscr{H} \perp} \mapsto\binom{\mathscr{H}}{\mathscr{H} \perp} .
$$

Then T is quasinormal if and only if $A^{*} T=0$ and normal if and only if $A=0$.
LEMMA 2. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair with the normal extension $\mathbf{N}=$ $\left(N_{1}, N_{2}\right)$ such that T_{2} is quasinormal and $T_{1} T_{2}$ is normal. If T_{1} is left invertible, then T_{2} is normal.

Proof. Let

$$
N_{1}=\left[\begin{array}{cc}
T_{1} & A_{1} \\
0 & B_{1}^{*}
\end{array}\right], \quad N_{2}=\left[\begin{array}{cc}
T_{2} & A_{2} \\
0 & B_{2}^{*}
\end{array}\right]
$$

be the normal extensions for T_{1} and T_{2}, respectively, defined on $\mathscr{K}=\mathscr{H} \oplus \mathscr{H}^{\perp}$. Since $N_{1} N_{2}=N_{2} N_{1}$, by Fuglede Theorem, $N_{1} N_{2}$ is normal. Thus,

$$
N_{1} N_{2}=\left[\begin{array}{cc}
T_{1} T_{2} & T_{1} A_{2}+A_{1} B_{2}^{*} \\
0 & \left(B_{2} B_{1}\right)^{*}
\end{array}\right]
$$

is a normal extension for $T_{1} T_{2}$. Operator $T_{1} T_{2}$ is normal, so, by Lemma 1, we have that $T_{1} A_{2}+A_{1} B_{2}^{*}=0$, i.e., $T_{1} A_{2}=-A_{1} B_{2}^{*}$. Since T_{1} is left invertible, there exists $C_{1} \in \mathfrak{B}(\mathscr{H})$ such that $A_{2}=-C_{1} A_{1} B_{2}^{*}$. From here, $\mathscr{N}\left(B_{2}^{*}\right) \subseteq \mathscr{N}\left(A_{2}\right)$ so $\left.A_{2}\right|_{\mathscr{N}\left(B_{2}^{*}\right)}=0$.

From $N_{2}^{*} N_{2}=N_{2} N_{2}^{*}$ it follows that $A_{2}^{*} T_{2}=B_{2}^{*} A_{2}^{*}$. Since T_{2} is quasinormal, by Lemma 1 we have that $A_{2}^{*} T_{2}=0$ and so $A_{2} B_{2}=0$. Thus, $\left.A_{2}\right|_{\mathscr{R}\left(B_{2}\right)}=0$, and by continuity, $\left.A_{2}\right|_{\overline{\mathscr{R}\left(B_{2}\right)}}=0$. Since $\mathscr{L}=\mathscr{N}\left(B_{2}^{*}\right) \oplus \overline{\mathscr{R}\left(B_{2}\right)}$, it follows that $A_{2}=0$ so T_{2} is normal, by Lemma 1.

Lemma 3. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair with the normal extension $\mathbf{N}=$ $\left(N_{1}, N_{2}\right)$ such that T_{2} is quasinormal and $T_{1} T_{2}$ is normal. If $\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{1}\right)} \subseteq \overline{\mathscr{R}\left(T_{2}^{*}\right)}$ and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$, then T_{2} is normal.

Proof. Since $\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{1}\right)} \subseteq \overline{\mathscr{R}\left(T_{2}^{*}\right)}$ and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$ we have that operators T_{1} and T_{2} have representations

$$
T_{1}=\left[\begin{array}{rr}
T_{1}^{1} & 0 \\
0 & 0
\end{array}\right], \quad T_{2}=\left[\begin{array}{cc}
T_{2}^{1} & 0 \\
0 & 0
\end{array}\right]
$$

respectively, with respect to $\mathscr{H}=\mathscr{N}\left(T_{2}\right)^{\perp} \oplus \mathscr{N}\left(T_{2}\right)$ decomposition. It follows that

$$
N_{1}=\left[\begin{array}{ccc}
T_{1}^{1} & 0 & A_{1}^{1} \\
0 & 0 & A_{1}^{2} \\
0 & 0 & B_{1}^{*}
\end{array}\right]:\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}{ }^{\perp}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H} \perp
\end{array}\right)
$$

is a normal extension for T_{1}^{1} and

$$
N_{2}=\left[\begin{array}{ccc}
T_{2}^{1} & 0 & A_{2}^{1} \\
0 & 0 & A_{2}^{2} \\
0 & 0 & B_{2}^{*}
\end{array}\right]:\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}{ }^{\perp}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}^{\perp}
\end{array}\right)
$$

is a normal extension for T_{2}^{1}. Since $N_{1} N_{2}=N_{2} N_{1}$, operator pair $\mathbf{T}^{1}=\left(T_{1}^{1}, T_{2}^{1}\right)$ is subnormal. From quasinormality of T_{2} we have that T_{2}^{1} is quasinormal, and since $T_{1} T_{2}$ is normal, it follows that $T_{1}^{1} T_{2}^{1}$ is normal.

Obviously, $\mathscr{R}\left(T_{1}^{1}\right)=\mathscr{R}\left(T_{1}\right)$, so $\mathscr{R}\left(T_{1}^{1}\right)$ is closed. Now let $x \in \mathscr{N}\left(T_{1}^{1}\right) \subseteq \mathscr{N}\left(T_{2}\right)^{\perp}$. Then $P_{\mathscr{N}\left(T_{2}\right)} T_{1} x=0$ and from $\mathscr{R}\left(T_{1}\right) \subseteq \mathscr{N}\left(T_{2}\right)^{\perp}$ we have that $T_{1} x=0$, i.e., $x \in$ $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$. It must be $x=0$ so $\mathscr{N}\left(T_{1}^{1}\right)=\{0\}$. Therefore, T_{1}^{1} is left invertible.

If we apply Lemma 2 to operator pair $\mathbf{T}^{1}=\left(T_{1}^{1}, T_{2}^{1}\right) \in \mathfrak{B}\left(\mathscr{N}\left(T_{2}\right)^{\perp}\right)^{2}$, we conclude that T_{2}^{1} is normal. Now it directly follows that T_{2} is also normal.

COROLLARY 1. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a (jointly) quasinormal pair such that $T_{1} T_{2}$ is normal. If $\mathscr{R}\left(T_{1}\right)=\mathscr{R}\left(T_{2}\right)$ is closed and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$, then \mathbf{T} is normal.

Proof. Since T_{1} and T_{2} are hyponormal, we have $\mathscr{R}\left(T_{i}\right) \subseteq \mathscr{R}\left(T_{i}^{*}\right), i=1,2$. Thus, if $\mathscr{R}\left(T_{1}\right)=\mathscr{R}\left(T_{2}\right)$ is closed, then $\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{1}\right)} \subseteq \overline{\mathscr{R}\left(T_{2}^{*}\right)}$ and $\mathscr{R}\left(T_{2}\right)=\overline{\mathscr{R}\left(T_{2}\right)} \subseteq$ $\overline{\mathscr{R}\left(T_{1}^{*}\right)}$. The conclusion now follows directly from Lemma 3 .

Combining Lemma 2, Lemma 3 and Corollary 1 we obtain the following theorem:
THEOREM 8. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a (jointly) quasinormal pair such that $T_{1} T_{2}$ is normal. Then \mathbf{T} is normal if one of the following conditions holds:
(i) T_{1} or T_{2} is right invertible;
(ii) T_{1} and T_{2} are left invertible;
(iii) $\mathscr{R}\left(T_{i}\right)=\overline{\mathscr{R}\left(T_{i}\right)} \subseteq \overline{\mathscr{R}\left(T_{j}^{*}\right)}$ for $i \neq j$ and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$;
(iv) $\mathscr{R}\left(T_{1}\right)=\mathscr{R}\left(T_{2}\right)$ is closed and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$.

Proof. (i) Without loss of generality, assume that T_{1} is right invertible. Then T_{1}^{*} is left invertible and $\mathscr{N}\left(T_{1}\right) \subseteq \mathscr{N}\left(T_{1}^{*}\right)=\{0\}$, as T_{1} is hyponormal. Thus T_{1} is invertible. From quasinormality of T_{1} now follows that T_{1} is normal. Operator T_{2} is normal by Lemma 2. Thus, \mathbf{T} is normal.

The rest of the proof follows directly from Lemma 2, Lemma 3 and Corollary 1.

REMARK 1. In Corollary 1 and Theorem 8 it is enough to assume that T_{1} and T_{2} are quasinormal instead of (joint) quasinormality of $\mathbf{T}=\left(T_{1}, T_{2}\right)$. We will show in the sequel that we can actually remove quasinormality condition on one (or both) of the coordinate operators.

REMARK 2. Although condition (iv) of Theorem 8 actually implies condition (iii) of the same theorem (as shown in the proof of Corollary 1), we listed it due to its elegant form.

This concludes our consideration of Problem 4. We now shift our focus to "implied quasinormality problem" and the converse of Fuglede Theorem.

The following lemma, similar in spirit to Lemma 1, will be a major tool for giving an answer to Problems 3 and 5. We present it here in a slightly different form:

Lemma 4. [3, Lemma 3.1] Let $T \in \mathfrak{B}(\mathscr{H})$ be a subnormal operator. If N is a normal extension for T, then T is quasinormal if and only if \mathscr{H} is invariant for $N^{*} N$.

Proof. Let N be the normal extension of T on $\mathscr{K}=\mathscr{H} \oplus \mathscr{H}^{\perp}$ given by

$$
N=\left[\begin{array}{cc}
T & A \\
0 & B^{*}
\end{array}\right]:\binom{\mathscr{H}}{\mathscr{H} \perp} \mapsto\binom{\mathscr{H}}{\mathscr{H} \perp}
$$

and let $P \in \mathfrak{B}(\mathscr{K})$ be the orthogonal projection onto \mathscr{H}. Note that \mathscr{H} is invariant for $N^{*} N$ if and only if $P N^{*} N P=N^{*} N P$. A direct computation shows that

$$
N^{*} N P=\left[\begin{array}{ll}
T^{*} T & 0 \\
A^{*} T & 0
\end{array}\right] \quad \text { and } \quad P N^{*} N P=\left[\begin{array}{cc}
T^{*} T & 0 \\
0 & 0
\end{array}\right] .
$$

Thus, $P N^{*} N P=N^{*} N P$ if and only if $A^{*} T=0$. The conclusion now follows from Lemma 1.

For any operator $A \in \mathfrak{B}(\mathscr{H})$ let $\operatorname{Comm}(A)$ denote the commutant of A, i.e., $\operatorname{Comm}(A)=\{B \in \mathfrak{B}(\mathscr{H}): A B=B A\}$.

Lemma 5. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair with the normal extension $\mathbf{N}=$ $\left(N_{1}, N_{2}\right)$ such that $T_{1} T_{2}$ is quasinormal. Then T_{2} is quasinormal if one of the following conditions holds:
(i) $\operatorname{Comm}\left(N_{1}^{*} N_{1} N_{2}^{*} N_{2}\right) \subseteq \operatorname{Comm}\left(N_{2}^{*} N_{2}\right)$;
(ii) T_{1} is quasinormal and right invertible;
(iii) T_{1} is quasinormal and N_{1} is left invertible.

Proof. (i) Let $\mathbf{N}=\left(N_{1}, N_{2}\right) \in \mathfrak{B}(\mathscr{K})^{2}$ be the normal extension for $\mathbf{T}=\left(T_{1}, T_{2}\right)$ where $\mathscr{K}=\mathscr{H} \oplus \mathscr{H}^{\perp}$, and let $P \in \mathfrak{B}(\mathscr{K})$ be the orthogonal projection onto \mathscr{H}.

Since $N_{1} N_{2}=N_{2} N_{1}$, by Fuglede Theorem, $N_{1} N_{2}$ is a normal extension for $T_{1} T_{2}$. Also, $T_{1} T_{2}$ is quasinormal, so we have that

$$
P\left(N_{1} N_{2}\right)^{*}\left(N_{1} N_{2}\right) P=\left(N_{1} N_{2}\right)^{*}\left(N_{1} N_{2}\right) P
$$

by Lemma 4 . By taking adjoints,

$$
\left(N_{1} N_{2}\right)^{*}\left(N_{1} N_{2}\right) P=P\left(N_{1} N_{2}\right)^{*}\left(N_{1} N_{2}\right)
$$

and thus P commutes with $\left(N_{1} N_{2}\right)^{*}\left(N_{1} N_{2}\right)=N_{1}^{*} N_{1} N_{2}^{*} N_{2}$. The last equality follows from Fuglede Theorem. Since P commutes with $N_{1}^{*} N_{1} N_{2}^{*} N_{2}$ we have that P commutes with $N_{2}^{*} N_{2}$, and so \mathscr{H} is invariant for $N_{2}^{*} N_{2}$. Therefore, T_{2} is quasinormal, by Lemma 4.
(ii) As in the proof of Theorem 8, we have that T_{1} is invertible normal operator. Using the fact that $T_{1} T_{2}$ is quasinormal and T_{1} and T_{2} commute, Fuglede Theorem implies

$$
T_{1} T_{1}^{*} T_{1} T_{2} T_{2}^{*} T_{2}=T_{1}^{*} T_{1} T_{1} T_{2}^{*} T_{2} T_{2}
$$

Multiplying from the left side with $\left(T_{1} T_{1}^{*} T_{1}\right)^{-1}$ it follows that T_{2} is quasinormal.
(iii) As shown in part (i), we have that P commutes with $N_{1}^{*} N_{1} N_{2}^{*} N_{2}$, i.e., $P N_{1}^{*} N_{1} N_{2}^{*} N_{2}=N_{1}^{*} N_{1} N_{2}^{*} N_{2} P$. By assumption, T_{1} is quasinormal, and so P commutes with $N_{1}^{*} N_{1}$ (Lemma 4). Hence, $N_{1}^{*} N_{1} P N_{2}^{*} N_{2}=N_{1}^{*} N_{1} N_{2}^{*} N_{2} P$, The left invertibility of N_{1} now implies that $N_{1}^{*} N_{1}$ is invertible and thus $P N_{2}^{*} N_{2}=N_{2}^{*} N_{2} P$. The quasinormality of T_{2} now follows from Lemma 4.

Theorem 2 now follows as a simple corollary of Lemma 5 and the following theorem:

THEOREM 9. (see [15, Theorem 12.12]) If $n \in \mathbb{N}$, then the commutants of a positive operator and it's n-th root coincide.

COROLLARY 2. [14] Let $T \in \mathfrak{B}(\mathscr{H})$ be a subnormal operator such that T^{n} is quasinormal for some $n \in \mathbb{N}$. Then T is quasinormal.

Proof. Let N be a normal extension for T and let $T_{1}=T^{n-1}$ and $T_{2}=T$. Then $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is a subnormal pair with the normal extension $\mathbf{N}=\left(N_{1}, N_{2}\right)=\left(N^{n-1}, N\right)$. Note that $N_{1}^{*} N_{1} N_{2}^{*} N_{2}=\left(N^{*} N\right)^{n}$ and so the first condition of Lemma 5 is satisfied, by Theorem 9. Thus, $T_{2}=T$ is quasinormal.

Using Lemma 5 and the same technique as in the proof of Lemma 3, we can prove the next lemma:

LEMMA 6. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair with the normal extension $\mathbf{N}=$ $\left(N_{1}, N_{2}\right)$ such that T_{1} and $T_{1} T_{2}$ are quasinormal. If $\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{2}^{*}\right)}$ and $\mathscr{N}\left(T_{2}\right) \subseteq$ $\mathscr{N}\left(T_{1}\right)$, then T_{2} is quasinormal.

Proof. Since $\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{2}^{*}\right)}$ and $\mathscr{N}\left(T_{2}\right) \subseteq \mathscr{N}\left(T_{1}\right)$ we have that operators T_{1} and T_{2} have representations

$$
T_{1}=\left[\begin{array}{cc}
T_{1}^{1} & 0 \\
0 & 0
\end{array}\right], \quad T_{2}=\left[\begin{array}{cc}
T_{2}^{1} & 0 \\
0 & 0
\end{array}\right]
$$

respectively, with respect to $\mathscr{H}=\mathscr{N}\left(T_{2}\right)^{\perp} \oplus \mathscr{N}\left(T_{2}\right)$ decomposition. It follows that

$$
N_{1}=\left[\begin{array}{ccc}
T_{1}^{1} & 0 & A_{1}^{1} \\
0 & 0 & A_{1}^{2} \\
0 & 0 & B_{1}^{*}
\end{array}\right]:\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}{ }^{\perp}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}
\end{array}\right)
$$

is a normal extension for T_{1}^{1} and

$$
N_{2}=\left[\begin{array}{ccc}
T_{2}^{1} & 0 & A_{2}^{1} \\
0 & 0 & A_{2}^{2} \\
0 & 0 & B_{2}^{*}
\end{array}\right]:\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}{ }^{\perp}
\end{array}\right) \mapsto\left(\begin{array}{c}
\mathscr{N}\left(T_{2}\right)^{\perp} \\
\mathscr{N}\left(T_{2}\right) \\
\mathscr{H}{ }^{\perp}
\end{array}\right)
$$

is a normal extension for T_{2}^{1}. Since $N_{1} N_{2}=N_{2} N_{1}$, operator pair $\mathbf{T}^{1}=\left(T_{1}^{1}, T_{2}^{1}\right)$ is subnormal. From quasinormality of T_{1} we have that T_{1}^{1} is quasinormal, and since $T_{1} T_{2}$ is quasinormal, it follows that $T_{1}^{1} T_{2}^{1}$ is quasinormal.

Obviously, $\mathscr{R}\left(T_{1}^{1}\right)=\mathscr{R}\left(T_{1}\right)=\overline{\mathscr{R}\left(T_{2}^{*}\right)}=\mathscr{N}\left(T_{2}\right)^{\perp}$, so T_{1}^{1} is onto. In other words, T_{1}^{1} is right invertible.

We conclude that operator pair $\mathbf{T}^{1}=\left(T_{1}^{1}, T_{2}^{1}\right) \in \mathfrak{B}\left(\mathscr{N}\left(T_{2}\right)^{\perp}\right)^{2}$ satisfies condition (ii) of Lemma 5, and so T_{2}^{1} is quasinormal. Now it directly follows that T_{2} is also quasinormal.

In order to prove our next result, similar in spirit to Lemma 5, but also of independent interest, we need the following theorem:

THEOREM 10. [11] Let A and B be operators with $\sigma(A) \cap \sigma(B)=\emptyset$. Then every operator that commutes with $A+B$ and with $A B$ also commutes with A and B.

THEOREM 11. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a spherically quasinormal pair with a normal extension $\mathbf{N}=\left(N_{1}, N_{2}\right)$ such that $\sigma\left(N_{1}^{*} N_{1}\right) \cap \sigma\left(N_{2}^{*} N_{2}\right)=\emptyset$. If $T_{1} T_{2}$ is quasinormal, then \mathbf{T} is (jointly) quasinormal.

Proof. Let $N_{i}, i=1,2$, be the normal extensions of T_{i} on $\mathscr{K}=\mathscr{H} \oplus \mathscr{H}^{\perp}$ given by

$$
N_{i}=\left[\begin{array}{cc}
T_{i} & A_{i} \\
0 & B_{i}^{*}
\end{array}\right]:\binom{\mathscr{H}}{\mathscr{H}^{\perp}} \mapsto\binom{\mathscr{H}}{\mathscr{H}^{\perp}}
$$

and let $P \in \mathfrak{B}(\mathscr{K})$ be the orthogonal projection onto \mathscr{H}. As in the proof of Lemma 5, we can show that quasinormality of $T_{1} T_{2}$ implies that P commutes with $N_{1}^{*} N_{1} N_{2}^{*} N_{2}$. We will also show that P commutes with $N_{1}^{*} N_{1}+N_{2}^{*} N_{2}$.

Since \mathbf{T} is spherically quasinormal, we have that $A_{1}^{*} T_{1}+A_{2}^{*} T_{2}=0[4$, Theorem 2.8]. By direct computation,

$$
\begin{aligned}
\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right) P & =\left[\begin{array}{cc}
T_{1}^{*} T_{1}+T_{2}^{*} T_{2} & 0 \\
A_{1}^{*} T_{1}+A_{2}^{*} T_{2} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
T_{1}^{*} T_{1}+T_{2}^{*} T_{2} & 0 \\
0 & 0
\end{array}\right] \\
& =P\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right) P .
\end{aligned}
$$

Thus,

$$
\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right) P=P\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right) P
$$

and by taking adjoints, we have that

$$
P\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right)=\left(N_{1}^{*} N_{1}+N_{2}^{*} N_{2}\right) P
$$

Therefore, P commutes with $N_{1}^{*} N_{1}+N_{2}^{*} N_{2}$.
By assumption, $\sigma\left(N_{1}^{*} N_{1}\right) \cap \sigma\left(N_{2}^{*} N_{2}\right)=\emptyset$, and so P commutes with $N_{1}^{*} N_{1}$ and $N_{2}^{*} N_{2}$ (Theorem 10). Hence, \mathscr{H} is invariant for $N_{1}^{*} N_{1}$ and $N_{2}^{*} N_{2}$. By Lemma 4, T_{1} and T_{2} are quasinormal. Since T_{1} commutes with $T_{1}^{*} T_{1}$ and $T_{1}^{*} T_{1}+T_{2}^{*} T_{2}$, it also commutes with $T_{2}^{*} T_{2}$. Similarly, T_{2} commutes with $T_{1}^{*} T_{1}$. Therefore, \mathbf{T} is (jointly) quasinormal.

Finally, we arrive at the main result of this section:
THEOREM 12. (Converse of Fuglede Theorem) Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a subnormal pair with the normal extension $\mathbf{N}=\left(N_{1}, N_{2}\right)$ such that $T_{1} T_{2}$ is normal. Then \mathbf{T} is normal if one of the following conditions holds:
(i) T_{1} or T_{2} is right invertible quasinormal operator;
(ii) T_{1} is quasinormal and N_{1} and T_{2} are left invertible, or T_{2} is quasinormal and T_{1} and N_{2} are left invertible;
(iii) T_{1} or T_{2} is quasinormal, $\mathscr{R}\left(T_{i}\right)=\overline{\mathscr{R}\left(T_{j}^{*}\right)}$ for $i \neq j$ and $\mathscr{N}\left(T_{1}\right)=\mathscr{N}\left(T_{2}\right)$.
(iv) $\operatorname{Comm}\left(N_{1}^{*} N_{1} N_{2}^{*} N_{2}\right) \subseteq \operatorname{Comm}\left(N_{1}^{*} N_{1}\right) \cap \operatorname{Comm}\left(N_{2}^{*} N_{2}\right)$ and any of the conditions (i) - (iv) of Theorem 8 holds;
(v) \mathbf{T} is spherically quasinormal, $\sigma\left(N_{1}^{*} N_{1}\right) \cap \sigma\left(N_{2}^{*} N_{2}\right)=\emptyset$ and any of the conditions (i) - (iv) of Theorem 8 holds.

Proof. (i) Without loss of generality, assume that T_{1} is right invertible quasinormal operator. By Lemma 5, it follows that T_{2} is quasinormal. Thus, condition (i) of Theorem 8 is satisfied, so \mathbf{T} is normal.
(ii) Without loss of generality, assume that T_{1} is quasinormal and N_{1} and T_{2} are left invertible. By Lemma 5, it follows that T_{2} is quasinormal. Also, left invertibility of
N_{1} implies left invertibility of T_{1}. This means that condition (ii) of Theorem 8 holds, so \mathbf{T} is normal.
(iii) Again, we may assume that T_{1} is quasinormal. By Lemma 6, we have that T_{2} is quasinormal. The condition (iii) of Theorem 8 is obviously satisfied in this case, and hence, \mathbf{T} is normal.
(iv) Condition

$$
\operatorname{Comm}\left(N_{1}^{*} N_{1} N_{2}^{*} N_{2}\right) \subseteq \operatorname{Comm}\left(N_{1}^{*} N_{1}\right) \cap \operatorname{Comm}\left(N_{2}^{*} N_{2}\right)
$$

implies that both T_{1} and T_{2} are quasinormal. Any condition of Theorem 8 is now sufficient for normality of \mathbf{T}.
(v) Conditions T is spherically quasinormal and $\sigma\left(N_{1}^{*} N_{1}\right) \cap \sigma\left(N_{2}^{*} N_{2}\right)=\emptyset$ implies that \mathbf{T} is (jointly) quasinormal. As in the previous case, any condition of Theorem 8 is now sufficient for normality of \mathbf{T}.

Acknowledgements. The author would like to thank Professor D. Cvetković Ilić for reminding him of Problem 1.

REFERENCES

[1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., 103 (1988), 417-423.
[2] A. Athavale, S. Podder, On the reflexivity of certain operator tuples, Acta Sci. Math. (Szeged), 81 (2015), 285-291.
[3] J. Conway, The Theory of Subnormal Operators, Math. Surveys and Monographs, vol. 36. Amer. Math. Soc. Providence (1991).
[4] R. Curto, S. H. Lee, J. Yoon, Quasinormality of powers of commuting pairs of bounded operators, Journal of Functional Analysis, 278 (3) (2020) 108342.
[5] R. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Proc. Sympos. Pure Math., 51 (1990) 69-91.
[6] R. Curto, P. Muhly, J. XiA, Hyponormal pairs of commuting operators, Oper. Theory Adv. Appl., 35 (1988) 1-22.
[7] R. Curto, J. Yoon, Aluthge transforms of 2-variable weighted shifts, Integral Equations and Operator Theory, 90 (2018) 52.
[8] R. Curto, S. H. Lee, J. Yoon, Hyponormality and subnormality for powers of commuting pairs of subnormal operators, J. Funct. Anal. 245 (2007) 390-412.
[9] R. Curto, S. H. Lee, J. Yoon, k-hyponormality of multivariable weighted shifts, J. Funct. Anal. 229 (2005) 462-480.
[10] D. CVETKović Ilić, Completion Problems on Operator Matrices, Math. Surveys and Monographs, vol. 267. Amer. Math. Soc. (2022).
[11] M. R. Embry, A connection between commutativity and separation of spectra of linear operators, Acta Sci. Math. (Szeged) 32 (1971) 235-237.
[12] B. Fuglede, A Commutativity Theorem for Normal Operators, Proc. Nati. Acad. Sci., 36 (1950) 35-40.
[13] J. Gleason, Quasinormality of Toeplitz tuples with analytic symbols, Houston J. Math., 32 (2006) 293-298.
[14] P. Pietrzycki, J. Stochel, Subnormal n-th roots of quasinormal operators are quasinormal, J. Funct. Anal., 280 (2021) 109001.
[15] W. Rudin, Functional Analysis, McGraw-Hill, International Editions (1991).
(Received October 16, 2022)
Hranislav Stanković
University of Niš
Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18115 Niš, Serbia
e-mail: hranislav.stankovic@elfak.ni.ac.rs

[^0]: Mathematics subject classification (2020): Primary 47B20, 47A13; Secondary 47A05.
 Keywords and phrases: Subnormal operators, quasinormal operators, subnormal pairs, Fuglede Theorem.

 This work was completed with the support of the Serbian Ministry of Education, Science and Technological Development via the grant number 174007.

