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IDEALS IN HAAGERUP TENSOR PRODUCT

OF C∗–TERNARY RINGS AND TROS

ARPIT KANSAL AND AJAY KUMAR ∗

(Communicated by C.-K. Ng)

Abstract. We characterize the maximal, prime and primitive ideals of Haagerup tensor product
M⊗h B of a TRO M and a C∗ -algebra B .

1. Introduction

A C∗ -ternary ring (C∗ -tring) (M, [., ., .],‖.‖) consists of a complex Banach space
(M,‖.‖) and a ternary product [., ., .] : M3 → M which is linear in the first and third
variable, conjugate linear in the second variable and associative as:

[[x,y,z],u,v] = [x,y, [z,u,v]] = [x, [u,z,y],v].

Moreover, the norm satisfies ‖[x,x,x]‖ = ‖x‖3 and ‖[x,y,z]‖ � ‖x‖‖y‖‖z‖ . For in-
stance, any ternary ring of operator (TRO) is a C∗ -tring such as B(H ,K ) , the space
of all bounded operators from a Hilbert space H to a Hilbert space K , Mn,k the n×k
complex matrices or a C∗ -algebra. It can be seen that every C∗ -tring has an operator
space structure [7, 21].

Pluta and Russo ([15], Proposition 2.7) assigned a C∗ -algebra A (M) correspond-
ing to a C∗ -tring M . The referee and one of the coauthors of [15] have pointed out that
Proposition 2.7 is not correct as stated (see [16]). In fact, if M is a C∗ -tring and there
is a C∗ -norm on A (M) then M is isomorphic to a TRO. In this case A (M) is C∗ -
isomorphic to the linking C∗ -algebra of M . In general A (M) is a Banach algebra
having an approximate identity, which has been studied in [17].

Ideals of the Banach algebra arising from Haagerup tensor product A⊗h B of C∗ -
algebras A and B were investigated in [1] and [3]. In [11], the Haagerup tensor product
M⊗h B of C∗ -tring M and C∗ -algebra B has been discussed in detail. One may note
that the Haagerup tensor product is associative, injective but not necessarily symmetric.

In the present paper, we initiate a study of the ideal structure of the Banach space
M⊗h B . After preliminaries about ideals of C∗ -tring and ε -ideals of M⊗h B in Section
2, we present prime ideals of a TRO M in the next section. For a TRO M , we establish

Mathematics subject classification (2020): 46L06, 46L07, 46M40.
Keywords and phrases: C∗ -ternary ring, representations, ideals, Haagerup tensor product, injective

tensor product.
∗ Corresponding author.

c© � � , Zagreb
Paper OaM-17-48

731

http://dx.doi.org/10.7153/oam-2023-17-48


732 A. KANSAL AND A. KUMAR

a homeomorphism between prime ideals of M and A (M) . We also show that if M or
B is exact then there is a one-to-one correspondence between prime ideals of injective
tensor product M⊗tmin B and prime ideals of M and B . In Section 4, it has been shown
that if M is a TRO then every maximal ideal of M⊗h B has the form I⊗h B+M⊗h J
for some maximal ideals I and J of M and B respectively.

Subsequently, we introduce prime ideal, i-prime ideal and ε -prime ideal of M⊗h

B and study their relationship. Let I and J be ideals of M and B respectively and let
π : M → M/I and ρ : B → B/J be the quotient maps. Then π ⊗tmin ρ : M⊗tmin B →
M/I ⊗tmin B/J is a ternary homomorphism. We show that if M or B is exact, then
ker(π ⊗tmin ρ) = M⊗tmin J + I ⊗tmin B . This paves the way to establish that if M or
B is exact then every prime ideal of M⊗h B is of the form I ⊗h B+M⊗h J for some
prime ideals I and J of M and B . Finally, we describe primitive ideals of M⊗h B in
terms of primitive ideals of M and B .

Throughout this paper, M denotes a C∗ -tring or a TRO whenever required and B
a C∗ -algebra.

2. Preliminaries

A closed subspace I of M is called an ideal of M provided [I,M,M]+[M,M, I] ⊆
I . By an ideal we shall always mean a closed ideal, unless otherwise stated. If I is an
ideal of M then [M, I,M] ⊆ I ([9], Remark 2.7). Let Id(M) denotes the space of all
ideals of M . We recall the τw -topology defined on Id(M) . A subbasis for τw -topology
is given by the sets of the form U(J) = {I ∈ Id(M) : I � J} , where J ∈ Id(M) . If M is
a TRO then it is known that the map θ : Id(M) → Id(A (M)) defined as θ (I) = A (I)
is a homeomorphism ([18], Proposition 2.7), ([10], Proposition 2.4).

DEFINITION 1. A linear mapping φ : M → B(H ,K ) is called a representation
of M if φ preserves the ternary structure i.e. φ([x,y,z]) = φ(x)φ(y)∗φ(z) .

In [10], it was shown that there is a one to one correspondence between (irre-
ducible) representations of M and A (M) .

The Haagerup norm on the algebraic tensor products of M and B is defined, for
x ∈ M⊗B , by

||x||h = inf

{
‖a‖‖b‖ : a = (a1 j)1×n,b = (b j1)n×1 and x =

n

∑
j=1

a1 j ⊗b j1

}
.

The Haagerup tensor product M⊗h B is then the completion of M⊗B in this norm.
For more details, the reader is referred to [7]. It can be seen that M⊗h B may neither
be a C∗ -tring nor a Banach algebra in general. Moreover, M⊗tmin B is a C∗ -tring and
if M happens to be a TRO then A (M⊗tmin B) = A (M)⊗min B . In [11], the concept of
ε -ideals and i-ideals were introduced. We recall the definitions for convenience of the
reader.

DEFINITION 2. A closed subspace P of M ⊗h B is called an ε -ideal if P =
ε−1(Q) for some closed ideal Q of M⊗tmin B , where ε : M⊗h B → M⊗tmin B is the
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natural injective map. We shall regard M⊗h B as a subspace of M⊗tmin B with a dif-
ferent norm. It is easy to conclude that P is an ε -ideal if and only if P = Q∩(M⊗h B) ,
where Q is a closed ideal in M⊗tmin B . If M is a C∗ -algebra then every ε -ideal of
M⊗h B is an ideal and conversely.

DEFINITION 3. If M is a TRO, then a closed subspace P of M⊗h B is called an
i-ideal if P = i−1(Q) for some closed ideal Q of A (M)⊗h B , where i : M ⊗h B →
A (M)⊗h B is the isometry obtained by injectivity of the Haagerup tensor product. Of
course, P is an i-ideal if and only if P = Q∩ (M⊗h B) , where Q is a closed ideal in
A (M)⊗h B .

It is known that a closed subspace P of M⊗h B is an ε -ideal if and only if P is
an i-ideal ([11], Proposition 4.12).

Let M ⊗tmax B be the maximal C∗ -tring tensor product of M and B . We may
note that ‖x‖tmax � ‖x‖h for all x ∈ M⊗B [11]. For C∗ -algebras A and B there is a
one-to-one correspondence between representations of A⊗max B and ∗ -representations
of A⊗h B . Indeed, if ρ is a representation of A⊗max B then ρε ′ is a ∗ -representation
of A⊗h B (ε ′ : A⊗h B → A⊗max B is natural contractive homomorphism). If π is a ∗ -
representation of A⊗h B then by ([1], Lemma 5.12) there is a (unique) representation
ρ of A⊗max B such that π = ρε ′ . The proof of the following result is immediate.

PROPOSITION 1. Let M be a TRO and B a C∗ -algebra. Let π be a (irreducible)
∗ -representation of A (M)⊗h B then there exist (irreducible) representation ρ of M⊗tmax

B such that π = A (ρ)ε̃ ′ , where ε̃ ′ : A (M)⊗h B →A (M)⊗max B is the natural injec-
tive homomorphism.

3. Prime ideals of min tensor product of C∗ -trings

If I , J and K are ideals in M , then define

IJK = span{[a,b,c] : a ∈ I,b ∈ J,c ∈ K}
It is easy to check that IJK is an ideal of M .

LEMMA 1. Let I , J and K be ideals of C∗ -tring M . Then

IJK = I∩ J∩K.

Proof. Note that as I , J and K are ideals of M , therefore IJK ⊆ I , IJK ⊆ J and
IJK ⊆ K which implies IJK ⊆ I∩J∩K . Conversely, let x ∈ I∩J∩K . Since I∩J∩K
is a C∗ -tring and that every element of C∗ -tring has a cube root ([17], Page 6 footnote),
therefore there exists y ∈ I∩ J∩K such that x = [y,y,y] ∈ IJK . �

PROPOSITION 2. Let M be a C∗ -tring and L an ideal in M . Then L satisfies
(P1) if and only if it satisfies (P2) , where
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(P1) For any three ideals I , J and K of M satisfying IJK ⊆ L, either I ⊆ L or
J ⊆ L or K ⊆ L.

(P2) For any pair of ideals I and J satisfying I∩ J ⊆ L, either I ⊆ L or J ⊆ L.

Proof. These statements are obviously equivalent for the ideal M or {0} , so we
assume that L is a proper closed ideal in M . Suppose that L satisfies (P1) , and let I
and J be ideals such that I∩ J ⊆ L then IJI ⊆ I and IJI ⊆ J so IJI ⊆ I∩ J ⊆ L . Thus
either I ⊆ L or J ⊆ L , proving that L satisfies (P2) . Suppose now that L is an ideal in
M satisfying (P2) , and let I , J and K be ideals such that IJK ⊆ L then by Lemma 1,
I∩ J∩K ⊆ L . Thus either I ⊆ L or J ⊆ L or K ⊆ L . �

We say that an ideal L in M is prime if it satisfies (P1) or (P2) . One may easily
note that {0} and K(H ,K ) , the space of compact operators from a Hilbert space H
to a Hilbert space K are prime ideals of the C∗ -tring B(H ,K ) .

For a closed ideal I of a C∗ -tring M , let ˜A (I) denotes the restriction of A (I)
from M⊕M to I⊕ I .

LEMMA 2. Let I and J be closed ideals of C∗ -tring M , then I+J is also closed.

Proof. For closed ideals I and J of C∗ -tring M , ˜A (I) and ˜A (J) are closed ide-
als of A (M) ([17], Propositions 4.1,4.2). Let x ∈ I + J . Since ˜A (I) and ˜A (J) have
bounded approximate identity so ˜A (I)+ ˜A (J) in A (M) is closed ([6], Proposition
2.4) , thus[

0 x
0 0

]
∈ ˜A (I)+ ˜A (J) = ˜A (I)+ ˜A (J) =

[
L̃(I)+ L̃(J) I + J

I + J R̃(I)+ R̃(J)

]

so x ∈ I + J . �

EXAMPLE 1. Let X and Y be compact Hausdorff spaces. Furthermore, assume
that X ′ is a proper non void open and closed subset of X . Let C(Y ) be the alge-
bra of complex-valued continuous functions on Y with usual operations. Let M =
Ct(X ,C(Y )) be the set of continuous functions from X into C(Y ) . Define χ : X →
{0C(Y),1C(Y)} by

χ(t) =

{
1C(Y ), t ∈ X ′

0C(Y ), otherwise.

For f ,g,h ∈Ct(X ,C(Y )) put

[ f ,g,h](x) = (2χ(x)−1C(Y)) f (x)g(x)h(x)

Then (Ct (X ,Ct(Y )), [., ., .],‖.‖sup) is a commutative C∗ -tring ( i.e. [a,b,c] = [c,b,a]
for all a,b,c ∈ M ) which is not a TRO.



IDEALS IN HAAGERUP TENSOR PRODUCT 735

Let Ct(X ×Y ) be the set of complex valued continuous functions on X ×Y . Define
χ ′ : X ×Y → {0,1} by

χ ′((x,y)) =

{
1, (x,y) ∈ X ′ ×Y

0, otherwise.

For f ,g,h ∈Ct(X ×Y), put

[ f ,g,h](x,y) = (2χ ′(x,y)−1) f (x,y)g(x,y)h(x,y)

Then (Ct (X ,C(Y )), [., ., .],‖.‖sup) is a commutative C∗ -tring. Define

ψ : Ct(X ,C(Y )) →Ct(X ×Y )

by
ψ( f )(x,y) = f (x)(y)

It is not difficult to see that ψ is an isomorphism of C∗ -trings. Let C(X×Y ) be the
algebra of complex valued continuous functions on X ×Y with usual operations. Let V
be a closed subset of X ×Y . Define, I(V ) = { f ∈Ct(X ×Y ) : f (x,y) = 0,∀(x,y) ∈V} .
If V = {(a,b)} , we denote I(V ) by Ia,b . Note that I(V ) is a closed ideal of Ct(X ×Y ) .
It is easy to see that a closed subspace I is an ideal of Ct(X ×Y ) if and only if I is an
ideal of C(X ×Y ) . Thus, closed ideals of Ct(X ×Y ) are of the form I(V ) for some
closed set V of X ×Y . In particular, maximal ideals of Ct(X ×Y ) are of the form
Ia,b = { f ∈Ct(X ×Y )) : f (a,b) = 0} for some (a,b) ∈ X ×Y . Also ideals of the form
Ia,b are prime. In fact, there are no closed prime ideals other than the maximal ones.

Let Prime(M) denotes the space of Prime ideals of M , then Prime(M) inherits
subspace topology from Id(M) . In the next proposition, we establish that the map θ
defined in Section 2 is a homeomorphism between prime ideals of M and A (M) .

PROPOSITION 3. Let M be a TRO then Prime(M) is homeomorphic to
Prime(A (M)) .

Proof. Suppose L is a prime ideal of M and let I′ ∩J′ ⊆ A (L) for some ideals I′
and J′ of A (M) . We may assume that I′ = A (I) and J′ = A (J) for some ideals I and
J of M .Then A (I)∩A (J) ⊆ A (L) which implies A (I∩ J) ⊆ A (L) , thus I∩ J ⊆ L
so either I ⊆ L or J ⊆ L as L is a prime ideal. The proof of the converse is along
similar lines, so we omit it. �

Recall that an ideal I of M is called modular if there exists e and f in M such
that a− [a,e, f ] ∈ I for every a ∈ M . It is easy to see that for separable Hilbert spaces
H and K , K(H ,K ) is the only non-trivial modular ideal of B(H ,K ) . An ideal
I of M is called primitive if it is quotient of a maximal modular ideal i.e. I = (J :
M) = {a ∈ M : [a,M,M] ⊆ J} for some maximal modular ideal J of M . Moreover, a
closed ideal I of M is primitive if and only if I is kernel of some nonzero irreducible
representation ([10], Theorem 2.8).
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COROLLARY 1.

(a) Every primitive ideal is prime and every maximal modular ideal is prime.

(b) If M is separable, then every prime ideal is primitive.

Proof.

(a) Let I be a primitive ideal of M , then by ([10], Theorem 2.6(4)), A (I) is a
primitive ideal of A (M) . As primitive ideals of C∗ -algebras are prime ([13],
Theorem 5.4.5) , so A (I) is prime and therefore I is prime by above proposition.
The other part follows immediately from ([10], Proposition 2.5).

(b) Let I be a prime ideal of M , then A (I) is a prime ideal of A (M) . Since M
is separable, so A (M) is separable. Thus, by ([14], Theorem 4.3.6), A (I) is
primitive and hence I is primitive ([10], Theorem 2.6). �

We now turn our attention to describe prime ideals of operator space injective
tensor product. For C∗ -trings M and N , let M ⊗tmin N denotes the operator space
injective tensor product of M and N . Note that M⊗tmin N is a C∗ -tring. By taking
M = Ct(X) and N as any C∗ -algebra, we can obtain other C∗ -trings which are not
TROs.

PROPOSITION 4. Let Mi and Ni (i = 1,2) be C∗ -trings. Let fi : Mi → Ni be
ternary homorphisms for i = 1,2 . Then f1 ⊗ f2 continuously extends to a ternary ho-
momorphism f1⊗tmin f2 : M1⊗tmin M2 →N1⊗tmin N2 . Moreover, f1⊗tmin f2 is injective
if f1 and f2 are so.

Proof. By ([8], Proposition 3.11) each fi is contraction. Also, for each n ∈ N,

( fi)n : Mn(Mi) → Mn(Ni) : [vi, j] → [ fi(vi, j)]

is also a ternary homomorphism, and thus a contraction. Hence fi is a complete
contraction. Since injective tensor product of operator spaces is injective therefore
f1 ⊗ f2 continuously extends by density to a completely bounded map f1 ⊗tmin f2 :
M1⊗tmin M2 → N1 ⊗tmin N2 . The extended map f1 ⊗tmin f2 is also a ternary homomor-
phism. Moreover, if each fi is injective then fi is complete isometry, and therefore
f1 ⊗tmin f2 is also complete isometry. �

COROLLARY 2. Let I and J be closed ideals of C∗ -trings M and N respectively
then I⊗tmin J is a closed ideal of M⊗tmin N .

EXAMPLE 2. Let I be an ideal of M = Ct(X ,C(Y )) in Example 1. Define e and
f in Ct(X ,C(Y )) as e(x) = 1C(Y) and f (x) = 2χ(x)− 1C(Y) for all x ∈ X . Then, we
have h− [h,e, f ] = 0 ∈ I for every h ∈Ct(X ×Y ) , so I is modular. One can verify that
I⊗tmin B+M⊗tmin J is a closed modular ideal of M⊗tmin B , where J is a modular ideal
(Lemma 2). In particular, I⊗tmin B is modular.
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If M is a TRO, using ([11], Proposition 4.6) and ([4], Lemma 2.12) , it is not
difficult to see that every nonzero ideal of M⊗tmin B has a nonzero elementary tensor.
We may combine Corollary 2, Lemma 2, ([11], Proposition 4.6) and Proposition 4 to
obtain the following.

COROLLARY 3. If I and J are prime ideals of M and B respectively, then I⊗tmin

B+M⊗tmin J is also a prime ideal of M⊗tmin B.

DEFINITION 4. A C∗ -tring M is said to be exact if the functor M⊗tmin− is exact;
i.e., for each C∗ -tring N and ideal J of N the sequence

0 → M⊗tmin J → M⊗tmin N → M⊗tmin N/J → 0

is exact.

EXAMPLE 3. It is easy to see that every finite dimensional C∗ -tring is exact. If
M is commutative C∗ -tring, then using ([15], Lemma 1.1), R(M) is commutative, so
R(M) is exact. From ([8], Corollary 5.17), it is known that M is exact if and only if
R(M) is exact, so M is an exact C∗ -tring. In particular, Ct(X ,C(Y )) in Example 1 is
exact. Also, it can be seen that K(H ,K ) and Mn,k are exact.

LEMMA 3. Let M be an exact TRO, then A (M) is an exact C∗ -algebra.

Proof. Let J be an ideal of B and 0 → J → B → B/J → 0 be an exact sequence.
Since M is exact, so the sequence

0 → M⊗tmin J → M⊗tmin B → M⊗tmin B/J → 0

is exact. So the sequence

0 → A (M⊗tmin J) → A (M⊗tmin B) → A (M⊗tmin B/J) → 0

is exact by ([9], Proposition 2.9). But then the sequence

0 → A (M)⊗min J → A (M)⊗min B → A (M)⊗min B/J → 0

is exact by ([11], Proposition 4.6). Thus, A (M) is exact C∗ -algebra. �
In view of Corollary 3, we obtain a canonical map

Prime(M)×Prime(B) → Prime(M⊗tmin B)

given by
(I,J) → I⊗tmin B+M⊗tmin J.

THEOREM 1. If M is an exact TRO or B is exact then Prime(M⊗tmin B) is home-
omorphic to Prime(M)×Prime(B) .

Proof. If M or B is exact then A (M) or B is exact by above lemma. Thus
using ([4], Proposition 2.16 and 2.17), Prime(A (M)⊗tmin B) is homeomorphic to
Prime(A (M))×Prime(B) , which is homeomorphic to Prime(M)×Prime(B) by Propo-
sition 3. �
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4. Maximal ideals of M⊗h B

In the remaining sections of the paper, we assume M to be a TRO.
We classify all ε -ideals of M⊗h B which are maximal. As noted in ([11], Remark

4.22), if U1 and U2 are maximal ideals of M and B respectively then U1⊗h B+M⊗h

U2 is maximal ε -ideal. We first note that the following diagram

is commutative i.e. jε = ε̃i . The maps i = iM ⊗ idB and j are isometry. Moreover the
maps ε and ε̃ are injective and contractive ([5], Proposition 2) and ([11], Proposition
4.9).

LEMMA 4. Let I and J be ideals of M and B respectively, then

(a) j−1(A (I)⊗min J) = I⊗tmin J .

(b) ε̃(A (I)⊗h J) ⊆ A (I)⊗min J .

(c) For {A (Ii)⊗h Ji}n
i=1 a finite collection of product ideals in A (M)⊗h B, we

have,

i−1
( n

∑
i=1

A (Ii)⊗h Ji

)
=

n

∑
i=1

(Ii⊗h Ji).

Proof.

(a) Since I ⊗ J ⊆ j−1(A (I)⊗min J) and j−1(A (I)⊗min J) is closed so I⊗tmin J ⊆
j−1(A (I)⊗min J) . Conversely, let x ∈ j−1(A (I)⊗min J) i.e.[

0 x
0 0

]
= j(x) ∈ A (I)⊗min J = A (I)⊗ J

min

So there is a sequence (xn) ∈ A (I)⊗ J such that ‖xn− j(x)‖min → 0 as n → ∞ .

Suppose xn = ∑n
i=1

[
Ai fi
gi Bi

]
⊗ Ji , where fi ∈ I , Ai ∈ L(I) , Bi ∈ R(I) , gi ∈ I and

Ji ∈ J . Let N = (I⊗tmin J)⊕R(I⊗tmin J) . Since we have the C∗ -isomorphism be-

tween A (I)⊗min J and A (I⊗tmin J) ([12], Proposition 3.1), so using
∥∥∥[

A f
g B

]∥∥∥
� ‖ f‖ ([17], Proof of Theorem 2.7) we have

‖xn− j(x)‖min =
∥∥∥[

∑n
i=1 Ai ⊗ Ji ∑n

i=1 fi ⊗ Ji− x ∑n
i=1 gi⊗ Ji ∑n

i=1 Bi ⊗ Ji
]∥∥∥

B(N)

�
∥∥∥ n

∑
i=1

fi ⊗ Ji− x
∥∥∥

tmin
.
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Thus ∑n
i=1 fi ⊗ Ji

tmin−−→ x as n → ∞ . Hence x ∈ I⊗tmin J .

(b) Follows immediately using continuity of ε̃ .

(c) It is sufficient to prove the result for n = 2. Let K1 = A (I1)⊗h J1 and K2 =
A (I2)⊗h J2 . Note that i−1(K1 + K2) is closed and contains I1 ⊗ J1 + I2 ⊗ J2

therefore i−1(K1 + K2) also contains I1 ⊗h J1 + I2 ⊗h J2 . Conversely, let z ∈
i−1(K1 +K2) i.e. i(z) = x+ y for some x ∈ K1 and y ∈ K2 so jε(z) = ε̃(i(z)) =
ε̃(x)+ ε̃(y) ∈ ε̃(K1)+ ε̃(K2)⊆A (I1)⊗min J1 +A (I2)⊗min J2 = A (I1⊗tmin J1 +
I2 ⊗tmin J2) . Therefore ε(z) ∈ I1 ⊗tmin J1 + I2 ⊗tmin J2 using (a) , which gives
z ∈ I1⊗h J1 + I2⊗h J2 by ([11], Proposition 4.17). �

For a C∗ -tring M , let ν(M) denotes the number of closed ideals in M where we
count both 0 and M . From ([9], Proposition 2.21), it is clear that ν(M) = ν(A (M)) .
The next result characterizes all the ε -ideals of M⊗h B in the case where M or B has
finitely many ε -ideals.

COROLLARY 4. If ν(M) is finite then every i-ideal (ε -ideal) of M⊗h B is a finite
sum of product ideals.

Proof. Let T1 be an i-ideal of M ⊗h B i.e. T1 = i−1(T2) , for some ideal T2 of
A (M)⊗h B . Since ν(M) = ν(A (M)) so ν(A (M)) is also finite and therefore by ([1],
Theorem 5.3), T2 = ∑n

i=1 A (Ii)⊗h Ji for some ideals Ii and Ji of M and B respectively.
Thus, by Lemma 4,

T1 = i−1
( n

∑
i=1

A (Ii)⊗h Ji

)
=

n

∑
i=1

Ii⊗h Ji.qed

REMARK 1. In ([11], Example 4.22), all ε -ideals of B(H ,K )⊗h B(L ) , where
H , K and L are infinite dimensional separable Hilbert spaces were classified. The
previous corollary gives an elementary proof of the same classification.

Since ‖x‖tmax � ‖x‖h for all x∈M⊗B , so there is a contractive map ε ′ : M⊗hB→
M⊗tmax B such that ε ′(a⊗b) = a⊗b for all a∈M and b∈ B . The map ε has a natural
factorization through M⊗tmax B so using ([11], Proposition 4.9), we have

LEMMA 5. The contractive map ε ′ : M⊗h B → M⊗tmax B is injective.

Let A and B be C∗ -algebras then it is known that there is a one-to-one correspon-
dence between representations of A⊗maxB and ∗ -representations of A⊗hB . Motivated
by this, we define the following.

DEFINITION 5. A linear map π : M⊗h B → B(H ,K ) is called a representation
of M ⊗h B if there exists a representation ρ of M⊗tmax B such that π = ρε ′ . π is
called irreducible if ρ is irreducible.



740 A. KANSAL AND A. KUMAR

LEMMA 6. Let π be a nonzero representation of M⊗h B then ker(π) contains a
nonzero elementary tensor.

Proof. We have π = ρε ′ , where ρ : M⊗tmax B → B(H ,K ) is a representation
of M⊗tmax B . Since ρ is a representation of M⊗tmax B so A (ρ) is a representation of
A (M)⊗max B ([10], Proposition 2.1). Consider the commutative diagram,

π̃ = A (ρ)ε̃ ′ is a representation of A (M)⊗h B . First note that ker(π̃) �= (0) . For
this let x ∈ ker(π) , x �= 0 so π(x) = 0. Since all maps in the diagram are injective
so ε̃ ′i(x) �= 0 and π̃i(x) = A (ρ)ε̃ ′i(x) = A (ρ) j′ε ′(x) = 0. So i(x) ∈ ker(π̃) and
i(x) �= 0. Thus ker(π̃) , is a nonzero closed ideal of A (M)⊗h B . By ([1], Proposition

4.5), ker(π̃) must contain a nonzero elementary tensor say

[
p q
r s

]
⊗b ∈ ker(π̃) . As

A (ρ)
([

p q
r s

]
⊗b

)
= A (ρ)ε̃ ′

([
p q
r s

]
⊗b

)
= 0.

So ker(A (ρ)) contains a nonzero elementary tensor. Thus b �= 0. Now we claim
that we can assume q �= 0. If q = 0 and r �= 0 then as ker(A (ρ)) is an ideal of the C∗ -

algebra A (M)⊗max B so ker(A (ρ)) is a ∗ -ideal, hence

[
p⊗b r⊗b

0 s⊗b

]
∈ ker(A (ρ)) .

Now if q = 0, r = 0 and p �= 0 so there is m ∈ M such that pm �= 0. Consider([
p 0
0 s

]
⊗b

)([
0 m
0 0

]
⊗b

)
∈ ker(A (ρ))

which gives

[
0 pm⊗b2

0 0

]
∈ ker(A (ρ)) .

Thus we may assume q⊗ b �= 0 and

[
p⊗b q⊗b
r⊗b s⊗b

]
∈ ker(A (ρ)) = A (ker(ρ))

([10], Lemma 2.7). So 0 �= q⊗b ∈ ker(ρ). Thus ρ(q⊗b) = 0. Note that π(q⊗b) =
ρε ′(q⊗b) = ρ(q⊗b) = 0 and q⊗b �= 0. Thus ker(π) contains a nonzero elementary
tensor. �

LEMMA 7. If π : M ⊗tmin B → B(H ,K ) is a representation, then there exist
commuting representations π1 : M → B(H ⊕K ) and π2 : B → B(H ⊕K ) such that
for all a ∈ M and b ∈ B we have

π(a⊗b) = π1(a)π2(b) = π2(b)π1(a).
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In particular, if π is irreducible then π1 and π2 are factor representations in the sense
that if M is a von Neumann algebra generated by {π1(a) : a∈M} then M is a factor
i.e. center of M is C(IH ⊕ IK ) .

Proof. Existence of π1 and π2 follows from ([20], Lemma IV.4.1), ([10], Propo-
sition 2.1) and ([12], Proposition 3.1). If π is irreducible, let π1(y0) be in the cen-
ter of M . It can be shown that π1(y0)π(x⊗ y) = π(x⊗ y)π1(y0) for all x ∈ M and
y ∈ B . So π1(y0) is in the commutant of von Neumann generated by π(x⊗ y) for
x ∈ M , y ∈ B which is same as the commutant of von Neumann algebra generated by
A (π)(A (M)⊗min B) ([2], Lemma 4.4(b)). Since A (π) is irreducible, so the last
commutant is equal to C(IH ⊕ IK ) . �

The next result gives the complete description of maximal ε -ideals of M⊗h B in
terms of maximal ideals of M and B . The result generalizes ([1], Theorem 5.6).

THEOREM 2. Let P be a maximal ε -ideal of M ⊗h B then there exist maximal
ideals U1 and U2 of M and B respectively such that

P = U1⊗h B+M⊗hU2

Proof. Let P be a maximal ε -ideal of M⊗h B , so there exists a proper ideal Q

of M⊗tmin B such that P = ε−1(Q) . Let π0 : M⊗tmin B → M⊗tminB
Q = M0 be the quo-

tient map. M0 is a TRO so it admits an irreducible representation π̃ : M0 → B(H ,K )
corresponding to an irreducible representation of the C∗ -algebra A (M0) ([10], Propo-
sition 2.1,2.2). Let π = π̃π0 . Then π is an irreducible representation of M⊗tmin B
annihilating Q . By above lemma, there exist representations π1 of M and π2 of B on
B(H ⊕K ) such that for all a ∈ M and b ∈ B we have

π(a⊗b) = π1(a)π2(b) = π2(b)π1(a).

Define
U = U1 ⊗h B+M⊗hU2,

and
Ũ =U1 ⊗tmin B+M⊗tminU2,

where U1 = ker(π1) and U2 = ker(π2) . First we claim that P = U . Note that if
a⊗b∈U1⊗B then π(a⊗b) = π1(a)π2(b) = 0 which implies U1⊗tmin B ⊆ ker(π) , as
ker(π) is closed. Similarly, M⊗tminU2 ⊆ ker(π) which gives π(Ũ) = 0 so π(Q+Ũ) =
0. Thus

πε(ε−1(Q+Ũ)) ⊆ π(Q+Ũ) = 0

so ε−1(Q + Ũ) is proper and P ⊆ ε−1(Q + Ũ) , hence P = ε−1(Q + Ũ) . Since U =
ε−1(Ũ) , so U ⊆ P . Let q : M ⊗h B → M

U1
⊗h B

U2
be the quotient map with kernel U

([1], Corollary 2.6). Note that the representations π1 and π2 induce faithful factor
representations π̃1 of M

U1
and π̃2 of B

U2
on H ⊕K . Moreover, as π1 and π2 are
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commuting, so π̃1 and π̃2 are also commuting. The linear map π̃1.π̃2 : M
U1

⊗ B
U2

→
B(H ⊕K ) preserves the ternary product. Also, for x ∈ M

U1
⊗ B

U2
note that

‖π̃1.π̃2(x)‖ � ‖x‖tmax.

Thus, π̃1.π̃2 is a contractive map, so extends to a contraction from M
U1

⊗tmax B
U2

→
B(H ⊕K ) . Since the Haagerup norm dominates the tmax norm ([11], Proposition
3.2), so there is an induced representation π̃1.π̃2 of M

U1
⊗h B

U2
into B(H ⊕K ) . Con-

sider the following commutative diagram

so π̃1.π̃2(q(P)) = 0. Now we claim that π̃1.π̃2 is a faithful representation. Since π̃1

and π̃2 are faithful factor representations so by using ([20], Proposition IV.4.20), π̃1.π̃2

is faithful on the algebraic tensor product M
U1

⊗ B
U2

. If ker(π̃1.π̃2) were nonzero, then

by Lemma 6, ker(π̃1.π̃2) would contain a nonzero elementary tensor, say a⊗b . Thus
π̃1.π̃2(a⊗ b) = 0, so π̃1.π̃2 would not be faithful on M

U1
⊗ B

U2
. Therefore, π̃1.π̃2 is a

faithful representation i.e. q(P) = 0. Thus, P ⊆ ker(q) = U , which establishes the
equality. To show U1 and U2 are maximal, observe that

M⊗h B
U

=
M
U1

⊗h B
U2

Since U is maximal ideal, therefore M⊗hB
U is simple, so by ([11], Proposition 4.16),

M
U1

and B
U2

are simple which implies U1 and U2 are maximal ideals of M and B re-
spectively. �

REMARK 2. For separable Hilbert spaces H , K and L , the only maximal
ideal of B(H ,K )⊗h B(L ) is B(H ,K )⊗h K(L )+K(H ,K )⊗h B(L ) .

5. Prime ideals of M⊗h B

In this section our aim is to give a complete classification of prime ideals of M⊗h

B . We first define prime ideals of M⊗h B .

DEFINITION 6. An ε -ideal P of M⊗h B is called a prime ideal if for any pair I
and J of ε -ideals satisfying I∩ J ⊆ P , either I ⊆ P or J ⊆ P .

DEFINITION 7. A closed subspace P of M⊗h B is called an i-prime ideal (ε -
prime ideal) if P = i−1(Q) (P = ε−1(Q)), for some prime ideal Q of A (M)⊗h B
(M⊗tmin B) .
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REMARK 3. Let P be an i-prime ideal of M⊗h B (P = i−1(Q)). Suppose P1 and
P2 be ε -ideals of M⊗h B satisfying P1∩P2 ⊆ P , then as i is injective so

i(P1)∩ i(P2) ⊆ i(P1∩P2) ⊆ i(P) ⊆ Q

which gives i(P1) ⊆ Q or i(P2) ⊆ Q so P1 = i−1(i(P1)) ⊆ P or P2 = i−1(i(P2)) ⊆ P .
Thus every i-prime ideal of M⊗h B is a prime ideal.

REMARK 4. Let P be an ε -prime ideal of M ⊗h B i.e. P = ε−1(Q) for some
prime ideal Q of M ⊗tmin B . Let Q̃ = ε̃−1( j(Q)) , then j(Q) is a prime ideal of
A (M)⊗min B . Since ε̃ is an injective homomorphism and the range of ε̃ is dense
in A (M)⊗min B so Q̃ is a prime ideal of A (M)⊗h B . We will show that P = i−1(Q̃) .
Suppose x ∈ P then ε(x) ∈ Q so ε̃i(x) = j(ε(x)) ∈ j(Q) . Thus, x ∈ i−1ε̃−1( j(Q)) =
i−1(Q̃) . Conversely, let x ∈ i−1(Q̃) , then i(x) ∈ Q̃ = ε̃−1( j(Q)) so by commutativity
of the first diagram in Section 4, i(x) ∈ ε̃−1( j(Q)) = iε−1(Q) so x ∈ P . This shows
that any ε -prime ideal of M⊗h B is an i-prime ideal.

PROPOSITION 5. If P is i-prime ideal of M⊗h B then P = M⊗h J + I⊗h B for
some prime ideals I and J of M and B.

Proof. Let P be an i-prime ideal of M ⊗h B so P = i−1(Q) , for some prime
ideal Q of A (M)⊗h B . By ([1], Theorem 5.9) and Proposition 4, Q = A (I)⊗h B+
A (M)⊗h J , for some prime ideals I and J of M and B respectively. Thus, by Lemma
4, P = i−1(A (I)⊗h B+A (M)⊗h J) = M⊗h J + I⊗h B . �

Our next goal is to provide a complete characterization of the prime ideals of
M⊗h B . Let I and J be ideals of M and B respectively. Furthermore, let π : M →M/I
and ρ : B→B/J be the quotient maps. Then π⊗tmin ρ : M⊗tminB→M/I⊗tminB/J is a
ternary homomorphism. To achieve our goal, we need to know the Ker(π ⊗tmin ρ) . We
begin with the case where M and B both are C∗ -algebras. Let A and B be C∗ -algebras
with I and J ideals of A and B respectively. Then π ⊗ρ : A⊗min B → A/I⊗min B/J is
a C∗ -homomorphism. The following result establishes a useful formula for the ker(π⊗
ρ) . This might be known, but we are unable to find a reference so including a proof for
the convenience of the reader.

LEMMA 8. If A or B is an exact C∗ -algebra, then

ker(π ⊗ρ) = I⊗min B+A⊗min J.

Proof. Let K = ker(π ⊗ρ) and K0 = I⊗min B+A⊗min J . Since K is closed, so
it is obvious that K0 ⊆ K . Let K1 ⊗min K2 ⊆ K , where K1 and K2 are closed ideals
of A and B respectively and let a⊗ b ∈ K1 ⊗K2 . Since K0 is closure of the sum of
ideals generated by elementary tensors a⊗b ∈ K ([4], Lemma 2.12), so 〈a⊗b〉 ⊆ K0 .
This in turn implies K1 ⊗K2 ⊆ K0 and therefore K1 ⊗min K2 ⊆ K0 , as K0 is closed. By
([4], Proposition 2.16, Proposition 2.17), K is the closure of the sum of all elementary
ideals K1⊗min K2 ⊆ K , where K1 ⊆ A and K2 ⊆ B are closed ideals and since K1⊗min

K2 ⊆ K0 for every elementary ideal K1 ⊗min K2 of K , so K ⊆ K0 . �
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LEMMA 9. If M or B is exact, then

ker(π ⊗tmin ρ) = M⊗tmin J + I⊗tmin B

Proof. As π ⊗tmin ρ : M⊗tmin B → M/I⊗tmin B/J is a ternary homomorphism, so
applying the functor A and using ([11], Proposition 4.6) A (π ⊗tmin ρ) : A (M)⊗tmin

B → A (M)/A (I)⊗tmin B/J is a C∗ -homomorphism. Thus, using above lemma, we
have

ker(A (π ⊗tmin ρ)) = A (M)⊗min J +A (I)⊗min B = A (M⊗tmin J + I⊗tmin B)

Since ker(A (π ⊗tmin ρ)) = A (ker(π ⊗tmin ρ)) ([10], Lemma 2.7), so A (ker(π ⊗tmin

ρ)) = A (M⊗tmin J + I⊗tmin B) . Thus, ker(π ⊗tmin ρ) = M⊗tmin J + I⊗tmin B . �

THEOREM 3. (a) Let I and J be prime ideals of M and B respectively, then
M⊗h J + I⊗h B is a prime ideal (ε -prime ideal) of M⊗h B.

(b) Conversely, if P is prime ideal of M⊗h B and M or B is exact, then P = M⊗h

J + I⊗h B for some prime ideals I and J of M and B respectively.

Proof.

(a) Note that I ⊗tmin B + M ⊗tmin J is a prime ideal of M ⊗tmin B by Corollary 3.
But ε−1(I⊗tmin B+M⊗tmin J) = I ⊗h B+M⊗h J . Thus I⊗h B+M⊗h J is an
ε -prime ideal of M⊗h B so is a prime ideal by Remarks 3 and 4.

(b) Suppose that P is a prime ideal in M⊗h B , say P = ε−1(Q) , for some ideal Q
of M⊗tmin B . Without loss of generality, we may assume that P is proper. By
Zorn’s lemma, choose an ideal I not equal to M of M which is maximal with
respect to the properties that I ⊗h B ⊆ P and I ⊗tmin B ⊆ Q . Again choose an
ideal J not equal to B of B which is maximal with respect to the properties that
M⊗h J ⊆ P and M⊗tmin J ⊆ Q . Then Q̃ = (π ⊗tmin ρ)(Q) is a closed ideal in
(M/I)⊗tmin (B/J) (Proposition 5 and ([8], Corollary 4.8)). The map π ⊗ ρ :
M ⊗h B → (M/I)⊗h (B/J) is a quotient map ([1], Theorem 2.5). Define P̃ =
π ⊗ρ(P) , then by ([1], Corollary 2.7), P̃ is a closed subspace of M/I⊗h B/J .

If Q̃ is nonzero then, it contains a nonzero elementary tensor, say c⊗ d . By
definition of Q̃ , there exists z ∈ Q , such that π ⊗ρ(z) = c⊗d . Choose, a ∈ M
and b ∈ B such that π(a) = c and ρ(b) = d , then π ⊗ ρ(a⊗ b) = c⊗ d . So,
by Lemma 6, z− (a⊗b) ∈ M⊗tmin J + I ⊗tmin B ⊆ Q and therefore a⊗b ∈ Q .
Thus, there exists a⊗b ∈ Q such that π(a)⊗ρ(b) �= 0. The element a⊗b ∈ Q
generates a product ideal I1 ⊗tmin J1 in Q and therefore I1 ⊗h J1 is a product
ideal in P using ([11], Proposition 4.17). Define two product ideal in M⊗h B by
K = M⊗h (J + J1) and L = (I + I1)⊗h B . Then,

K ∩L = (I + I1)⊗h (J + J1) = I⊗h J + I⊗h J1 + I1⊗h J + I1⊗h J1 ⊆ P.
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But then as P is prime, so K ⊆ P or L ⊆ P . The choice of ideals I and J
then implies I1 ⊆ I or J1 ⊆ J . Thus, either π(a) = 0 or ρ(b) = 0, which is a
contradiction, as π(a)⊗ρ(b) �= 0. This shows that Q̃ = 0.

Next, we show that P̃ = 0. Observe that the following diagram

is commutative i.e. ε1(π ⊗ρ) = (π ⊗tmin ρ)ε . Moreover,

ε1(P̃) = ε1(π ⊗ρ(P)) = (π ⊗tmin ρ)ε(P) ⊆ (π ⊗tmin B)(Q) = 0,

which implies ε1(P̃) = 0 and therefore P̃ = 0 as ε1 is injective. Thus, P ⊆
Ker(π⊗ρ) = M⊗h J+ I⊗h B , using ([1], Corollary 2.6). But M⊗h J+ I⊗h B⊆
P (by choice of I and J ).

We now show that the ideals I and J must be prime. If I1 and I2 are closed
ideals in M such that I1∩ I2 ⊆ I , then by ([19], Corollary 4.6),

(I1 ⊗h B)∩ (I2⊗h B) = (I1∩ I2)⊗h B ⊆ P.

By hypothesis, P contains either I1 ⊗h B or I2 ⊗h B , and assume without loss
of generality that I1 ⊗h B ⊆ P . Let φ be an arbitrary element of the annihilator
I⊥ ⊆ M∗ of I , and choose a non-zero element ψ ∈ J⊥ ⊆ B∗ . Then by ([7],
Proposition 9.2.5), φ ⊗ψ ∈ (M⊗h B)∗ and annihilates P and so must annihilate
I1 ⊗h B . Since φ ∈ I⊥ was arbitrary this forces I1 ⊆ I , proving that I is prime.
A similar argument shows that J is also prime. �

The next corollary which is a simple consequence of our results establishes a rela-
tionship of prime ideals, i-prime ideals, and ε -prime ideals of M⊗h B .

COROLLARY 5. Let P be a closed subspace of M⊗h B. If M or B is exact, then
P is a prime ideal if and only if P is ε -prime ideal ( i-prime ideal).

Proof. In view of Remarks 3 and 4, we only need to show that every prime ideal
is a ε -prime ideal. Suppose P is prime ideal of M ⊗h B , then by Theorem 3, P =
M⊗h J + I⊗h B for some prime ideals I and J of M and B . By ([1], Theorem 5.9),
A (I)⊗h B + A (M)⊗h J is prime ideal of A (M)⊗h B and P = ε−1(A (I)⊗h B +
A (M)⊗h J) ([11], Proposition 4.17). Thus, P is a ε -prime ideal. �
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6. Primitive ideals of M⊗h B

In this section we are going to study primitive ideals in the Haagerup tensor prod-
uct of M and B . As in ([3], Page 4), we have

LEMMA 10. If I1 and I2 are proper closed ideals in M and J1 and J2 proper
closed ideals of B then M⊗h J1 + I1⊗h B = M⊗h J2 + I2⊗h B if and only if I1 = I2 and
J1 = J2 .

DEFINITION 8. A closed subspace P of M⊗h B will be called a primitive ideal
of M⊗h B if P = ker(π), for some irreducible representation π of M⊗h B .

THEOREM 4. (a) If I and J are primitive ideals of M and B respectively then
I⊗h B+M⊗h J is a primitive ideal of M⊗h B.

(b) If P is a primitive ideal of M⊗h B then there exists prime ideals I and J of M
and B such that P = I⊗h B+M⊗h J .

(c) If P is primitive ideal of M⊗h B and M and B are separable then there exists
primitive ideals I and J of M and B such that P = I⊗h B+M⊗h J .

(d) Let I be a closed ideal of M then I ⊗h B is a primitive ideal of M⊗h B if and
only if A (I)⊗h B is a primitive ideal of A (M)⊗h B.

Proof.

(a) Let I and J be primitive ideals of M and B then by ([10], Theorem 2.6), A (I)
is primitive ideal of A (M) . Thus P̃ = A (I)⊗h B + A (M)⊗h J is primitive
ideal of A (M)⊗h B ([1], Theorem 5.13) and therefore P̃ = ker(ψ) for some
irreducible ∗ -representation ψ of A (M)⊗h B . Using Proposition 1, let ψ =
A (ρ)ε̃ ′ , where ρ is an irreducible representation of M ⊗tmax B . Define, π =
ρε ′ , then π is an irreducible representation of M⊗h B . We claim that ker(π) =
I⊗h B+M⊗h J . Suppose a⊗b∈ I⊗B , then[

0 a
0 0

]
⊗b ∈ A (I)⊗B ⊆ ker(ψ) = ker(A (ρ)ε̃ ′).

Thus, ρε(a⊗ b) = 0, so a⊗ b ∈ ker(π) . Since ker(π) is closed, so I ⊗h B ⊆
ker(π) . Similarly, M ⊗h J ⊆ ker(π) . Thus, M ⊗h J + I ⊗h B ⊆ ker(π) . Con-
versely, let x ∈ ker(π) . Note that the following diagram

is commutative i.e. j′ε ′ = ε̃ ′i . Then as
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ψ(i(x)) = A (ρ)ε̃ ′(i(x)) = A (ρ)( j′(ε ′(x))

= A (ρ)
([

0 ε ′(x)
0 0

])
=

[
0 ρ(ε ′(x))
0 0

]
=

[
0 0
0 0

]
.

So i(x) ∈ ker(ψ) = A (I)⊗h B+A (M)⊗h J and therefore x ∈ i−1(A (I)⊗h B+
A (M)⊗h J) = I⊗h B+M⊗h J by Lemma 4.

(b) Let P be a primitive ideal of M⊗h B , so P = ker(π) where π = ρε ′ and ρ is an
irreducible representation of M⊗tmax B . Define ψ = A (ρ)ε̃ ′ , then ker(ψ) is a
primitive ideal of A (M)⊗h B . Thus, by ([1], Theorem 5.13) and Proposition 3,
ker(ψ) = A (I)⊗h B+A (M)⊗h J for some prime ideals I and J . By the same
argument as in part (a) , it is not difficult to see that ker(π) = I⊗h B+M⊗h J .

(c) Follows immediately from Corollary 1 and (b).

(d) Let I⊗h B = ker(π) , π = ρε ′ and ρ is an irreducible representation of M⊗tmax

B . Let ψ = A (ρ)ε̃ ′ , so ker(ψ) is a primitive ideal of A (M)⊗h B . Using ([1],
Proposition 2.5) and Proposition 3, it follows that there exist prime ideals I1 and
I2 such that ker(ψ) = A (I1)⊗h B+A (M)⊗h I2 . As in part (a) , we can show
that ker(π) = I1 ⊗h B + M⊗h I2 . Hence by Lemma 10, I = I1 and I2 = {0} .
Thus, ker(ψ) = A (I)⊗h B . The converse can be proved as in (a) . �

An immediate consequence of our results is the following:

COROLLARY 6. Every maximal ideal of M⊗h B is primitive, and every primitive
ideal is prime ideal.

EXAMPLE 4. Let H , K and L be infinite dimensional separable Hilbert spaces.
It is easy to see that K(H ,K )⊗h K(L ) is not a prime ideal of B(H ,K )⊗h B(L ) ,
and hence not primitive by Corollary 6. Moreover, all other non trivial ε -ideal of
B(H ,K )⊗hB(L ) i.e. B(H ,K )⊗hK(L ) , K(H ,K )⊗hB(L ) , and B(H ,K )⊗h

K(L )+K(H ,K )⊗h B(L ) are prime ideals by Theorem 3. B(H ,K )⊗h K(L )+
K(H ,K )⊗h B(L ) is primitive using Corollary 6. By definition of a primitive ideal,
one can show that B(H )⊗h K(L ) and K(H ) ⊗h B(L ) are not primitive ideals
of B(H )⊗h B(L ) . Using Theorem 4(d) , it follows that B(H ,K )⊗h K(L ) and
K(H ,K )⊗h B(L ) are not primitive in B(H ,K )⊗h B(L ) .

EXAMPLE 5. Let (Kn) be an increasing sequence of infinite dimensional sep-
arable Hilbert spaces and H and L be any infinite dimensional separable Hilbert
space. For f ∈ K(H ,Kn) , in ◦ f ∈ K(H ,Kn+1) where in : Kn → Kn+1 is inclu-
sion. {K(H ,Kn),αn} , αn( f ) = in ◦ f , is an inductive system. Since K(H ,Kn)
is simple for all n , so by ([9], Corollary 2.23), the inductive limit lim−→K(H ,Kn) is
also simple. Using ([11], Proposition 4.19), it follows that only non trivial ε -ideal
of lim−→(K(H ,Kn))⊗h B(L ) is lim−→(K(H ,Kn))⊗h K(L ) . Moreover, since K(L )
is prime and maximal ideal of B(L ) and lim−→K(H ,Kn) is exact by ([9], Corollary
2.18), so lim−→(K(H ,Kn))⊗h K(L ) is the only nontrivial maximal and prime ideal of

lim−→(K(H ,Kn))⊗h B(L ) .
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