IDEALS IN HAAGERUP TENSOR PRODUCT OF C^{*}-TERNARY RINGS AND TROS

Arpit Kansal and Ajay Kumar*

(Communicated by C.-K. Ng)

Abstract. We characterize the maximal, prime and primitive ideals of Haagerup tensor product $M \otimes^{h} B$ of a TRO M and a C^{*}-algebra B.

1. Introduction

A C^{*}-ternary ring (C^{*}-tring $)(M,[., .,],.\|\|$.$) consists of a complex Banach space$ $(M,\|\cdot\|)$ and a ternary product $[., .,]:. M^{3} \rightarrow M$ which is linear in the first and third variable, conjugate linear in the second variable and associative as:

$$
[[x, y, z], u, v]=[x, y,[z, u, v]]=[x,[u, z, y], v] .
$$

Moreover, the norm satisfies $\|[x, x, x]\|=\|x\|^{3}$ and $\|[x, y, z]\| \leqslant\|x\|\|y\|\|z\|$. For instance, any ternary ring of operator (TRO) is a C^{*}-tring such as $B(\mathscr{H}, \mathscr{K})$, the space of all bounded operators from a Hilbert space \mathscr{H} to a Hilbert space $\mathscr{K}, M_{n, k}$ the $n \times k$ complex matrices or a C^{*}-algebra. It can be seen that every C^{*}-tring has an operator space structure [7, 21].

Pluta and Russo ([15], Proposition 2.7) assigned a C^{*}-algebra $\mathscr{A}(M)$ corresponding to a C^{*}-tring M. The referee and one of the coauthors of [15] have pointed out that Proposition 2.7 is not correct as stated (see [16]). In fact, if M is a C^{*}-tring and there is a C^{*}-norm on $\mathscr{A}(M)$ then M is isomorphic to a TRO. In this case $\mathscr{A}(M)$ is C^{*} isomorphic to the linking C^{*}-algebra of M. In general $\mathscr{A}(M)$ is a Banach algebra having an approximate identity, which has been studied in [17].

Ideals of the Banach algebra arising from Haagerup tensor product $A \otimes^{h} B$ of C^{*} algebras A and B were investigated in [1] and [3]. In [11], the Haagerup tensor product $M \otimes^{h} B$ of C^{*}-tring M and C^{*}-algebra B has been discussed in detail. One may note that the Haagerup tensor product is associative, injective but not necessarily symmetric.

In the present paper, we initiate a study of the ideal structure of the Banach space $M \otimes^{h} B$. After preliminaries about ideals of C^{*}-tring and ε-ideals of $M \otimes^{h} B$ in Section 2, we present prime ideals of a TRO M in the next section. For a TRO M, we establish

[^0]a homeomorphism between prime ideals of M and $\mathscr{A}(M)$. We also show that if M or B is exact then there is a one-to-one correspondence between prime ideals of injective tensor product $M \otimes \otimes^{\text {tmin }} B$ and prime ideals of M and B. In Section 4, it has been shown that if M is a TRO then every maximal ideal of $M \otimes^{h} B$ has the form $I \otimes^{h} B+M \otimes^{h} J$ for some maximal ideals I and J of M and B respectively.

Subsequently, we introduce prime ideal, i-prime ideal and ε-prime ideal of $M \otimes^{h}$ B and study their relationship. Let I and J be ideals of M and B respectively and let $\pi: M \rightarrow M / I$ and $\rho: B \rightarrow B / J$ be the quotient maps. Then $\pi \otimes^{\operatorname{tmin}} \rho: M \otimes^{\operatorname{tmin}} B \rightarrow$ $M / I \otimes^{\operatorname{tmin}} B / J$ is a ternary homomorphism. We show that if M or B is exact, then $\operatorname{ker}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)=M \otimes^{\operatorname{tmin}} J+I \otimes^{\operatorname{tmin}} B$. This paves the way to establish that if M or B is exact then every prime ideal of $M \otimes^{h} B$ is of the form $I \otimes^{h} B+M \otimes^{h} J$ for some prime ideals I and J of M and B. Finally, we describe primitive ideals of $M \otimes^{h} B$ in terms of primitive ideals of M and B.

Throughout this paper, M denotes a C^{*}-tring or a TRO whenever required and B a C^{*}-algebra.

2. Preliminaries

A closed subspace I of M is called an ideal of M provided $[I, M, M]+[M, M, I] \subseteq$ I. By an ideal we shall always mean a closed ideal, unless otherwise stated. If I is an ideal of M then $[M, I, M] \subseteq I$ ([9], Remark 2.7). Let $\operatorname{Id}(M)$ denotes the space of all ideals of M. We recall the τ_{w}-topology defined on $\operatorname{Id}(M)$. A subbasis for τ_{w}-topology is given by the sets of the form $U(J)=\{I \in \operatorname{Id}(M): I \nsupseteq J\}$, where $J \in \operatorname{Id}(M)$. If M is a TRO then it is known that the map $\theta: \operatorname{Id}(M) \rightarrow \operatorname{Id}(\mathscr{A}(M))$ defined as $\theta(I)=\mathscr{A}(I)$ is a homeomorphism ([18], Proposition 2.7), ([10], Proposition 2.4).

DEFinition 1. A linear mapping $\phi: M \rightarrow B(\mathscr{H}, \mathscr{K})$ is called a representation of M if ϕ preserves the ternary structure i.e. $\phi([x, y, z])=\phi(x) \phi(y)^{*} \phi(z)$.

In [10], it was shown that there is a one to one correspondence between (irreducible) representations of M and $\mathscr{A}(M)$.

The Haagerup norm on the algebraic tensor products of M and B is defined, for $x \in M \otimes B$, by

$$
\|x\|_{h}=\inf \left\{\|a\|\|b\|: a=\left(a_{1 j}\right)_{1 \times n}, b=\left(b_{j 1}\right)_{n \times 1} \text { and } x=\sum_{j=1}^{n} a_{1 j} \otimes b_{j 1}\right\} .
$$

The Haagerup tensor product $M \otimes^{h} B$ is then the completion of $M \otimes B$ in this norm. For more details, the reader is referred to [7]. It can be seen that $M \otimes^{h} B$ may neither be a C^{*}-tring nor a Banach algebra in general. Moreover, $M \otimes{ }^{\operatorname{tmin}} B$ is a C^{*}-tring and if M happens to be a TRO then $\mathscr{A}\left(M \otimes^{\operatorname{tmin}} B\right)=\mathscr{A}(M) \otimes^{\min } B$. In [11], the concept of ε-ideals and i-ideals were introduced. We recall the definitions for convenience of the reader.

DEFINITION 2. A closed subspace P of $M \otimes^{h} B$ is called an ε-ideal if $P=$ $\varepsilon^{-1}(Q)$ for some closed ideal Q of $M \otimes^{\operatorname{tmin}} B$, where $\varepsilon: M \otimes^{h} B \rightarrow M \otimes^{\operatorname{tmin}} B$ is the
natural injective map. We shall regard $M \otimes^{h} B$ as a subspace of $M \otimes^{\operatorname{tmin}} B$ with a different norm. It is easy to conclude that P is an ε-ideal if and only if $P=Q \cap\left(M \otimes^{h} B\right)$, where Q is a closed ideal in $M \otimes^{\operatorname{tmin}} B$. If M is a C^{*}-algebra then every ε-ideal of $M \otimes^{h} B$ is an ideal and conversely.

DEFInition 3. If M is a TRO, then a closed subspace P of $M \otimes^{h} B$ is called an i-ideal if $P=i^{-1}(Q)$ for some closed ideal Q of $\mathscr{A}(M) \otimes^{h} B$, where $i: M \otimes^{h} B \rightarrow$ $\mathscr{A}(M) \otimes^{h} B$ is the isometry obtained by injectivity of the Haagerup tensor product. Of course, P is an i-ideal if and only if $P=Q \cap\left(M \otimes^{h} B\right)$, where Q is a closed ideal in $\mathscr{A}(M) \otimes^{h} B$.

It is known that a closed subspace P of $M \otimes^{h} B$ is an ε-ideal if and only if P is an i-ideal ([11], Proposition 4.12).

Let $M \otimes{ }^{\text {tmax }} B$ be the maximal C^{*}-tring tensor product of M and B. We may note that $\|x\|_{\text {tmax }} \leqslant\|x\|_{h}$ for all $x \in M \otimes B$ [11]. For C^{*}-algebras A and B there is a one-to-one correspondence between representations of $A \otimes{ }^{\max } B$ and $*$-representations of $A \otimes^{h} B$. Indeed, if ρ is a representation of $A \otimes^{\max } B$ then $\rho \varepsilon^{\prime}$ is a $*$-representation of $A \otimes^{h} B\left(\varepsilon^{\prime}: A \otimes^{h} B \rightarrow A \otimes^{\max } B\right.$ is natural contractive homomorphism). If π is a $*$ representation of $A \otimes^{h} B$ then by ([1], Lemma 5.12) there is a (unique) representation ρ of $A \otimes{ }^{\max } B$ such that $\pi=\rho \varepsilon^{\prime}$. The proof of the following result is immediate.

Proposition 1. Let M be a TRO and B a C*-algebra. Let π be a (irreducible) *-representation of $\mathscr{A}(M) \otimes^{h} B$ then there exist (irreducible) representation ρ of $M \otimes^{\text {tmax }}$ B such that $\pi=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}$, where $\tilde{\varepsilon}^{\prime}: \mathscr{A}(M) \otimes^{h} B \rightarrow \mathscr{A}(M) \otimes^{\max } B$ is the natural injective homomorphism.

3. Prime ideals of min tensor product of C^{*}-trings

If I, J and K are ideals in M, then define

$$
I J K=\overline{\operatorname{span}}\{[a, b, c]: a \in I, b \in J, c \in K\}
$$

It is easy to check that $I J K$ is an ideal of M.
Lemma 1. Let I, J and K be ideals of C^{*}-tring M. Then

$$
I J K=I \cap J \cap K
$$

Proof. Note that as I, J and K are ideals of M, therefore $I J K \subseteq I, I J K \subseteq J$ and $I J K \subseteq K$ which implies $I J K \subseteq I \cap J \cap K$. Conversely, let $x \in I \cap J \cap K$. Since $I \cap J \cap K$ is a C^{*}-tring and that every element of C^{*}-tring has a cube root ([17], Page 6 footnote), therefore there exists $y \in I \cap J \cap K$ such that $x=[y, y, y] \in I J K$.

Proposition 2. Let M be a C^{*}-tring and L an ideal in M. Then L satisfies $(P 1)$ if and only if it satisfies $(P 2)$, where
(P1) For any three ideals I, J and K of M satisfying $I J K \subseteq L$, either $I \subseteq L$ or $J \subseteq L$ or $K \subseteq L$.
(P2) For any pair of ideals I and J satisfying $I \cap J \subseteq L$, either $I \subseteq L$ or $J \subseteq L$.

Proof. These statements are obviously equivalent for the ideal M or $\{0\}$, so we assume that L is a proper closed ideal in M. Suppose that L satisfies ($P 1$), and let I and J be ideals such that $I \cap J \subseteq L$ then $I J I \subseteq I$ and $I J I \subseteq J$ so $I J I \subseteq I \cap J \subseteq L$. Thus either $I \subseteq L$ or $J \subseteq L$, proving that L satisfies ($P 2$). Suppose now that L is an ideal in M satisfying $(P 2)$, and let I, J and K be ideals such that $I J K \subseteq L$ then by Lemma 1, $I \cap J \cap K \subseteq L$. Thus either $I \subseteq L$ or $J \subseteq L$ or $K \subseteq L$.

We say that an ideal L in M is prime if it satisfies $(P 1)$ or $(P 2)$. One may easily note that $\{0\}$ and $K(\mathscr{H}, \mathscr{K})$, the space of compact operators from a Hilbert space \mathscr{H} to a Hilbert space \mathscr{K} are prime ideals of the C^{*}-tring $B(\mathscr{H}, \mathscr{K})$.

For a closed ideal I of a C^{*}-tring M, let $\tilde{\mathscr{A}}(I)$ denotes the restriction of $\mathscr{A}(I)$ from $M \oplus M$ to $I \oplus I$.

Lemma 2. Let I and J be closed ideals of C^{*}-tring M, then $I+J$ is also closed.

Proof. For closed ideals I and J of C^{*}-tring $M, \tilde{\mathscr{A}}(I)$ and $\tilde{\mathscr{A}}(J)$ are closed ideals of $\mathscr{A}(M)$ ([17], Propositions 4.1,4.2). Let $x \in \overline{I+J}$. Since $\tilde{\mathscr{A}}(I)$ and $\tilde{\mathscr{A}}(J)$ have bounded approximate identity so $\tilde{\mathscr{A}}(I)+\tilde{\mathscr{A}}(J)$ in $\mathscr{A}(M)$ is closed ([6], Proposition 2.4), thus

$$
\left[\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right] \in \overline{\tilde{\mathscr{A}}(I)+\tilde{\mathscr{A}}(J)}=\tilde{\mathscr{A}}(I)+\tilde{\mathscr{A}}(J)=\left[\begin{array}{cc}
\tilde{L}(I)+\tilde{L}(J) & I+J \\
\bar{I}+\bar{J} & \tilde{R}(I)+\tilde{R}(J)
\end{array}\right]
$$

so $x \in I+J$.

Example 1. Let X and Y be compact Hausdorff spaces. Furthermore, assume that X^{\prime} is a proper non void open and closed subset of X. Let $C(Y)$ be the algebra of complex-valued continuous functions on Y with usual operations. Let $M=$ $C_{t}(X, C(Y))$ be the set of continuous functions from X into $C(Y)$. Define $\chi: X \rightarrow$ $\left\{0_{C(Y)}, 1_{C(Y)}\right\}$ by

$$
\chi(t)= \begin{cases}1_{C(Y)}, & t \in X^{\prime} \\ 0_{C(Y)}, & \text { otherwise }\end{cases}
$$

For $f, g, h \in C_{t}(X, C(Y))$ put

$$
[f, g, h](x)=\left(2 \chi(x)-1_{C(Y)}\right) f(x) \overline{g(x)} h(x)
$$

Then $\left(C_{t}\left(X, C_{t}(Y)\right),[., .,],.\|.\|_{\text {sup }}\right)$ is a commutative C^{*}-tring (i.e. $[a, b, c]=[c, b, a]$ for all $a, b, c \in M)$ which is not a TRO.

Let $C_{t}(X \times Y)$ be the set of complex valued continuous functions on $X \times Y$. Define $\chi^{\prime}: X \times Y \rightarrow\{0,1\}$ by

$$
\chi^{\prime}((x, y))= \begin{cases}1, & (x, y) \in X^{\prime} \times Y \\ 0, & \text { otherwise }\end{cases}
$$

For $f, g, h \in C_{t}(X \times Y)$, put

$$
[f, g, h](x, y)=\left(2 \chi^{\prime}(x, y)-1\right) f(x, y) \overline{g(x, y)} h(x, y)
$$

Then $\left(C_{t}(X, C(Y)),[., .,],.\|\cdot\|_{\text {sup }}\right)$ is a commutative C^{*}-tring. Define

$$
\psi: C_{t}(X, C(Y)) \rightarrow C_{t}(X \times Y)
$$

by

$$
\psi(f)(x, y)=f(x)(y)
$$

It is not difficult to see that ψ is an isomorphism of C^{*}-trings. Let $C(X \times Y)$ be the algebra of complex valued continuous functions on $X \times Y$ with usual operations. Let V be a closed subset of $X \times Y$. Define, $I(V)=\left\{f \in C_{t}(X \times Y): f(x, y)=0, \forall(x, y) \in V\right\}$. If $V=\{(a, b)\}$, we denote $I(V)$ by $I_{a, b}$. Note that $I(V)$ is a closed ideal of $C_{t}(X \times Y)$. It is easy to see that a closed subspace I is an ideal of $C_{t}(X \times Y)$ if and only if I is an ideal of $C(X \times Y)$. Thus, closed ideals of $C_{t}(X \times Y)$ are of the form $I(V)$ for some closed set V of $X \times Y$. In particular, maximal ideals of $C_{t}(X \times Y)$ are of the form $\left.I_{a, b}=\left\{f \in C_{t}(X \times Y)\right): f(a, b)=0\right\}$ for some $(a, b) \in X \times Y$. Also ideals of the form $I_{a, b}$ are prime. In fact, there are no closed prime ideals other than the maximal ones.

Let $\operatorname{Prime}(M)$ denotes the space of Prime ideals of M, then $\operatorname{Prime}(M)$ inherits subspace topology from $\operatorname{Id}(M)$. In the next proposition, we establish that the map θ defined in Section 2 is a homeomorphism between prime ideals of M and $\mathscr{A}(M)$.

Proposition 3. Let M be a TRO then $\operatorname{Prime}(M)$ is homeomorphic to $\operatorname{Prime}(\mathscr{A}(M))$.

Proof. Suppose L is a prime ideal of M and let $I^{\prime} \cap J^{\prime} \subseteq \mathscr{A}(L)$ for some ideals I^{\prime} and J^{\prime} of $\mathscr{A}(M)$. We may assume that $I^{\prime}=\mathscr{A}(I)$ and $J^{\prime}=\mathscr{A}(J)$ for some ideals I and J of M.Then $\mathscr{A}(I) \cap \mathscr{A}(J) \subseteq \mathscr{A}(L)$ which implies $\mathscr{A}(I \cap J) \subseteq \mathscr{A}(L)$, thus $I \cap J \subseteq L$ so either $I \subseteq L$ or $J \subseteq L$ as L is a prime ideal. The proof of the converse is along similar lines, so we omit it.

Recall that an ideal I of M is called modular if there exists e and f in M such that $a-[a, e, f] \in I$ for every $a \in M$. It is easy to see that for separable Hilbert spaces \mathscr{H} and $\mathscr{K}, K(\mathscr{H}, \mathscr{K})$ is the only non-trivial modular ideal of $B(\mathscr{H}, \mathscr{K})$. An ideal I of M is called primitive if it is quotient of a maximal modular ideal i.e. $I=(J$: $M)=\{a \in M:[a, M, M] \subseteq J\}$ for some maximal modular ideal J of M. Moreover, a closed ideal I of M is primitive if and only if I is kernel of some nonzero irreducible representation ([10], Theorem 2.8).

Corollary 1.

(a) Every primitive ideal is prime and every maximal modular ideal is prime.
(b) If M is separable, then every prime ideal is primitive.

Proof.

(a) Let I be a primitive ideal of M, then by ([10], Theorem 2.6(4)), $\mathscr{A}(I)$ is a primitive ideal of $\mathscr{A}(M)$. As primitive ideals of C^{*}-algebras are prime ([13], Theorem 5.4.5), so $\mathscr{A}(I)$ is prime and therefore I is prime by above proposition. The other part follows immediately from ([10], Proposition 2.5).
(b) Let I be a prime ideal of M, then $\mathscr{A}(I)$ is a prime ideal of $\mathscr{A}(M)$. Since M is separable, so $\mathscr{A}(M)$ is separable. Thus, by ([14], Theorem 4.3.6), $\mathscr{A}(I)$ is primitive and hence I is primitive ([10], Theorem 2.6).

We now turn our attention to describe prime ideals of operator space injective tensor product. For C^{*}-trings M and N, let $M \otimes^{\operatorname{tmin}} N$ denotes the operator space injective tensor product of M and N. Note that $M \otimes^{\operatorname{tmin}} N$ is a C^{*}-tring. By taking $M=C_{t}(X)$ and N as any C^{*}-algebra, we can obtain other C^{*}-trings which are not TROs.

Proposition 4. Let M_{i} and $N_{i}(i=1,2)$ be C^{*}-trings. Let $f_{i}: M_{i} \rightarrow N_{i}$ be ternary homorphisms for $i=1,2$. Then $f_{1} \otimes f_{2}$ continuously extends to a ternary homomorphism $f_{1} \otimes^{\text {tmin }} f_{2}: M_{1} \otimes^{\text {tmin }} M_{2} \rightarrow N_{1} \otimes^{\text {tmin }} N_{2}$. Moreover, $f_{1} \otimes^{\text {tmin }} f_{2}$ is injective if f_{1} and f_{2} are so.

Proof. By ([8], Proposition 3.11) each f_{i} is contraction. Also, for each $n \in \mathbb{N}$,

$$
\left(f_{i}\right)_{n}: M_{n}\left(M_{i}\right) \rightarrow M_{n}\left(N_{i}\right):\left[v_{i, j}\right] \rightarrow\left[f_{i}\left(v_{i, j}\right)\right]
$$

is also a ternary homomorphism, and thus a contraction. Hence f_{i} is a complete contraction. Since injective tensor product of operator spaces is injective therefore $f_{1} \otimes f_{2}$ continuously extends by density to a completely bounded map $f_{1} \otimes{ }^{\operatorname{tmin}} f_{2}$: $M_{1} \otimes^{\operatorname{tmin}} M_{2} \rightarrow N_{1} \otimes^{\operatorname{tmin}} N_{2}$. The extended map $f_{1} \otimes^{\operatorname{tmin}} f_{2}$ is also a ternary homomorphism. Moreover, if each f_{i} is injective then f_{i} is complete isometry, and therefore $f_{1} \otimes^{\operatorname{tmin}} f_{2}$ is also complete isometry.

Corollary 2. Let I and J be closed ideals of C^{*}-trings M and N respectively then $I \otimes^{\text {tmin }} J$ is a closed ideal of $M \otimes^{\text {tmin }} N$.

Example 2. Let I be an ideal of $M=C_{t}(X, C(Y))$ in Example 1. Define e and f in $C_{t}(X, C(Y))$ as $e(x)=1_{C(Y)}$ and $f(x)=2 \chi(x)-1_{C(Y)}$ for all $x \in X$. Then, we have $h-[h, e, f]=0 \in I$ for every $h \in C_{t}(X \times Y)$, so I is modular. One can verify that $I \otimes^{\operatorname{tmin}} B+M \otimes{ }^{\operatorname{tmin}} J$ is a closed modular ideal of $M \otimes^{\operatorname{tmin}} B$, where J is a modular ideal (Lemma 2). In particular, $I \otimes^{\text {tmin }} B$ is modular.

If M is a TRO, using ([11], Proposition 4.6) and ([4], Lemma 2.12), it is not difficult to see that every nonzero ideal of $M \otimes{ }^{\operatorname{tmin}} B$ has a nonzero elementary tensor. We may combine Corollary 2, Lemma 2, ([11], Proposition 4.6) and Proposition 4 to obtain the following.

Corollary 3. If I and J are prime ideals of M and B respectively, then $I \otimes^{\text {tmin }}$ $B+M \otimes^{\text {tmin }} J$ is also a prime ideal of $M \otimes^{t m i n} B$.

DEFINITION 4. A C^{*}-tring M is said to be exact if the functor $M \otimes^{\text {tmin }}-$ is exact; i.e., for each C^{*}-tring N and ideal J of N the sequence

$$
0 \rightarrow M \otimes \otimes^{\operatorname{tmin}} J \rightarrow M \otimes^{\mathrm{tmin}} N \rightarrow M \otimes^{\operatorname{tmin}} N / J \rightarrow 0
$$

is exact.
Example 3. It is easy to see that every finite dimensional C^{*}-tring is exact. If M is commutative C^{*}-tring, then using ([15], Lemma 1.1), $R(M)$ is commutative, so $R(M)$ is exact. From ([8], Corollary 5.17), it is known that M is exact if and only if $R(M)$ is exact, so M is an exact C^{*}-tring. In particular, $C_{t}(X, C(Y))$ in Example 1 is exact. Also, it can be seen that $K(\mathscr{H}, \mathscr{K})$ and $M_{n, k}$ are exact.

Lemma 3. Let M be an exact $T R O$, then $\mathscr{A}(M)$ is an exact C^{*}-algebra.
Proof. Let J be an ideal of B and $0 \rightarrow J \rightarrow B \rightarrow B / J \rightarrow 0$ be an exact sequence. Since M is exact, so the sequence

$$
0 \rightarrow M \otimes^{\mathrm{tmin}} J \rightarrow M \otimes^{\operatorname{tmin}} B \rightarrow M \otimes^{\operatorname{tmin}} B / J \rightarrow 0
$$

is exact. So the sequence

$$
0 \rightarrow \mathscr{A}\left(M \otimes^{\operatorname{tmin}} J\right) \rightarrow \mathscr{A}\left(M \otimes^{\operatorname{tmin}} B\right) \rightarrow \mathscr{A}\left(M \otimes^{\operatorname{tmin}} B / J\right) \rightarrow 0
$$

is exact by ([9], Proposition 2.9). But then the sequence

$$
0 \rightarrow \mathscr{A}(M) \otimes^{\min } J \rightarrow \mathscr{A}(M) \otimes^{\min } B \rightarrow \mathscr{A}(M) \otimes^{\min } B / J \rightarrow 0
$$

is exact by ([11], Proposition 4.6). Thus, $\mathscr{A}(M)$ is exact C^{*}-algebra.
In view of Corollary 3, we obtain a canonical map

$$
\operatorname{Prime}(M) \times \operatorname{Prime}(B) \rightarrow \operatorname{Prime}\left(M \otimes^{\operatorname{tmin}} B\right)
$$

given by

$$
(I, J) \rightarrow I \otimes^{\mathrm{tmin}} B+M \otimes^{\mathrm{tmin}} J
$$

THEOREM 1. If M is an exact TRO or B is exact then $\operatorname{Prime}\left(M \otimes^{\text {tmin }} B\right)$ is homeomorphic to $\operatorname{Prime}(M) \times \operatorname{Prime}(B)$.

Proof. If M or B is exact then $\mathscr{A}(M)$ or B is exact by above lemma. Thus using ([4], Proposition 2.16 and 2.17), $\operatorname{Prime}\left(\mathscr{A}(M) \otimes^{\operatorname{tmin}} B\right)$ is homeomorphic to $\operatorname{Prime}(\mathscr{A}(M)) \times \operatorname{Prime}(B)$, which is homeomorphic to $\operatorname{Prime}(M) \times \operatorname{Prime}(B)$ by Proposition 3.

4. Maximal ideals of $M \otimes^{h} B$

In the remaining sections of the paper, we assume M to be a TRO.
We classify all ε-ideals of $M \otimes^{h} B$ which are maximal. As noted in ([11], Remark 4.22), if U_{1} and U_{2} are maximal ideals of M and B respectively then $U_{1} \otimes^{h} B+M \otimes^{h}$ U_{2} is maximal ε-ideal. We first note that the following diagram

is commutative i.e. $j \varepsilon=\tilde{\varepsilon} i$. The maps $i=i_{M} \otimes \mathrm{id}_{B}$ and j are isometry. Moreover the maps ε and $\tilde{\varepsilon}$ are injective and contractive ([5], Proposition 2) and ([11], Proposition 4.9).

Lemma 4. Let I and J be ideals of M and B respectively, then
(a) $j^{-1}\left(\mathscr{A}(I) \otimes^{\text {min }} J\right)=I \otimes^{\text {tmin }} J$.
(b) $\tilde{\varepsilon}\left(\mathscr{A}(I) \otimes^{h} J\right) \subseteq \mathscr{A}(I) \otimes^{m i n} J$.
(c) For $\left\{\mathscr{A}\left(I_{i}\right) \otimes^{h} J_{i}\right\}_{i=1}^{n}$ a finite collection of product ideals in $\mathscr{A}(M) \otimes^{h} B$, we have,

$$
i^{-1}\left(\sum_{i=1}^{n} \mathscr{A}\left(I_{i}\right) \otimes^{h} J_{i}\right)=\sum_{i=1}^{n}\left(I_{i} \otimes^{h} J_{i}\right) .
$$

Proof.
(a) Since $I \otimes J \subseteq j^{-1}\left(\mathscr{A}(I) \otimes^{\min } J\right)$ and $j^{-1}\left(\mathscr{A}(I) \otimes^{\min } J\right)$ is closed so $I \otimes^{\text {tmin }} J \subseteq$ $j^{-1}\left(\mathscr{A}(I) \otimes^{\min } J\right)$. Conversely, let $x \in j^{-1}\left(\mathscr{A}(I) \otimes^{\min } J\right)$ i.e.

$$
\left[\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right]=j(x) \in \mathscr{A}(I) \otimes \otimes^{\min } J=\overline{\mathscr{A}}(I) \otimes J^{\min }
$$

So there is a sequence $\left(x_{n}\right) \in \mathscr{A}(I) \otimes J$ such that $\left\|x_{n}-j(x)\right\|_{\text {min }} \rightarrow 0$ as $n \rightarrow \infty$. Suppose $x_{n}=\sum_{i=1}^{n}\left[\begin{array}{cc}A_{i} & f_{i} \\ \overline{g_{i}} & B_{i}\end{array}\right] \otimes J_{i}$, where $f_{i} \in I, A_{i} \in L(I), B_{i} \in R(I), \overline{g_{i}} \in \bar{I}$ and $J_{i} \in J$. Let $N=\left(I \otimes \otimes^{\min } J\right) \oplus R\left(I \otimes \otimes^{\min } J\right)$. Since we have the C^{*}-isomorphism between $\mathscr{A}(I) \otimes^{\min } J$ and $\mathscr{A}\left(I \otimes^{\operatorname{tmin}} J\right)$ ([12], Proposition 3.1), so using $\left\|\left[\begin{array}{c}A \\ \bar{g} B\end{array}\right]\right\|$ $\geqslant\|f\|$ ([17], Proof of Theorem 2.7) we have

$$
\begin{aligned}
\left\|x_{n}-j(x)\right\|_{\min } & =\left\|\left[\sum_{i=1}^{n} A_{i} \otimes J_{i} \quad \sum_{i=1}^{n} f_{i} \otimes J_{i}-x \sum_{i=1}^{n} \overline{g_{i}} \otimes J_{i} \quad \sum_{i=1}^{n} B_{i} \otimes J_{i}\right]\right\|_{B(N)} \\
& \geqslant\left\|\sum_{i=1}^{n} f_{i} \otimes J_{i}-x\right\|_{\mathrm{tmin}} .
\end{aligned}
$$

Thus $\sum_{i=1}^{n} f_{i} \otimes J_{i} \xrightarrow{\mathrm{tmin}} x$ as $n \rightarrow \infty$. Hence $x \in I \otimes^{\mathrm{tmin}} J$.
(b) Follows immediately using continuity of $\tilde{\varepsilon}$.
(c) It is sufficient to prove the result for $n=2$. Let $K_{1}=\mathscr{A}\left(I_{1}\right) \otimes{ }^{h} J_{1}$ and $K_{2}=$ $\mathscr{A}\left(I_{2}\right) \otimes^{h} J_{2}$. Note that $i^{-1}\left(K_{1}+K_{2}\right)$ is closed and contains $I_{1} \otimes J_{1}+I_{2} \otimes J_{2}$ therefore $i^{-1}\left(K_{1}+K_{2}\right)$ also contains $I_{1} \otimes^{h} J_{1}+I_{2} \otimes^{h} J_{2}$. Conversely, let $z \in$ $i^{-1}\left(K_{1}+K_{2}\right)$ i.e. $i(z)=x+y$ for some $x \in K_{1}$ and $y \in K_{2}$ so $j \varepsilon(z)=\tilde{\varepsilon}(i(z))=$ $\tilde{\varepsilon}(x)+\tilde{\varepsilon}(y) \in \tilde{\varepsilon}\left(K_{1}\right)+\tilde{\varepsilon}\left(K_{2}\right) \subseteq \mathscr{A}\left(I_{1}\right) \otimes^{\min } J_{1}+\mathscr{A}\left(I_{2}\right) \otimes^{\min } J_{2}=\mathscr{A}\left(I_{1} \otimes^{\operatorname{tmin}} J_{1}+\right.$ $\left.I_{2} \otimes^{\operatorname{tmin}} J_{2}\right)$. Therefore $\varepsilon(z) \in I_{1} \otimes^{\operatorname{tmin}} J_{1}+I_{2} \otimes^{\operatorname{tmin}} J_{2}$ using (a), which gives $z \in I_{1} \otimes^{h} J_{1}+I_{2} \otimes^{h} J_{2}$ by ([11], Proposition 4.17).

For a C^{*}-tring M, let $v(M)$ denotes the number of closed ideals in M where we count both 0 and M. From ([9], Proposition 2.21), it is clear that $v(M)=v(\mathscr{A}(M))$. The next result characterizes all the ε-ideals of $M \otimes^{h} B$ in the case where M or B has finitely many ε-ideals.

COROLLARY 4. If $v(M)$ is finite then every i-ideal (ε-ideal) of $M \otimes^{h} B$ is a finite sum of product ideals.

Proof. Let T_{1} be an i-ideal of $M \otimes^{h} B$ i.e. $T_{1}=i^{-1}\left(T_{2}\right)$, for some ideal T_{2} of $\mathscr{A}(M) \otimes^{h} B$. Since $v(M)=v(\mathscr{A}(M))$ so $v(\mathscr{A}(M))$ is also finite and therefore by ([1], Theorem 5.3), $T_{2}=\sum_{i=1}^{n} \mathscr{A}\left(I_{i}\right) \otimes^{h} J_{i}$ for some ideals I_{i} and J_{i} of M and B respectively. Thus, by Lemma 4,

$$
T_{1}=i^{-1}\left(\sum_{i=1}^{n} \mathscr{A}\left(I_{i}\right) \otimes^{h} J_{i}\right)=\sum_{i=1}^{n} I_{i} \otimes^{h} J_{i} . q e d
$$

REMARK 1. In ([11], Example 4.22), all ε-ideals of $B(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$, where \mathscr{H}, \mathscr{K} and \mathscr{L} are infinite dimensional separable Hilbert spaces were classified. The previous corollary gives an elementary proof of the same classification.

Since $\|x\|_{\operatorname{tmax}} \leqslant\|x\|_{h}$ for all $x \in M \otimes B$, so there is a contractive map $\varepsilon^{\prime}: M \otimes^{h} B \rightarrow$ $M \otimes{ }^{\operatorname{tmax}} B$ such that $\varepsilon^{\prime}(a \otimes b)=a \otimes b$ for all $a \in M$ and $b \in B$. The map ε has a natural factorization through $M \otimes^{\operatorname{tmax}} B$ so using ([11], Proposition 4.9), we have

Lemma 5. The contractive map $\varepsilon^{\prime}: M \otimes^{h} B \rightarrow M \otimes^{\operatorname{tmax}} B$ is injective.
Let A and B be C^{*}-algebras then it is known that there is a one-to-one correspondence between representations of $A \otimes^{\max } B$ and $*$-representations of $A \otimes^{h} B$. Motivated by this, we define the following.

DEFInItion 5. A linear map $\pi: M \otimes^{h} B \rightarrow B(\mathscr{H}, \mathscr{K})$ is called a representation of $M \otimes^{h} B$ if there exists a representation ρ of $M \otimes^{\operatorname{tmax}} B$ such that $\pi=\rho \varepsilon^{\prime} . \pi$ is called irreducible if ρ is irreducible.

LEMMA 6. Let π be a nonzero representation of $M \otimes^{h} B$ then $\operatorname{ker}(\pi)$ contains a nonzero elementary tensor.

Proof. We have $\pi=\rho \varepsilon^{\prime}$, where $\rho: M \otimes{ }^{\operatorname{tmax}} B \rightarrow B(\mathscr{H}, \mathscr{K})$ is a representation of $M \otimes \otimes^{\operatorname{tmax}} B$. Since ρ is a representation of $M \otimes^{\operatorname{tmax}} B$ so $\mathscr{A}(\rho)$ is a representation of $\mathscr{A}(M) \otimes{ }^{\max } B$ ([10], Proposition 2.1). Consider the commutative diagram,

$\tilde{\pi}=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}$ is a representation of $\mathscr{A}(M) \otimes^{h} B$. First note that $\operatorname{ker}(\tilde{\pi}) \neq(0)$. For this let $x \in \operatorname{ker}(\pi), x \neq 0$ so $\pi(x)=0$. Since all maps in the diagram are injective so $\tilde{\varepsilon}^{\prime} i(x) \neq 0$ and $\tilde{\pi} i(x)=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime} i(x)=\mathscr{A}(\rho) j^{\prime} \varepsilon^{\prime}(x)=0$. So $i(x) \in \operatorname{ker}(\tilde{\pi})$ and $i(x) \neq 0$. Thus $\operatorname{ker}(\tilde{\pi})$, is a nonzero closed ideal of $\mathscr{A}(M) \otimes^{h} B$. By ([1], Proposition 4.5), $\operatorname{ker}(\tilde{\pi})$ must contain a nonzero elementary tensor say $\left[\begin{array}{l}p \\ r\end{array}\right)$

$$
\mathscr{A}(\rho)\left(\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] \otimes b\right)=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}\left(\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] \otimes b\right)=0
$$

So $\operatorname{ker}(\mathscr{A}(\rho))$ contains a nonzero elementary tensor. Thus $b \neq 0$. Now we claim that we can assume $q \neq 0$. If $q=0$ and $r \neq 0$ then as $\operatorname{ker}(\mathscr{A}(\rho))$ is an ideal of the C^{*} algebra $\mathscr{A}(M) \otimes^{\max } B$ so $\operatorname{ker}(\mathscr{A}(\rho))$ is a $*$-ideal, hence $\left[\begin{array}{cr}p \otimes b r \otimes b \\ 0 & s \otimes b\end{array}\right] \in \operatorname{ker}(\mathscr{A}(\rho))$. Now if $q=0, r=0$ and $p \neq 0$ so there is $m \in M$ such that $p m \neq 0$. Consider

$$
\left(\left[\begin{array}{cc}
p & 0 \\
0 & s
\end{array}\right] \otimes b\right)\left(\left[\begin{array}{ll}
0 & m \\
0 & 0
\end{array}\right] \otimes b\right) \in \operatorname{ker}(\mathscr{A}(\rho))
$$

which gives $\left[\begin{array}{lc}0 & p m \otimes b^{2} \\ 0 & 0\end{array}\right] \in \operatorname{ker}(\mathscr{A}(\rho))$.
Thus we may assume $q \otimes b \neq 0$ and $\left[\begin{array}{l}p \otimes b \\ q \otimes b \\ r \otimes b \\ s \otimes b\end{array}\right] \in \operatorname{ker}(\mathscr{A}(\rho))=\mathscr{A}(\operatorname{ker}(\rho))$ ([10], Lemma 2.7). So $0 \neq q \otimes b \in \operatorname{ker}(\rho)$. Thus $\rho(q \otimes b)=0$. Note that $\pi(q \otimes b)=$ $\rho \varepsilon^{\prime}(q \otimes b)=\rho(q \otimes b)=0$ and $q \otimes b \neq 0$. Thus $\operatorname{ker}(\pi)$ contains a nonzero elementary tensor.

LEMMA 7. If $\pi: M \otimes^{\text {tmin }} B \rightarrow B(\mathscr{H}, \mathscr{K})$ is a representation, then there exist commuting representations $\pi_{1}: M \rightarrow B(\mathscr{H} \oplus \mathscr{K})$ and $\pi_{2}: B \rightarrow B(\mathscr{H} \oplus \mathscr{K})$ such that for all $a \in M$ and $b \in B$ we have

$$
\pi(a \otimes b)=\pi_{1}(a) \pi_{2}(b)=\pi_{2}(b) \pi_{1}(a)
$$

In particular, if π is irreducible then π_{1} and π_{2} are factor representations in the sense that if \mathscr{M} is a von Neumann algebra generated by $\left\{\pi_{1}(a): a \in M\right\}$ then \mathscr{M} is a factor i.e. center of \mathscr{M} is $\mathbb{C}\left(I_{\mathscr{H}} \oplus I_{\mathscr{K}}\right)$.

Proof. Existence of π_{1} and π_{2} follows from ([20], Lemma IV.4.1), ([10], Proposition 2.1) and ([12], Proposition 3.1). If π is irreducible, let $\pi_{1}\left(y_{0}\right)$ be in the center of \mathscr{M}. It can be shown that $\pi_{1}\left(y_{0}\right) \pi(x \otimes y)=\pi(x \otimes y) \pi_{1}\left(y_{0}\right)$ for all $x \in M$ and $y \in B$. So $\pi_{1}\left(y_{0}\right)$ is in the commutant of von Neumann generated by $\pi(x \otimes y)$ for $x \in M, y \in B$ which is same as the commutant of von Neumann algebra generated by $\mathscr{A}(\pi)\left(\mathscr{A}(M) \otimes^{\min } B\right)([2]$, Lemma 4.4(b)). Since $\mathscr{A}(\pi)$ is irreducible, so the last commutant is equal to $\mathbb{C}\left(I_{\mathscr{H}} \oplus I_{\mathscr{K}}\right)$.

The next result gives the complete description of maximal ε-ideals of $M \otimes^{h} B$ in terms of maximal ideals of M and B. The result generalizes ([1], Theorem 5.6).

THEOREM 2. Let P be a maximal ε-ideal of $M \otimes^{h} B$ then there exist maximal ideals U_{1} and U_{2} of M and B respectively such that

$$
P=U_{1} \otimes^{h} B+M \otimes^{h} U_{2}
$$

Proof. Let P be a maximal ε-ideal of $M \otimes^{h} B$, so there exists a proper ideal Q of $M \otimes^{\operatorname{tmin}} B$ such that $P=\varepsilon^{-1}(Q)$. Let $\pi_{0}: M \otimes^{\mathrm{tmin}} B \rightarrow \frac{M \otimes^{\mathrm{tmin}} B}{Q}=M_{0}$ be the quotient map. M_{0} is a TRO so it admits an irreducible representation $\tilde{\pi}: M_{0} \rightarrow B(\mathscr{H}, \mathscr{K})$ corresponding to an irreducible representation of the C^{*}-algebra $\mathscr{A}\left(M_{0}\right)$ ([10], Proposition 2.1,2.2). Let $\pi=\tilde{\pi} \pi_{0}$. Then π is an irreducible representation of $M \otimes{ }^{\operatorname{tmin}} B$ annihilating Q. By above lemma, there exist representations π_{1} of M and π_{2} of B on $B(\mathscr{H} \oplus \mathscr{K})$ such that for all $a \in M$ and $b \in B$ we have

$$
\pi(a \otimes b)=\pi_{1}(a) \pi_{2}(b)=\pi_{2}(b) \pi_{1}(a)
$$

Define

$$
U=U_{1} \otimes^{h} B+M \otimes^{h} U_{2},
$$

and

$$
\tilde{U}=U_{1} \otimes^{\operatorname{tmin}} B+M \otimes^{\operatorname{tmin}} U_{2}
$$

where $U_{1}=\operatorname{ker}\left(\pi_{1}\right)$ and $U_{2}=\operatorname{ker}\left(\pi_{2}\right)$. First we claim that $P=U$. Note that if $a \otimes b \in U_{1} \otimes B$ then $\pi(a \otimes b)=\pi_{1}(a) \pi_{2}(b)=0$ which implies $U_{1} \otimes^{\operatorname{tmin}} B \subseteq \operatorname{ker}(\pi)$, as $\operatorname{ker}(\pi)$ is closed. Similarly, $M \otimes^{\operatorname{tmin}} U_{2} \subseteq \operatorname{ker}(\pi)$ which gives $\pi(\tilde{U})=0$ so $\pi(Q+\tilde{U})=$ 0 . Thus

$$
\pi \varepsilon\left(\varepsilon^{-1}(Q+\tilde{U})\right) \subseteq \pi(Q+\tilde{U})=0
$$

so $\varepsilon^{-1}(Q+\tilde{U})$ is proper and $P \subseteq \varepsilon^{-1}(Q+\tilde{U})$, hence $P=\varepsilon^{-1}(Q+\tilde{U})$. Since $U=$ $\varepsilon^{-1}(\tilde{U})$, so $U \subseteq P$. Let $q: M \otimes^{h} B \rightarrow \frac{M}{U_{1}} \otimes^{h} \frac{B}{U_{2}}$ be the quotient map with kernel U ([1], Corollary 2.6). Note that the representations π_{1} and π_{2} induce faithful factor representations $\tilde{\pi}_{1}$ of $\frac{M}{U_{1}}$ and $\tilde{\pi}_{2}$ of $\frac{B}{U_{2}}$ on $\mathscr{H} \oplus \mathscr{K}$. Moreover, as π_{1} and π_{2} are
commuting, so $\tilde{\pi_{1}}$ and $\tilde{\pi_{2}}$ are also commuting. The linear map $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}: \frac{M}{U_{1}} \otimes \frac{B}{U_{2}} \rightarrow$ $B(\mathscr{H} \oplus \mathscr{K})$ preserves the ternary product. Also, for $x \in \frac{M}{U_{1}} \otimes \frac{B}{U_{2}}$ note that

$$
\left\|\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}(x)\right\| \leqslant\|x\|_{\operatorname{tmax}}
$$

Thus, $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}$ is a contractive map, so extends to a contraction from $\frac{M}{U_{1}} \otimes^{\operatorname{tmax}} \frac{B}{U_{2}} \rightarrow$ $B(\mathscr{H} \oplus \mathscr{K})$. Since the Haagerup norm dominates the tmax norm ([11], Proposition 3.2), so there is an induced representation $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}$ of $\frac{M}{U_{1}} \otimes^{h} \frac{B}{U_{2}}$ into $B(\mathscr{H} \oplus \mathscr{K})$. Consider the following commutative diagram

so $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}(q(P))=0$. Now we claim that $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}$ is a faithful representation. Since $\tilde{\pi}_{1}$ and $\tilde{\pi}_{2}$ are faithful factor representations so by using ([20], Proposition IV.4.20), $\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}$ is faithful on the algebraic tensor product $\frac{M}{U_{1}} \otimes \frac{B}{U_{2}}$. If $\operatorname{ker}\left(\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}\right)$ were nonzero, then by Lemma $6, \operatorname{ker}\left(\tilde{\pi}_{1} \cdot \tilde{\pi}_{2}\right)$ would contain a nonzero elementary tensor, say $\bar{a} \otimes \bar{b}$. Thus $\tilde{\pi}_{1} \cdot \tilde{\pi_{2}}(\bar{a} \otimes \bar{b})=0$, so $\tilde{\pi_{1}} \cdot \tilde{\pi_{2}}$ would not be faithful on $\frac{M}{U_{1}} \otimes \frac{B}{U_{2}}$. Therefore, $\tilde{\pi}_{1} \cdot \tilde{\pi_{2}}$ is a faithful representation i.e. $q(P)=0$. Thus, $P \subseteq \operatorname{ker}(q)=U$, which establishes the equality. To show U_{1} and U_{2} are maximal, observe that

$$
\frac{M \otimes^{h} B}{U}=\frac{M}{U_{1}} \otimes^{h} \frac{B}{U_{2}}
$$

Since U is maximal ideal, therefore $\frac{M \otimes^{h} B}{U}$ is simple, so by ([11], Proposition 4.16), $\frac{M}{U_{1}}$ and $\frac{B}{U_{2}}$ are simple which implies U_{1} and U_{2} are maximal ideals of M and B respectively.

REMARK 2. For separable Hilbert spaces \mathscr{H}, \mathscr{K} and \mathscr{L}, the only maximal ideal of $B(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$ is $B(\mathscr{H}, \mathscr{K}) \otimes^{h} K(\mathscr{L})+K(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$.

5. Prime ideals of $M \otimes^{h} B$

In this section our aim is to give a complete classification of prime ideals of $M \otimes^{h}$ B. We first define prime ideals of $M \otimes^{h} B$.

DEFINITION 6. An ε-ideal P of $M \otimes^{h} B$ is called a prime ideal if for any pair I and J of ε-ideals satisfying $I \cap J \subseteq P$, either $I \subseteq P$ or $J \subseteq P$.

DEFINITION 7. A closed subspace P of $M \otimes^{h} B$ is called an i-prime ideal (ε prime ideal) if $P=i^{-1}(Q)\left(P=\varepsilon^{-1}(Q)\right)$, for some prime ideal Q of $\mathscr{A}(M) \otimes^{h} B$ $\left(M \otimes{ }^{\mathrm{tmin}} B\right)$.

REMARK 3. Let P be an i-prime ideal of $M \otimes^{h} B\left(P=i^{-1}(Q)\right)$. Suppose P_{1} and P_{2} be ε-ideals of $M \otimes^{h} B$ satisfying $P_{1} \cap P_{2} \subseteq P$, then as i is injective so

$$
i\left(P_{1}\right) \cap i\left(P_{2}\right) \subseteq i\left(P_{1} \cap P_{2}\right) \subseteq i(P) \subseteq Q
$$

which gives $i\left(P_{1}\right) \subseteq Q$ or $i\left(P_{2}\right) \subseteq Q$ so $P_{1}=i^{-1}\left(i\left(P_{1}\right)\right) \subseteq P$ or $P_{2}=i^{-1}\left(i\left(P_{2}\right)\right) \subseteq P$. Thus every i-prime ideal of $M \otimes^{h} B$ is a prime ideal.

REMARK 4. Let P be an ε-prime ideal of $M \otimes^{h} B$ i.e. $P=\varepsilon^{-1}(Q)$ for some prime ideal Q of $M \otimes^{\operatorname{tmin}} B$. Let $\tilde{Q}=\tilde{\varepsilon}^{-1}(j(Q))$, then $j(Q)$ is a prime ideal of $\mathscr{A}(M) \otimes^{\min } B$. Since $\tilde{\varepsilon}$ is an injective homomorphism and the range of $\tilde{\varepsilon}$ is dense in $\mathscr{A}(M) \otimes^{\min } B$ so \tilde{Q} is a prime ideal of $\mathscr{A}(M) \otimes^{h} B$. We will show that $P=i^{-1}(\tilde{Q})$. Suppose $x \in P$ then $\varepsilon(x) \in Q$ so $\tilde{\varepsilon} i(x)=j(\varepsilon(x)) \in j(Q)$. Thus, $x \in i^{-1} \tilde{\varepsilon}^{-1}(j(Q))=$ $i^{-1}(\tilde{Q})$. Conversely, let $x \in i^{-1}(\tilde{Q})$, then $i(x) \in \tilde{Q}=\tilde{\varepsilon}^{-1}(j(Q))$ so by commutativity of the first diagram in Section $4, i(x) \in \tilde{\varepsilon}^{-1}(j(Q))=i \varepsilon^{-1}(Q)$ so $x \in P$. This shows that any ε-prime ideal of $M \otimes^{h} B$ is an i-prime ideal.

Proposition 5. If P is i-prime ideal of $M \otimes^{h} B$ then $P=M \otimes^{h} J+I \otimes^{h} B$ for some prime ideals I and J of M and B.

Proof. Let P be an i-prime ideal of $M \otimes^{h} B$ so $P=i^{-1}(Q)$, for some prime ideal Q of $\mathscr{A}(M) \otimes^{h} B$. By ([1], Theorem 5.9) and Proposition 4, $Q=\mathscr{A}(I) \otimes^{h} B+$ $\mathscr{A}(M) \otimes^{h} J$, for some prime ideals I and J of M and B respectively. Thus, by Lemma $4, P=i^{-1}\left(\mathscr{A}(I) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} J\right)=M \otimes^{h} J+I \otimes^{h} B$.

Our next goal is to provide a complete characterization of the prime ideals of $M \otimes^{h} B$. Let I and J be ideals of M and B respectively. Furthermore, let $\pi: M \rightarrow M / I$ and $\rho: B \rightarrow B / J$ be the quotient maps. Then $\pi \otimes^{\operatorname{tmin}} \rho: M \otimes^{\operatorname{tmin}} B \rightarrow M / I \otimes^{\operatorname{tmin}} B / J$ is a ternary homomorphism. To achieve our goal, we need to know the $\operatorname{Ker}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)$. We begin with the case where M and B both are C^{*}-algebras. Let A and B be C^{*}-algebras with I and J ideals of A and B respectively. Then $\pi \otimes \rho: A \otimes{ }^{\min } B \rightarrow A / I \otimes^{\min } B / J$ is a C^{*}-homomorphism. The following result establishes a useful formula for the $\operatorname{ker}(\pi \otimes$ $\rho)$. This might be known, but we are unable to find a reference so including a proof for the convenience of the reader.

Lemma 8. If A or B is an exact C^{*}-algebra, then

$$
\operatorname{ker}(\pi \otimes \rho)=I \otimes^{\min } B+A \otimes^{\min } J
$$

Proof. Let $K=\operatorname{ker}(\pi \otimes \rho)$ and $K_{0}=I \otimes{ }^{\min } B+A \otimes^{\min } J$. Since K is closed, so it is obvious that $K_{0} \subseteq K$. Let $K_{1} \otimes{ }^{\text {min }} K_{2} \subseteq K$, where K_{1} and K_{2} are closed ideals of A and B respectively and let $a \otimes b \in K_{1} \otimes K_{2}$. Since K_{0} is closure of the sum of ideals generated by elementary tensors $a \otimes b \in K$ ([4], Lemma 2.12), so $\langle a \otimes b\rangle \subseteq K_{0}$. This in turn implies $K_{1} \otimes K_{2} \subseteq K_{0}$ and therefore $K_{1} \otimes{ }^{\min } K_{2} \subseteq K_{0}$, as K_{0} is closed. By ([4], Proposition 2.16, Proposition 2.17), K is the closure of the sum of all elementary ideals $K_{1} \otimes^{\min } K_{2} \subseteq K$, where $K_{1} \subseteq A$ and $K_{2} \subseteq B$ are closed ideals and since $K_{1} \otimes^{\min }$ $K_{2} \subseteq K_{0}$ for every elementary ideal $K_{1} \otimes^{\min } K_{2}$ of K, so $K \subseteq K_{0}$.

Lemma 9. If M or B is exact, then

$$
\operatorname{ker}\left(\pi \otimes^{t \min } \rho\right)=M \otimes^{t \min } J+I \otimes^{t \min } B
$$

Proof. As $\pi \otimes^{\operatorname{tmin}} \rho: M \otimes^{\operatorname{tmin}} B \rightarrow M / I \otimes^{\operatorname{tmin}} B / J$ is a ternary homomorphism, so applying the functor \mathscr{A} and using ([11], Proposition 4.6) $\mathscr{A}\left(\pi \otimes^{\operatorname{tmin}} \rho\right): \mathscr{A}(M) \otimes^{\operatorname{tmin}}$ $B \rightarrow \mathscr{A}(M) / \mathscr{A}(I) \otimes^{\operatorname{tmin}} B / J$ is a C^{*}-homomorphism. Thus, using above lemma, we have

$$
\operatorname{ker}\left(\mathscr{A}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)\right)=\mathscr{A}(M) \otimes^{\min } J+\mathscr{A}(I) \otimes^{\min } B=\mathscr{A}\left(M \otimes^{\operatorname{tmin}} J+I \otimes^{\operatorname{tmin}} B\right)
$$

Since $\operatorname{ker}\left(\mathscr{A}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)\right)=\mathscr{A}\left(\operatorname{ker}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)\right)\left([10]\right.$, Lemma 2.7), so $\mathscr{A}\left(\operatorname{ker}\left(\pi \otimes^{\operatorname{tmin}}\right.\right.$ $\rho))=\mathscr{A}\left(M \otimes^{\operatorname{tmin}} J+I \otimes^{\operatorname{tmin}} B\right)$. Thus, $\operatorname{ker}\left(\pi \otimes^{\operatorname{tmin}} \rho\right)=M \otimes^{\operatorname{tmin}} J+I \otimes^{\operatorname{tmin}} B$.

THEOREM 3. (a) Let I and J be prime ideals of M and B respectively, then $M \otimes^{h} J+I \otimes^{h} B$ is a prime ideal (ε-prime ideal) of $M \otimes^{h} B$.
(b) Conversely, if P is prime ideal of $M \otimes^{h} B$ and M or B is exact, then $P=M \otimes^{h}$ $J+I \otimes^{h} B$ for some prime ideals I and J of M and B respectively.

Proof.

(a) Note that $I \otimes^{\operatorname{tmin}} B+M \otimes^{\operatorname{tmin}} J$ is a prime ideal of $M \otimes^{\mathrm{tmin}} B$ by Corollary 3. But $\varepsilon^{-1}\left(I \otimes^{\operatorname{tmin}} B+M \otimes^{\operatorname{tmin}} J\right)=I \otimes^{h} B+M \otimes^{h} J$. Thus $I \otimes^{h} B+M \otimes^{h} J$ is an ε-prime ideal of $M \otimes^{h} B$ so is a prime ideal by Remarks 3 and 4 .
(b) Suppose that P is a prime ideal in $M \otimes^{h} B$, say $P=\varepsilon^{-1}(Q)$, for some ideal Q of $M \otimes \otimes^{\operatorname{tmin}} B$. Without loss of generality, we may assume that P is proper. By Zorn's lemma, choose an ideal I not equal to M of M which is maximal with respect to the properties that $I \otimes^{h} B \subseteq P$ and $I \otimes^{\text {tmin }} B \subseteq Q$. Again choose an ideal J not equal to B of B which is maximal with respect to the properties that $M \otimes^{h} J \subseteq P$ and $M \otimes^{\operatorname{tmin}} J \subseteq Q$. Then $\tilde{Q}=\left(\pi \otimes^{\operatorname{tmin}} \rho\right)(Q)$ is a closed ideal in $(M / I) \otimes^{\min }(B / J)$ (Proposition 5 and ([8], Corollary 4.8)). The map $\pi \otimes \rho$: $M \otimes^{h} B \rightarrow(M / I) \otimes^{h}(B / J)$ is a quotient map ([1], Theorem 2.5). Define $\tilde{P}=$ $\pi \otimes \rho(P)$, then by ([1], Corollary 2.7), \tilde{P} is a closed subspace of $M / I \otimes^{h} B / J$. If \tilde{Q} is nonzero then, it contains a nonzero elementary tensor, say $c \otimes d$. By definition of \tilde{Q}, there exists $z \in Q$, such that $\pi \otimes \rho(z)=c \otimes d$. Choose, $a \in M$ and $b \in B$ such that $\pi(a)=c$ and $\rho(b)=d$, then $\pi \otimes \rho(a \otimes b)=c \otimes d$. So, by Lemma $6, z-(a \otimes b) \in M \otimes{ }^{\operatorname{tmin}} J+I \otimes \otimes^{\operatorname{tmin}} B \subseteq Q$ and therefore $a \otimes b \in Q$. Thus, there exists $a \otimes b \in Q$ such that $\pi(a) \otimes \rho(b) \neq 0$. The element $a \otimes b \in Q$ generates a product ideal $I_{1} \otimes^{\operatorname{tmin}} J_{1}$ in Q and therefore $I_{1} \otimes^{h} J_{1}$ is a product ideal in P using ([11], Proposition 4.17). Define two product ideal in $M \otimes^{h} B$ by $K=M \otimes^{h}\left(J+J_{1}\right)$ and $L=\left(I+I_{1}\right) \otimes^{h} B$. Then,

$$
K \cap L=\left(I+I_{1}\right) \otimes^{h}\left(J+J_{1}\right)=I \otimes^{h} J+I \otimes^{h} J_{1}+I_{1} \otimes^{h} J+I_{1} \otimes^{h} J_{1} \subseteq P
$$

But then as P is prime, so $K \subseteq P$ or $L \subseteq P$. The choice of ideals I and J then implies $I_{1} \subseteq I$ or $J_{1} \subseteq J$. Thus, either $\pi(a)=0$ or $\rho(b)=0$, which is a contradiction, as $\pi(a) \otimes \rho(b) \neq 0$. This shows that $\tilde{Q}=0$.

Next, we show that $\tilde{P}=0$. Observe that the following diagram

is commutative i.e. $\varepsilon_{1}(\pi \otimes \rho)=\left(\pi \otimes^{\operatorname{tmin}} \rho\right) \varepsilon$. Moreover,

$$
\varepsilon_{1}(\tilde{P})=\varepsilon_{1}(\pi \otimes \rho(P))=\left(\pi \otimes^{\operatorname{tmin}} \rho\right) \varepsilon(P) \subseteq\left(\pi \otimes^{\operatorname{tmin}} B\right)(Q)=0
$$

which implies $\varepsilon_{1}(\tilde{P})=0$ and therefore $\tilde{P}=0$ as ε_{1} is injective. Thus, $P \subseteq$ $\operatorname{Ker}(\pi \otimes \rho)=M \otimes^{h} J+I \otimes^{h} B$, using ([1], Corollary 2.6). But $M \otimes^{h} J+I \otimes^{h} B \subseteq$ P (by choice of I and J).

We now show that the ideals I and J must be prime. If I_{1} and I_{2} are closed ideals in M such that $I_{1} \cap I_{2} \subseteq I$, then by ([19], Corollary 4.6),

$$
\left(I_{1} \otimes^{h} B\right) \cap\left(I_{2} \otimes^{h} B\right)=\left(I_{1} \cap I_{2}\right) \otimes^{h} B \subseteq P .
$$

By hypothesis, P contains either $I_{1} \otimes^{h} B$ or $I_{2} \otimes^{h} B$, and assume without loss of generality that $I_{1} \otimes^{h} B \subseteq P$. Let ϕ be an arbitrary element of the annihilator $I^{\perp} \subseteq M^{*}$ of I, and choose a non-zero element $\psi \in J^{\perp} \subseteq B^{*}$. Then by ([7], Proposition 9.2.5), $\phi \otimes \psi \in\left(M \otimes^{h} B\right)^{*}$ and annihilates P and so must annihilate $I_{1} \otimes^{h} B$. Since $\phi \in I^{\perp}$ was arbitrary this forces $I_{1} \subseteq I$, proving that I is prime. A similar argument shows that J is also prime.

The next corollary which is a simple consequence of our results establishes a relationship of prime ideals, i-prime ideals, and ε-prime ideals of $M \otimes^{h} B$.

Corollary 5. Let P be a closed subspace of $M \otimes^{h} B$. If M or B is exact, then P is a prime ideal if and only if P is ε-prime ideal (i-prime ideal).

Proof. In view of Remarks 3 and 4, we only need to show that every prime ideal is a ε-prime ideal. Suppose P is prime ideal of $M \otimes^{h} B$, then by Theorem $3, P=$ $M \otimes^{h} J+I \otimes^{h} B$ for some prime ideals I and J of M and B. By ([1], Theorem 5.9), $\mathscr{A}(I) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} J$ is prime ideal of $\mathscr{A}(M) \otimes^{h} B$ and $P=\varepsilon^{-1}\left(\mathscr{A}(I) \otimes^{h} B+\right.$ $\left.\mathscr{A}(M) \otimes^{h} J\right)$ ([11], Proposition 4.17). Thus, P is a ε-prime ideal.

6. Primitive ideals of $M \otimes^{h} B$

In this section we are going to study primitive ideals in the Haagerup tensor product of M and B. As in ([3], Page 4), we have

LEMMA 10. If I_{1} and I_{2} are proper closed ideals in M and J_{1} and J_{2} proper closed ideals of B then $M \otimes^{h} J_{1}+I_{1} \otimes^{h} B=M \otimes^{h} J_{2}+I_{2} \otimes^{h} B$ if and only if $I_{1}=I_{2}$ and $J_{1}=J_{2}$.

DEFINITION 8. A closed subspace P of $M \otimes^{h} B$ will be called a primitive ideal of $M \otimes^{h} B$ if $P=\operatorname{ker}(\pi)$, for some irreducible representation π of $M \otimes^{h} B$.

THEOREM 4. (a) If I and J are primitive ideals of M and B respectively then $I \otimes^{h} B+M \otimes^{h} J$ is a primitive ideal of $M \otimes^{h} B$.
(b) If P is a primitive ideal of $M \otimes^{h} B$ then there exists prime ideals I and J of M and B such that $P=I \otimes^{h} B+M \otimes^{h} J$.
(c) If P is primitive ideal of $M \otimes^{h} B$ and M and B are separable then there exists primitive ideals I and J of M and B such that $P=I \otimes^{h} B+M \otimes^{h} J$.
(d) Let I be a closed ideal of M then $I \otimes^{h} B$ is a primitive ideal of $M \otimes^{h} B$ if and only if $\mathscr{A}(I) \otimes^{h} B$ is a primitive ideal of $\mathscr{A}(M) \otimes^{h} B$.

Proof.
(a) Let I and J be primitive ideals of M and B then by ([10], Theorem 2.6), $\mathscr{A}(I)$ is primitive ideal of $\mathscr{A}(M)$. Thus $\tilde{P}=\mathscr{A}(I) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} J$ is primitive ideal of $\mathscr{A}(M) \otimes^{h} B$ ([1], Theorem 5.13) and therefore $\tilde{P}=\operatorname{ker}(\psi)$ for some irreducible $*$-representation ψ of $\mathscr{A}(M) \otimes^{h} B$. Using Proposition 1, let $\psi=$ $\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}$, where ρ is an irreducible representation of $M \otimes^{\operatorname{tmax}} B$. Define, $\pi=$ $\rho \varepsilon^{\prime}$, then π is an irreducible representation of $M \otimes^{h} B$. We claim that $\operatorname{ker}(\pi)=$ $I \otimes^{h} B+M \otimes^{h} J$. Suppose $a \otimes b \in I \otimes B$, then

$$
\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right] \otimes b \in \mathscr{A}(I) \otimes B \subseteq \operatorname{ker}(\psi)=\operatorname{ker}\left(\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}\right)
$$

Thus, $\rho \varepsilon(a \otimes b)=0$, so $a \otimes b \in \operatorname{ker}(\pi)$. Since $\operatorname{ker}(\pi)$ is closed, so $I \otimes^{h} B \subseteq$ $\operatorname{ker}(\pi)$. Similarly, $M \otimes^{h} J \subseteq \operatorname{ker}(\pi)$. Thus, $M \otimes^{h} J+I \otimes^{h} B \subseteq \operatorname{ker}(\pi)$. Conversely, let $x \in \operatorname{ker}(\pi)$. Note that the following diagram

is commutative i.e. $j^{\prime} \varepsilon^{\prime}=\tilde{\varepsilon}^{\prime} i$. Then as

$$
\begin{aligned}
\psi(i(x)) & =\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}(i(x))=\mathscr{A}(\rho)\left(j^{\prime}\left(\varepsilon^{\prime}(x)\right)\right. \\
& =\mathscr{A}(\rho)\left(\left[\begin{array}{ll}
0 & \varepsilon^{\prime}(x) \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & \rho\left(\varepsilon^{\prime}(x)\right) \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

So $i(x) \in \operatorname{ker}(\psi)=\mathscr{A}(I) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} J$ and therefore $x \in i^{-1}\left(\mathscr{A}(I) \otimes^{h} B+\right.$ $\left.\mathscr{A}(M) \otimes^{h} J\right)=I \otimes^{h} B+M \otimes^{h} J$ by Lemma 4.
(b) Let P be a primitive ideal of $M \otimes^{h} B$, so $P=\operatorname{ker}(\pi)$ where $\pi=\rho \varepsilon^{\prime}$ and ρ is an irreducible representation of $M \otimes^{\operatorname{tmax}} B$. Define $\psi=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}$, then $\operatorname{ker}(\psi)$ is a primitive ideal of $\mathscr{A}(M) \otimes^{h} B$. Thus, by ([1], Theorem 5.13) and Proposition 3, $\operatorname{ker}(\psi)=\mathscr{A}(I) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} J$ for some prime ideals I and J. By the same argument as in part (a), it is not difficult to see that $\operatorname{ker}(\pi)=I \otimes^{h} B+M \otimes^{h} J$.
(c) Follows immediately from Corollary 1 and (b).
(d) Let $I \otimes^{h} B=\operatorname{ker}(\pi), \pi=\rho \varepsilon^{\prime}$ and ρ is an irreducible representation of $M \otimes^{\operatorname{tmax}}$ B. Let $\psi=\mathscr{A}(\rho) \tilde{\varepsilon}^{\prime}$, so $\operatorname{ker}(\psi)$ is a primitive ideal of $\mathscr{A}(M) \otimes^{h} B$. Using ([1], Proposition 2.5) and Proposition 3, it follows that there exist prime ideals I_{1} and I_{2} such that $\operatorname{ker}(\psi)=\mathscr{A}\left(I_{1}\right) \otimes^{h} B+\mathscr{A}(M) \otimes^{h} I_{2}$. As in part (a), we can show that $\operatorname{ker}(\pi)=I_{1} \otimes^{h} B+M \otimes^{h} I_{2}$. Hence by Lemma $10, I=I_{1}$ and $I_{2}=\{0\}$. Thus, $\operatorname{ker}(\psi)=\mathscr{A}(I) \otimes^{h} B$. The converse can be proved as in (a).
An immediate consequence of our results is the following:
COROLLARY 6. Every maximal ideal of $M \otimes^{h} B$ is primitive, and every primitive ideal is prime ideal.

Example 4. Let \mathscr{H}, \mathscr{K} and \mathscr{L} be infinite dimensional separable Hilbert spaces. It is easy to see that $K(\mathscr{H}, \mathscr{K}) \otimes^{h} K(\mathscr{L})$ is not a prime ideal of $B(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$, and hence not primitive by Corollary 6. Moreover, all other non trivial ε-ideal of $B(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$ i.e. $B(\mathscr{H}, \mathscr{K}) \otimes^{h} K(\mathscr{L}), K(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$, and $B(\mathscr{H}, \mathscr{K}) \otimes^{h}$ $K(\mathscr{L})+K(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$ are prime ideals by Theorem 3. $B(\mathscr{H}, \mathscr{K}) \otimes^{h} K(\mathscr{L})+$ $K(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$ is primitive using Corollary 6. By definition of a primitive ideal, one can show that $B(\mathscr{H}) \otimes^{h} K(\mathscr{L})$ and $K(\mathscr{H}) \otimes^{h} B(\mathscr{L})$ are not primitive ideals of $B(\mathscr{H}) \otimes^{h} B(\mathscr{L})$. Using Theorem $4(d)$, it follows that $B(\mathscr{H}, \mathscr{K}) \otimes^{h} K(\mathscr{L})$ and $K(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$ are not primitive in $B(\mathscr{H}, \mathscr{K}) \otimes^{h} B(\mathscr{L})$.

EXAMPLE 5. Let $\left(\mathscr{K}_{n}\right)$ be an increasing sequence of infinite dimensional separable Hilbert spaces and \mathscr{H} and \mathscr{L} be any infinite dimensional separable Hilbert space. For $f \in K\left(\mathscr{H}, \mathscr{K}_{n}\right), i_{n} \circ f \in K\left(\mathscr{H}, \mathscr{K}_{n+1}\right)$ where $i_{n}: \mathscr{K}_{n} \rightarrow \mathscr{K}_{n+1}$ is inclusion. $\left\{K\left(\mathscr{H}, \mathscr{K}_{n}\right), \alpha_{n}\right\}, \alpha_{n}(f)=i_{n} \circ f$, is an inductive system. Since $K\left(\mathscr{H}, \mathscr{K}_{n}\right)$ is simple for all n, so by ([9], Corollary 2.23), the inductive limit $\underset{\longrightarrow}{\lim } K\left(\mathscr{H}, \mathscr{K}_{n}\right)$ is also simple. Using ([11], Proposition 4.19), it follows that only non trivial ε-ideal of $\underset{\longrightarrow}{\lim }\left(K\left(\mathscr{H}, \mathscr{K}_{n}\right)\right) \otimes^{h} B(\mathscr{L})$ is $\underset{\longrightarrow}{\lim }\left(K\left(\mathscr{H}, \mathscr{K}_{n}\right)\right) \otimes^{h} K(\mathscr{L})$. Moreover, since $K(\mathscr{L})$ is prime and maximal ideal of $B \overrightarrow{(\mathscr{L}})$ and $\underset{\longrightarrow}{\lim } K\left(\mathscr{H}, \mathscr{K}_{n}\right)$ is exact by ([9], Corollary 2.18), so $\underset{\longrightarrow}{\lim }\left(K\left(\mathscr{H}, \mathscr{K}_{n}\right)\right) \otimes^{h} K(\mathscr{L})$ is the only nontrivial maximal and prime ideal of $\underset{\longrightarrow}{\lim }\left(K\left(\mathscr{H}, \mathscr{K}_{n}\right)\right) \otimes^{h} B(\mathscr{L})$.

Acknowledgement. The second author acknowledges support from the National Academy of Sciences, India. We are indebted to the referee for many suggestions which helped in improving the exposition.

REFERENCES

[1] S. D. Allen, A. M. Sinclair and R. R. Smith, The ideal structure of the Haagerup tensor product of C^{*}-algebras, J. Reine Angew. Math. 442 (1993), 111-148.
[2] L. Arambašić, Irreducible representations of Hilbert C^{*}-modules, Math. Proc. R. Ir. Acad. 105A (2005), no. 2, 11-24.
[3] R. J. Archbold, D. W. B. Somerset, E. Kaniuth and G. Schlichting, Ideal space of the Haagerup tensor product of C^{*}-algebras, Internat. J. Math. 8 (1997), 1-29.
[4] E. Blanchard and E. Kirchberg, Non-simple purely infinite C^{*}-algebras: the Hausdorff case, J. Funct. Anal. 207 (2004), no. 2, 461-513.
[5] D. P. Blecher, Geometry of the tensor product of C^{*}-algebras, Math. Proc. Camb. Phil. Soc. 104 (1988), 119-127.
[6] P. G. Dixon, Non-closed sums of closed ideals in Banach algebras, Proc. Amer. Math. Soc. 128 (2001), 3647-3654.
[7] E. G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs, New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000.
[8] A. Fernando and F. Damian, Applications of ternary rings to C^{*}-algebras, Adv. Oper. Theory 2 (2017) no. 3, 293-317.
[9] A. Kansal, A. Kumar and V. Rajpal, Inductive limit in the category of C^{*}-ternary rings, Bull. Korean Math. Soc. 60, no. 1, pp. 137-148 (2023).
[10] A. Kansal, A. Kumar, V. Rajpal, Representations of C^{*}-ternary rings, Comm. Korean Math. Soc. 38, no. 1, pp. 123-135 (2023).
[11] A. Kansal and A. Kumar, Haagerup tensor product of C^{*}-ternary rings, J. Math. Anal. Appl. 528, no. 1, paper no. 127482.
[12] M. Kaur and Z.-J. RUAN, Local properties of ternary rings of operators and their linking C^{*} algebras, J. Funct. Anal. 195 (2002), no. 2, 262-305.
[13] G. J. Murphy, C* -Algebras and Operator Theory, Academic Press, 1990.
[14] G. K. Pedersen, C^{*}-algebras and their automorphism groups, New York, 1979.
[15] R. Pluta and B. Russo, Ternary operator categories, J. Math. Anal. Appl., 505 (2) (2022), 125590.
[16] R. Pluta and B. Russo, Corrigendum to Ternary Operator categories, J. Math. Anal. Appl. 529, no. 1, paper no. 127653.
[17] R. Pluta and B. Russo, Anti-C* -algebras, arXiv:2305.12273, May 2023.
[18] M. Skeide, Ideal submodules versus ternary ideals versus linking ideals, Algebras and Representation Theory (2022), 25: 359-386.
[19] R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175.
[20] M. TaKesaki, Theory of operator algebras. I, Springer-Verlag, New York, 1979.
[21] H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143.

Arpit Kansal
Department of Mathematics, University of Delhi
Delhi-110 007, India
e-mail: arpitkansal25@gmail.com
Ajay Kumar
Department of Mathematics, University of Delhi
Delhi-110 007, India
e-mail: ak7028581@gmail.com

Operators and Matrices

www.ele-math.com
oam@ele-math.com

[^0]: Mathematics subject classification (2020): 46L06, 46L07, 46M40.
 Keywords and phrases: C^{*}-ternary ring, representations, ideals, Haagerup tensor product, injective tensor product.

 * Corresponding author.

