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Abstract. In this paper, we define and study absolute matrix order ideals in absolute matrix order
unit spaces. We also characterize all the absolute matrix order unit ideals in an absolute matrix
order unit space. As an application of absolute matrix order unit property, we construct some
kinds of absolute matrix order ideals in absolute matrix order unit spaces. Later, we show that
the Grothendieck group of a such kind of absolute matrix order unit ideal for order projections
is a subgroup of Grothendieck group of corresponding absolute matrix order unit space for order
projections.

1. Introduction

The notion of Hereditary sub-C∗ -algebras is well known in a C∗ -algebra theory.
Let A be a C∗ -algebra. A sub-C∗ -algebra B of A is said to be Hereditary sub-C∗ -
algebra if it satisfies the following condition: a ∈ B for all a ∈ A+ and b ∈ B+ such
that a � b. This notion helped a lot in the study of certain other notions in a C∗ -algebra.
For example, the notions of minimal, maximal, purely infinite and central projections
etc. in C∗ -algebras are defined and studied in the terms of Hereditary sub-C∗ -algebras.
In this regard, we refer to see [2, 7, 20] and references therein.

A tiny version of the notion of Hereditary sub-C∗ -algebras is also defined and
studied in real ordered vector spaces that is known as the notion of order ideals. Let X

be a real ordered vector space. A vector subpace Y of X is said to be an order ideal if
it satisfies the following condition: x ∈ Y for all x ∈ X+ and y ∈ Y+ such that x � y.
Since the self adjoint part Asa of A is a real ordered vector space, the notion of order
ideals in ordered vector spaces is a generalization of the notion of Hereditary sub-C∗ -
algebra in C∗ -algebras. For definition and more informations about order ideals, see
[1, 5, 23] and references therein.

Order strucure of C∗ -algebras has its own importance. It is very rich with cer-
tain properties and plays an important role in the classification of certain kinds of C∗ -
algebras. Therefore the study of order structure becomes necessary. Many researchers
started working in this direction. For details, see [6, 8, 19] and references therein.
The notions of matricially normed spaces studied by Ruan [4, 21], and matrix ordered
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and matrix order unit spaces studied by Choi and Effros [3], have high impact in this
direction. The unital C∗ -algebras are examples of such spaces. However, the non-
unital versions of such spaces have been studied by Karn [16, 17, 18] and Schreiner
[22]. Such spaces are called L∞ -matricially Riesz normed spaces and matrix regular
operator spaces by Karn and Schreiner respectively. The non-unital C∗ -algebras are
examples of such spaces. By default, unital C∗ -algebras and matrix order unit spaces
are examples of L∞ -matricially Riesz normed spaces.

More than two decades, Karn is also working in direction. In fact, he is working
on the order theoretic aspects of C∗ -algebras. He has published several papers in this
direction. In [15], he defined and studied order unit and matrix order unit properties in
L∞ -matricially Riesz normed spaces. He found that only projections satisfy order unit
property in C∗ -algebras [15, Theorem 3.4]. Thus, by help of order unit property, he
characterized hereditary sub-C∗ -algebras in C∗ -algebras. He has also studied matrix
order ideals in matrix order unit spaces which is found to be an abstract version of
hereditary sub-C∗ -algebras. He gave a characrterization of matrix order ideals in terms
of order unit property [15, Proposition 2.1]. In [11], he defined and studied a non-
commutative vector lattice structure called as absolute order unit spaces. Self-adjoint
parts of unital C∗ -algebras, JB-algebras and unital AM -spaces are some examples
of such spaces. He defined and studied order unit and absolute order unit properties
in absolute order unit spaces [11]. He also introduced and studied the notion of order
projections in absolute order unit spaces and gave a characterization in terms of absolute
order unit property [11, Proposition 6.1].

The author in the collaboration with Karn has also been working in this direction
(see [12, 13, 14]). In [12], he defined and studied the notion of absolute matrix order
unit spaces. This notion is a matricial version of absolute order unit spaces. The uni-
tal C∗ -algebras and JB-algebras are some examples of these spaces. He defined and
studied the notion of absolute value preserving maps on these spaces. He found that
under certain conditions, these maps are isometries [12, Theorems 3.3 and 4.6]. He
also defined the notion of absolute order ideals and found that kernels of absolute value
preserving maps forms absolute order ideals [12, Theorem 2.7]. In [13], he generalized
the notion of order projections in absolute matrix order unit spaces and, defined and
characterized some variants of order projections [13, Theorems 5.1 and 5.2]. In [14],
he defined and studied some equivalences on order projections in absolute matrix order
unit spaces. By help of these equivalences, he described K0 -group, the Grothendieck
group for order projections [14, Theorem 4.8]. He proved that K0 -group is an ordered
abelian and a covariant functor [14, Corollaries 4.11 and 5.3].

In this paper, we start our work in the continuation of our earlier work [12, 13, 14].
We define and study absolute matrix order unit property in absolute matrix order unit
spaces (Definition 3.1 and Proposition 3.3). The absolute matrix order unit property
in absolute matrix order unit spaces is a generalization of absolute order unit property
in absolute order unit spaces. We also define the notion of absolute matrix order and
absolute matrix order unit ideals in absolute matrix order unit spaces (Definition 3.4).
We characterize all the absolute matrix order unit ideals in an absolute matrix order unit
space (Theorem 3.6 and Corollary 3.7). As an application of absolute matrix order unit
propery, we construct absolute matrix order ideals in absolute matrix order unit spaces
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(Theorem 3.10). Further, as an application of absolute matrix order unit property, we
also show that the quotient spaces by kernels of completely absolutely preserving maps
are absolute matrix order unit spaces (Theorem 3.11). In the end, we prove that under
ceratin condition the Grothendieck group of absolue matrix order unit ideal for order
projections is a subgroup of Grothendieck group of corresponding absolute matrix order
unit space for order projections (Theorem 4.5).

2. Preliminaries

Throughout this paper, X stands for a complex vector space and Ml,m(X) for
the set of all the l ×m matrices over X. Then Ml,m(X) becomes a vector space over
C under the operations entry-wise addition and entry-wise scalar multiplication. If
X = C, then we write Mm,n for Ml,m(C). The zero element in Mm,n is denoted by
0l,m and for l = m, the zero element in Ml(X) is denoted by 0l. Sometimes, we drop
the superscripts and write zero element in Ml,m by 0 only. In fact, Ml(X) is Ml -
bimodule under the following matrix multiplications: for x = [xi, j]∈Mm,n(X), we have

ςx =
[ m

∑
k=1

ςi,kxk, j

]
∈ Ml,n(X) if ς = [ςi, j] ∈ Ml,m and xς =

[ n

∑
k=1

xi,kςk, j

]
∈ Mm,s(X) if

ς ∈ Mn,s. Given x ∈ Ml,m(X),y ∈ Mn,s(X), we write:

x� y =
[
x 0
0 y

]
∈ Ml+n,m+s(X).

We also write: xl = x� x� · · ·� x ∈ Mlm(X) for every x ∈ Mm(X).
For origin of such matricial notions, we refer to see [21].
We start with the definition of absolutely matrix ordered spaces, a matricial version

of absolutely ordered spaces. Absolutely ordered spaces were introduced and studied
by Karn in [11]. It is very near to a lattice structure.

DEFINITION 2.1. ([12], Definition 4.1) Let (X,{ Ml(X)+}) be a matrix ordered
space and also let | · |l,m : Ml,m(X)→ Mm(X)+ be functions for each pair l,m ∈ N . For
l = m, we write | · |l,m = | · |l. Then

(
X,{Mm(X)+},{| · |l,m}

)
is said to be an absolutely

matrix ordered space, if the following conditions are satisfied:

(1) (Mm(X)sa,Mm(X)+, | · |m) is an absolutely ordered space for every m ∈ N.

(2) For all x ∈ Mm,n(X),y ∈ Ml,s(X),ς1 ∈ Ml,m and ς2 ∈ Mn,s, we have

(a) |ς1xς2|l,s � ‖ς1‖||x|m,nς2|n,s.

(b) |x� y|m+l,n+s = |x|m,n � |y|l,s.
We recall some invariants of orthogonality introduced by Karn in [9, 10, 11].
Let x,y ∈ Ml(X)+. We say that x is orthogonal to y (we write x ⊥ y) if |x−y|l =

x + y. Further, let ‖ · ‖m be a norm on Mm(X) for every m ∈ N. We say that x is
∞-orthogonal to y (we write x ⊥∞ y) if ‖x + ky‖l = max{‖x‖l,‖ky‖l} for all k ∈ R.
Moreover, if x1 ⊥∞ y1 for every pair x1,y1 ∈ Ml(X)+ such that x1 � x and y1 � y, then
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we say that x is absolutely ∞-orthogonal to y (we write x ⊥a
∞ y). For a C∗ -algebra A,

Karn has proved that a ⊥a
∞ b if and only if ab = 0 (that means a is algebraically

orthogonal to b ) for a,b ∈ A+ \ {0} (see [10, 11]).

EXAMPLE 2.2. ([12], Example 4.4) Given a C∗ -algebra A, we know that Mm(A)
is also a C∗ -algebra. Next, let Mm(A)+ be the set of all the positive elements contained
in Mm(A). Then (A,{Mm(A)+}) becomes a matrix ordered space and (A,{Mm(A)+},
{| · |l,m}) becomes an absolutely matrix ordered space, where each | · |l,m : Ml,m(A) →
Mm(A)+ is defined by |x|l,m =

√
x∗x for x ∈ Ml,m(A).

The following result describes some properties of absolutely matrix ordered spaces.

PROPOSITION 2.3. ([12], Proposition 4.2) In every absolutely matrix ordered
space (X,{Mm(X)+},{| · |l,m}), for each l,m,n,s ∈ N and x ∈ Mm,n(X),ς ∈ Ml,m

with ς∗ς = Im i.e. ς is an isometry, the following hold:

(1) |ςx|l,n = |x|m,n.

(2)

∣∣∣∣
[

0 x
x∗ 0

]∣∣∣∣
m+n

= |x∗|n,m � |x|m,n.

(3)

[|x∗|n,m x
x∗ |x|m,n

]
∈ Mm+n(X)+.

(4) |x|m,n =
∣∣∣∣
[
x
0

]∣∣∣∣
m+l,n

and |x|m,n �0s =
∣∣[x 0

]∣∣
m,n+s .

Next, we write the definition of absolute matrix order unit spaces, a matricial ver-
sion of absolute order unit spaces. Absolute order unit spaces were introduced and
studied by Karn in [11].

DEFINITION 2.4. ([12], Definition 4.3) Let (X,{Mm(X)+},e) be a matrix order
unit space and also let | · |l,m : Ml,m(X) → Mm(X)+ be a function for each pair l,m ∈
N. If

(
X,{Mm(X)+},{| · |l,m}

)
forms an absolutely matrix ordered space and ⊥=⊥a

∞
on Mm(X)+ for all m ∈ N, then we say that (X,{Mm(X)+},e) with {| · |l,m} is an
absolute matrix order unit space. The absolute matrix order unit space is denoted by
(X,{Mm(X)+},{| · |l,m},e).

EXAMPLE 2.5. ([12], Example 4.4) Given any C∗ -algebra A, we have ⊥=⊥a
∞

on Mm(A)+ for every m ∈ N. Therefore, every unital C∗ -algebra forms an absolute
matrix order unit space.

We recall the notion of absolute value preserving maps on absolute matrix order
unit spaces introduced by Karn and the author in [12]. These are the nice morphisms on
these spaces. Under certain conditions, these morphisms are turned out to be isometries
(see [12, Theorem 4.6]).
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DEFINITION 2.6. ([12], Definition 4.5) Let X and Y be absolute matrix order
unit spaces and let ϕ : X → Y be a linear map. We say that ϕ is a completely absolute
value preserving if, ϕl : Ml(X)→Ml(Y) is an absolute value preserving map for every
l ∈ N.

Now, we recall the definitions of order unit and absolute order unit properties
introduced and studied by Karn in [11].

DEFINITION 2.7. ([11], Definition 5.1) Let (X,e) be an absolute matrix order
unit space and x∈ Ml(X)+ . We write: Ml(X)x

sa = {y∈Ml(X)sa : εx±y ∈Ml(X)+ for
some ε > 0 }. Then x ∈ Ml(X)+ is said to have the order unit property in Ml(X)sa

provided ±y � ‖y‖x for every y ∈ Ml(X)x
sa. Moreover, x is said to have the absolute

order unit property in Ml(X)sa provided |y| � ‖y‖x for every y ∈ Ml(X)x
sa.

The sets of all the elements having order unit property and absolute order unit
property in Ml(X)sa are denoted by Ml(X) and |M|l(X) respectively. For l = 1, we
write: M1(X) = M(X) and |M|1(X) = |M|(X).

We explain the notions of order projections and partial isometries in absolute ma-
trix order unit spaces. These notions are generalizations of the notions of projections
and partial isometries in a C∗ -algebra respectively .

DEFINITION 2.8. ([13], Definition 3.1) Let (X,e) be an absolute matrix order
unit space. We say that x ∈ Ml(X) is an order projection provided x ∈ Ml(X)sa with
|2x− el|l = el. Next, if x ∈ Ml,m(X), then we say that x is a partial isometry provided
|x|l,m ∈ OPm(X) and |x∗|m,l ∈ OPl(X).

The notations OPl(X) and PIl,m(X) stand for the sets of all the order projec-
tions and all the partial isometries in Ml(X) and Ml,m(X) respectively. We write:
PIl,m(X) = PIl(X) for l = m. We also write: OP1(X) = OP(X) and PI1(X) = PI(X).

Next result recalls an elementary property of order projections.

LEMMA 2.9. [13, Proposition 3.2] In an absolute matrix order unit space X, we
have: p�q ∈ OPl+m(X) if and only if p ∈ OPl(X) and q ∈ OPm(X).

The following result provides a characterization of order projections in terms of
order unit property and absolute order unit property.

PROPOSITION 2.10. [11, Proposition 6.1] In an absolute matrix order unit space
(X,e), let x ∈ Ml(X)sa such that 0 � x � el. Then the following statements are equiv-
alent:

(1) x ∈ OPl(X).

(2) x and el − x ∈Ml(X).

(3) x and el − x ∈ |M|l(X).
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3. Order ideals in absolute matrix order unit spaces

In this section, we recall matrix order unit property and define absolute matrix
order unit property. These are matricial versions of order unit property and absolute
order unit property respectively which were introduced by Karn in [11].

DEFINITION 3.1. [15] Given x ∈ X+ in an absolute matrix order unit space X,
we say that x has the matrix order unit property in X provided xl has the order unit
property in Ml(X)sa for any l ∈ N. Further, if xl has the absolute order unit property
in Ml(X)sa for any l ∈ N, we say that x has the absolute matrix order unit property in
X.

The sets of all the elements having matrix order unit property and absolute matrix
order unit property are denoted by M∞(X) and |M|∞(X) respectively.

The next example is immediate from Proposition 2.10.

EXAMPLE 3.2. If p is a projection in a unital C∗ -algebra A, then p ∈M∞(A)
and |M|∞(A).

The following result elaborates some properties enjoyed by matrix order and ab-
solute matrix order unit properties.

PROPOSITION 3.3. Given x ∈ X+ in an absolute matrix order unit space (X,e),
the following statements hold:

(1) x ∈M∞(X) if and only if, we have

[‖y‖lxl y
y∗ ‖y‖lxl

]
∈ M2l(X)+ whenever[

εxl y
y∗ εxl

]
∈ M2l(X)+ for some l ∈ N,ε > 0 and y ∈ Ml(X).

(2) x ∈ |M|∞(X) if and only if, we have ‖y‖lxl − |y|l and ‖y‖lxl − |y∗|l ∈ Ml(X)+

whenever

[
εxl y
y∗ εxl

]
∈ M2l(X)+ for some l ∈ N,ε > 0 and y ∈ Ml(X).

Moreover, for ‖x‖ � 1, we also have:

(3) x and e− x ∈M(X) if and only if x and e− x ∈M∞(X).

(4) x and e− x ∈ |M|(X) if and only if x and e− x ∈ |M|∞(X).

Proof.

(1) Let x ∈ M∞(X). Assume that for y ∈ Ml(X), there exists ε > 0 satisfying[
εxl y
y∗ εxl

]
∈ M2l(X)+ for some ε ∈ R with ε > 0. In this case, we also have[

εxl −y
−y∗ εxl

]
=

[−Il 0
0 Il

][
εxl y
y∗ εxl

][−Il 0
0 Il

]
∈ M2l(X)+. Since x2l ∈M2l(X) , we
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get that ±
[

0 y
y∗ 0

]
�

∥∥∥∥
[

0 y
y∗ 0

]∥∥∥∥
2l

[
xl 0
0 xl

]
= ‖y‖l

[
xl 0
0 xl

]
. Thus

[‖y‖lxl y
y∗ ‖y‖lxl

]
∈

M2l(X)+.

Next, we prove the converse part. For that let y ∈ Ml(X)sa satisfying ±y �
εxl for some ε > 0. Then[

εxl y
y εxl

]
=

1
2

([
Il

Il

]
(εxl + y)

[
Il Il

])
+

1
2

([
Il

−Il

]
(εxl − y)

[
Il −Il

])∈M2l(X)+.

By assumption, we conclude that

[‖y‖lxl y
y ‖y‖lxl

]
∈ M2l(X)+. In this case, we

also conclude that

‖y‖xl ± y =
1
2

([
Il ±Il

][‖y‖lxl y
y ‖y‖lxl

][
Il

±Il

])
∈ Ml(X)+.

Thus xl ∈Ml(X) for every l ∈ N. Hence x ∈M∞(X).

(2) Let x ∈ |M|∞(X). Also, let y ∈ Ml(X) such that

[
εxl y
y∗ εxl

]
∈ M2l(X)+ for

some ε > 0. Then, we also have

[
εxl −y
−y∗ εxl

]
∈ M2l(X)+. Since x2l ∈ |M|2l(X) ,

we get that

[|y∗|l 0
0 |y|l

]
=

∣∣∣∣
[

0 y
y∗ 0

]∣∣∣∣
2l

�
∥∥∥∥
[

0 y
y∗ 0

]∥∥∥∥
2l

[
xl 0
0 xl

]
= ‖y‖l

[
xl 0
0 xl

]
. Thus[‖y‖lxl −|y∗|l 0

0 ‖y‖lxl −|y|l

]
∈ M2l(X)+ so that

‖y‖lxl −|y∗|l =
[
Il 0

][‖y‖lxl −|y∗|l 0
0 ‖y‖lxl −|y|l

][
Il

0

]
∈ Ml(X)+

and

‖y‖lxl −|y|l =
[
0 Il

][‖y‖lxl −|y∗|l 0
0 ‖y‖lxl −|y|l

][
0
Il

]
∈ Ml(X)+.

Now, let’s prove the converse part. Let y∈ Ml(X)sa such that ±y � εxl for some

ε > 0. Then

[
εxl y
y εxl

]
∈ M2l(X)+. By assumption, we get that ‖y‖lxl − |y|l ∈

Ml(X)+. Thus xl ∈ |M|l(X) for every l ∈ N. Hence x ∈ |M|∞(X).

(3) Suppose that ‖x‖ � e. In this case, we have 0 � x � e and consequently 0 �
e− x � e. By Lemma 2.9 and Proposition 2.10, x and e− x∈M(X) if and only
if x ∈ OP(X) if and only if xl ∈ OPl(X) if and only if xl and el − xl ∈Ml(X)
for every l ∈ N. Thus x and e−x ∈M(X) if and only if x and e−x ∈M∞(X).

Now, using Lemma 2.9 and Proposition 2.10, and repeating the proof of (3), we can
also prove (4). �
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DEFINITION 3.4. Let
(
X,{Mm(X)+},{| · |l,m}

)
be an absolutely matrix ordered

space and Y be a subspace of X. For each l ∈ N, we write: Ml(Y)sa = Ml(X)sa ∩
Ml(Y) and Ml(Y)+ = Ml(X)+ ∩Ml(Y). Then Y is said to be absolute matrix order
ideal of X, if the following two conditions are satisfied:

(1) (Ml(Y)sa,Ml(Y)+) is an order ideal of (Ml(X)sa,Ml(X)+) for each l ∈ N.

(2) | · |l,m : Ml,m(Y) → M(Y)+m is well defined for each pair of l,m ∈ N. In other
words,

(
Y,{Mm(Y)+},{| · |l,m}

)
is itself an absolutely matrix ordered space.

Further, let (X,e) be an absolute matrix order unit space. Then Y is said to be abso-
lute matrix order unit ideal of X, if along with condition (1), the following additional
condition is also satisfied:

(3) (Y,{Mm(Y)+},{| · |l,m},y) is an absolute matrix order unit space such that ‖ ·
‖y

m = ‖ ·‖m on Mm(Y), where ‖ ·‖m and ‖ ·‖y
m are the matrix norms determined

by the order units e and y respectively for each m ∈ N.

EXAMPLE 3.5. Let A be a unital C∗ -algebra with unity element 1 and p be
a non-zero projection in A. Put Ap = {pap : a ∈ A}. Then (Ap, p) is an absolute
matrix order unit ideal of A. To see this, we verify only order ideal condition as other
conditions are routine to verify (we refer to see [7]). Now, let a,b ∈ A be such that
0 � b � pap. Then (1− p)b(1− p)= 0 so that ‖√b(1− p)‖2 = 0. In this case,

√
b(1−

p) = 0 and we get that b = bp and b = b∗ = (bp)∗ = pb. Thus b = pbp ∈ Ap.

Next result generalize the last example in absolute matrix order unit spaces for
more general elements.

THEOREM 3.6. In an absolute matrix order unit space X, let x ∈ |M|∞(X) such
that ‖x‖ = 1. We write:

Xx =
{

y ∈ X :

[
εx y
y∗ εx

]
∈ M2(X)+ for some ε > 0

}

and

Ml,m(X)xl ,xm =
{

y ∈ Ml,m(X) :

[
εxl y
y∗ εxm

]
∈ Ml+m(X)+ for some ε > 0

}
.

For l = m, write: Ml,m(X)xl ,xm = Ml(X)xl . The following statements are true:

(1) Ml,m(Xx) = Ml,m(X)xl ,xm .

(2) Ml(Xx)+ = Ml(Xx)
⋂

Ml(X)+ forms a proper cone.

(3) x forms an order unit for Xx.
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(4) For every y ∈ Ml(Xx), we write:

‖y‖x
l = inf

{
ε > 0 :

[
εxl y
y∗ εxl

]
∈ M2l(X)+

}
.

It turns out that ‖ · ‖x
l = ‖ · ‖l on Ml(Xx) for every l ∈ N.

(5) |y|l,m ∈ Mm(Xx)+ for every y ∈ Ml,m(Xx).

In other words, (Xx,{Mm(Xx)+},{| · |l,m},x) forms an absolute matrix order unit
ideal of X.

Proof. It is routine to verify (2). Now, let’s prove the other statements.

(1) Let y = [yi, j]∈Ml,m(Xx). There exists εi, j > 0 satisfying

[
εi, jx yi, j

y∗i, j εi, jx

]
∈M2(X)+

for every yi, j ∈ Xx. Put ε0 = max{εi, j : 1 � i � l,1 � j � m}. Then ε0 > 0 and[
ε0x yi, j

y∗i, j ε0x

]
∈ M2(X)+ for every pair of i and j.

Next, let ςi, j ∈ Ml+m,2 such that

ςi, j =

{
1 at (i,1) and (l + j,2)

0 elsewhere.

so that [
mε0xl y

y∗ lε0xm

]
= ∑

i, j

ςi, j

[
ε0x yi, j

y∗i, j ε0x

]
ς∗
i j ∈ Ml+m(X)+.

For ε = max{m, l}ε0, we get that[
εxl y
y∗ εxm

]
∈ Ml+m(X)+.

Thus y ∈ Ml,m(X)xl ,xm .

Now, we prove the converse part. For that let y ∈ Ml,m(X)xl ,xm . There exists

ε > 0 satisfying

[
εxl y
y∗ εxm

]
∈ Ml+m(X)+. Then

[
εx yi, j

y∗i, j εx

]
= ς∗

i, j

[
εxl y
y∗ εxm

]
ςi, j ∈ M2(X)+.

Thus yi, j ∈ Xx for every i, j and consequently Ml,m(Xx) = Ml,m(X)xl ,xm .

(3) By (1), for every y∈Ml(Xx), there exists ε > 0 satisfying

[
εxl y
y∗ εxl

]
∈M2l(X)+.

Thus x forms an order unit for Xx.
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(4) Let y ∈ Ml(Xx). Since x ∈ |M|∞(X), we have

±
[

0 y
y∗ 0

]
�

∣∣∣∣
[

0 y
y∗ 0

]∣∣∣∣
2l

�
∥∥∥∥
[

0 y
y∗ 0

]∥∥∥∥
2l

[
xl 0
0 xl

]
= ‖y‖l

[
xl 0
0 xl

]
.

Thus

[‖y‖lxl y
y∗ ‖y‖lxl

]
∈ M2l(X)+ so that ‖y‖x

l � ‖y‖l.

Now, x ∈ X+ with ‖x‖= 1. Then

[
xl 0
0 xl

]
∈ M2l(X)+ and

∥∥∥∥
[
xl 0
0 xl

]∥∥∥∥ = 1 so that[
xl 0
0 xl

]
�

[
el 0
0 el

]
. As x is order unit for Xx, we have

±
[

0 y
y∗ 0

]
�

∥∥∥∥
[

0 y
y∗ 0

]∥∥∥∥
x

2l

[
xl 0
0 xl

]
= ‖y‖x

l

[
xl 0
0 xl

]

and consequently

±
[

0 y
y∗ 0

]
� ‖y‖x

l

[
el 0
0 el

]
.

Thus

[‖y‖x
l e

l y
y∗ ‖y‖x

l e
l

]
∈ M2l(X)+ so that ‖y‖l � ‖y‖x

l . Hence ‖y‖x
l = ‖y‖l for

every y ∈ Ml(Xx).

(5) Let y ∈ Ml,m(Xx). For x ∈ |M|∞(X) and ε =
∥∥∥∥
[

0 y
y∗ 0

]∥∥∥∥
l+m

, we have

[|y∗|m,l 0
0 |y|l,m

]
=

∣∣∣∣
[

0 y
y∗ 0

]∣∣∣∣
l+m

� ε
[
xl 0
0 xm

]
.

Then |y|l,m � εxm so that |y|l,m ∈Mm(Xx)+. Thus, the maps | · |l,m : Ml,m(Xx)→
Mm(Xx)+ are well defined.

It is routine to verify ⊥=⊥a
∞ on Ml(Xx)+ for every l ∈ N.

Hence (Xx,{Ml(Xx)+},x,{| · |l,m}) forms an absolute matrix order unit ideal of
X. �

The converse of the Theorem 3.6 is already known that is [15, Proposition 2.1].
However, for the sake of completeness, we summarize this in our context in the next
result and hence all the matrix order unit ideals in an absolute matrix order unit space
are characterized.

COROLLARY 3.7. Given an absolute matrix order unit ideal Y in an absolute
matrix order unit space X, we have: Y = Xx for some x∈ |M|∞(X) such that ‖x‖= 1.

The following result shows that matrix norm in absolute matrix order unit spaces
takes two discrete values 0 and 1 whenever it is restricted to the order projections.
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PROPOSITION 3.8. In an absolute matrix order unit space X, let p ∈ OPl(X)
such that p 	= 0. Then ‖p‖l = 1.

Proof. Let p ∈ OPl(X). Then 0 � p � el so that ‖p‖l � max{‖0‖l,‖el‖l} =
‖el‖l = 1. Next, by Proposition 2.10, we also have 0 � p � ‖p‖l p. Thus ‖p‖l �
max{‖0‖l,‖‖p‖l p‖l} = ‖p‖2

l and consequently 1 � ‖p‖l for p 	= 0. Finally, we con-
clude that ‖p‖l = 1. �

We generalize the example 3.5 for order projections in absolute matrix order unit
spaces by this immediate consequence.

COROLLARY 3.9. Let X be an absolute matrix order unit space and p∈OP(X)\
{0}, then Xp forms an absolute matrix order unit ideal of X.

The notion of absolute and completely absolute value presrving maps have been
introduced and studied in [12]. The following result tells that kernels of completely
absolute value preserving maps are absolute matrix order ideals.

THEOREM 3.10. Let X and Y be absolutely matrix ordered spaces and ϕ : X →
Y be a completely absolute value preserving map. Put Ker(ϕ) = {x ∈ X : ϕ(x) = 0}.
Then the following statements are true:

(1) Ml,m(Ker(ϕ)) = Ker(ϕl,m) for every pair l,m ∈ N.

(2) Ker(ϕl) is self-adjoint for every l ∈ N.

(3) Ker(ϕ) is an absolute matrix order ideal of X.

(4) ϕ = 0 if and only if Ker(ϕ) = X if and only if Ker(ϕ)+ = X+.

Moreover, if X is absolute matrix order unit space, then

(5) ϕ = 0 if and only if ϕ(e) = 0.

Proof.

(1) Let [xi, j] ∈ Ml,m(Ker(ϕ)). Then ϕ(xi, j) = 0 for every pair of i and j and conse-
quently ϕl,m([xi, j]) = [ϕ(xi, j)] = 0. Thus [xi, j]∈Ker(ϕl,m) so that Ml,m(Ker(ϕ))
⊂ Ker(ϕl,m). Tracing back the proof, we also conclude that Ker(ϕl,m) ⊂
Ml,m(Ker(ϕ)). Hence Ml,m(Ker(ϕ)) = Ker(ϕl,m).

(2) ϕ is absolute value preserving, we have ϕl(x∗) = ϕl(x)∗ for every x ∈ Ml(X)
and l ∈ N. Now, the result follows.

(3) Put ϕ l(x) = ϕl(x) for all x∈Ml(X)sa. Then ϕ l : Ml(X)sa →Ml(Y)sa defines an
absolute value preserving map with Ker(ϕ l) = Ker(ϕl)sa. By [12, Theorem 2.7],
Ker(ϕ l) is an order ideal of Ml(X)sa. Thus Ker(ϕ) forms a matrix order ideal
of X. Next, let x = [xi, j] ∈ Ml,m(Ker(ϕ)). Without loss of genearlity, assume
that l � m so that [x,0] ∈ Ml(Ker(ϕ)). Then ϕl([x,0]) = 0 and consequently by



760 A. KUMAR

Proposition 2.3(4), we have ϕm(|x|l,m)�0l−m = ϕl(|x|l,m�0l−m)= ϕl(|[x,0]|l) =
|ϕl([x,0])|l = 0. Thus |x|l,m ∈ Mm(Ker(ϕ))+ so that | · |l,m : Ml,m(Ker(ϕ)) →
Mm(Ker(ϕ))+ is well defined for every pair of l,m ∈ N. Similarily, the case
l < m can be taken care. Hence the result follows.

(4) Let ϕ = 0. Then Ker(ϕ) = X so that Ker(ϕ)+ = X+. Conversely, assume that
Ker(ϕ)+ = X+. Let x ∈ Xsa and x = x+ − x− be the orthogonal decomposition
of x. Since ϕ(x+) = ϕ(x−) = 0, we get ϕ(x) = ϕ(x+)−ϕ(x−) = 0. Next, let
x ∈ X. Put x1 = x−x∗

2 and x2 = x−x∗
2i so that x1,x2 ∈ Xsa with x = x1 + ix2. Then

ϕ(x1) = ϕ(x2) = 0 and consequently ϕ(x) = ϕ(x1)+ iϕ(x2) = 0. Hence ϕ = 0.

If X is an absolute matrix order unit space, then

(5) ϕ = 0 implies ϕ(e) = 0. Conversely, assume that ϕ(e) = 0. Then e ∈ Ker(ϕ).
Now, let x ∈ X+ so that 0 � x � ‖x‖e. Since Ker(ϕ) is an order ideal, we get
x ∈ Ker(ϕ) i.e. ϕ(x) = 0. Thus φ(x) = 0 for all x ∈ X+ so that Ker(ϕ)+ = X+.
Hence, by (4), the result follows. �

Finally, we prove that X

Ker(ϕ) , the quotient of X by Ker(ϕ), is always an abso-
lutely matrix ordered space. However, under the assumption of absolute matrix order
unit property, we prove that it is an absolute matrix order unit space.

THEOREM 3.11. Let X and Y be absolutely matrix ordered spaces and ϕ : X →
Y be a completely absolute value preserving map. Put X0 = X

Ker(ϕ) . Then

(1) Ml(X0) = Ml(X)
Ker(ϕl)

.

We write: Ml(X0)+ = {Ker(ϕl)+ x : x ∈ Ml(X)+}.

(2) Ker(ϕl)+ x ∈ Ml(X0)+ if and only if ϕl(x) � 0.

(3) | · |0l,m : Ml,m(X0) → Ml(X0)+ given by Ker(ϕl,m)+ x �−→ Ker(ϕl)+ |x|l,m are
well defined maps.

(4)
(
X0,{Ml(X0)+},{| · |0l,m}

)
is an absolutely matrix ordered space identified with

ϕ(X).

Moreover, if X and Y are absolute matrix order unit spaces with ‖ϕ(e)‖ = 1 and
ϕ(e) ∈ |M|∞(Y), then we also have:

(5) X0 is an absolute matrix order unit space identified with ϕ(X).
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Proof.

(1) Observe that

Ml(X0) �
[
Ker(ϕ)+ xi, j

]
= {[zi, j + xi, j

]
: zi, j ∈ Ker(ϕ)}

= {[zi, j
]
: zi, j ∈ Ker(ϕ)}+

[
xi, j

]
= Ker(ϕl)+

[
xi, j

] ∈ Ml(X)
Ker(ϕl)

.

Thus Ml(X0) = Ml(X)
Ker(ϕl)

so that Ml(X0)+ = {Ker(ϕl)+ x : x ∈ Ml(X)+}.

(2) Let Ker(ϕl)+ x∈ Ml(X0)+. Then there exists z ∈ Ml(X)+ such that Ker(ϕl)+
x = Ker(ϕl) + z. Thus x− z ∈ Ker(ϕl) and we have ϕl(x) = ϕl(z) � 0. Con-
versely, let ϕl(x) � 0. For x1 = x−x∗

2 and x2 = x−x∗
2i ∈ Ml(X)sa such that x1 +

ix2 = x, we have ϕ(x1) + iϕ(x2) = ϕ(x) � 0. In this case, we get ϕl(x2) = 0
so that Ker(ϕl)+ x = Ker(ϕl)+ x1. Therefore, without loss of generality, we as-
sume that x∈Ml(X)sa. Next, let x = x+−x− be the orthogonal decomposition of
x. By [12, Proposition 2.6], we get that ϕl(x)+ = ϕl(x+) and ϕl(x)− = ϕl(x−).
Since ϕl(x) � 0 and orthogonal decomposition is always unique, we conclude
that ϕl(x−) = 0. Thus Ker(ϕl)+ x = Ker(ϕl)+ x+ ∈ Ml(X0)+.

(3) Let Ker(ϕl,m) + x = Ker(ϕl,m) + y. Then x− y ∈ Ker(ϕl,m) so that ϕl,m(x) =
ϕl,m(y). Without loss of generality, we assume that l � m. Since ϕl is absolute
value preserving, by Proposition 2.3(4), we get

ϕm(|x|l,m)�0 = ϕl(|
[
x 0

] |l)
= |ϕl(

[
x 0

]
)|l

= |[ϕl,m(x) 0
] |l

= |[ϕl,m(y) 0
] |l

= ϕm(|y|l,m)�0.

and consequently ϕm(|x|l,m) = ϕm(|y|l,m). Thus |x|l,m −|y|l,m ∈ Ker(ϕm) so that
Ker(ϕm)+ |x|l,m = Ker(ϕm)+ |y|l,m. Hence the maps | · |0l,m are well-defined.

(4) Let x ∈ Mk,l(X) and y ∈ Mm,n(X). Then by 2.1(2)(b), we get

|(Ker(ϕk,l)+ x)� (Ker(ϕm,n)+ y)|0k+m,l+n

= |Ker(ϕk+m,l+n)+ (x� y)|0k+m,l+n

= Ker(ϕl+n)+ (|x|k,l � |y|m,n)
= (Ker(ϕl)+ |x|k,l)� (Ker(ϕn)+ |y|m,n)

= |Ker(ϕk,l)+ x|0k,l � |Ker(ϕm,n)+ y|0m,n.
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Next, let ς1 ∈ Mk,m and ς2 ∈ Mn,l . Again by 2.1(2)(a), we have:

|ς1(Ker(ϕm,n)+ y)ς2|0k,l = |Ker(ϕk,l)+ ς1yς2|0k,l
= Ker(ϕl)+ |ς1yς2|k,l
� Ker(ϕl)+‖ς1‖||y|m,nς2|n,l

= ‖ς1‖||Ker(ϕm,n)+ y|0m,nς2|0n,l.

Thus X0 is an absolutely matrix ordered space. Now, X0 is identified with ϕ(X)
is immediately followed by first isomorphism theorem for vector spaces.

Assume that X and Y are absolute matrix order unit spaces with ‖ϕ(e)‖ = 1 and
ϕ(e) ∈ |M|∞(Y). Then

(5) For x∈Ml(X)sa, there exists ε > 0 such that εel ±x∈Ml(X)+. Then ε(Ker(ϕ)
+e)l ± (Ker(ϕl)+x) = ε(Ker(ϕl)+el)+(Ker(ϕl)±x) = Ker(ϕl)+(εel ±x) ∈
Ml(X0)+. Thus Ker(ϕ)+ e is the order unit for X0.

Let Ker(ϕl)± x � 0. By (2), we have ±ϕl(x) = ϕl(±x) � 0. Since Ml(X)+ is
proper, we get that ϕl(x) = 0 i.e. Ker(ϕl)+ x = 0. Thus Ml(X0)+ is proper for
every l ∈ N.

Let x � 0 with ε(Ker(ϕl) + x) + (Ker(ϕl) + z) � 0 for all ε > 0. Again, by
(2), we have εϕl(x)+ ϕl(z) = ϕl(εx + z) � 0. Since ϕl(x) � 0 and Ml(X)+ is
Archimedean, we get that ϕl(z) � 0. Then Ker(ϕl)+z � 0. Therefore Ml(X0)+

is Archimedean for every l ∈ N.

As Ml(X)+0 is proper and Archimedean for all l ∈ N. Therefore order unit
Ker(ϕ)+ e determines a matrix norm {‖ · ‖0

l } on X0 defined in the following
way:

‖Ker(ϕl)+ x‖0
l = inf

{
ε > 0 : Ker(ϕ2l)+

([
εel ±x
±x∗ εel

])
� 0

}

= inf

{
ε > 0 :

[
εϕ(e)l ±ϕl(x)
±ϕl(x)∗ εϕ(e)l

]
� 0

}

for every l ∈ N.

Finally, assume that ϕ(e) ∈ |M|∞(Y ) such that ‖ϕ(e)‖ = 1. In this case, we
show that X0

∼= ϕ(X) ⊆ Yϕ(e). By Theorem 3.6, we get that

‖Ker(ϕl)+ x‖0
l = inf

{
ε > 0 :

[
εϕ(e)l ±ϕl(x)
±ϕl(x)∗ εϕ(e)l

]
� 0

}

= ‖ϕ(x)‖ϕ(e)
l

= ‖ϕ(x)‖l.

Now ⊥=⊥a
∞ on Ml(X0)+ is immediate from [9, Theorem 3.3] and the fact that Y is

an absolute matrix order unit space. Hence the result follows. �



ABSOLUTE MATRIX ORDER IDEALS IN UNIT SPACES 763

4. Relation between K0(Xp) and K0(X)

In this section, we derive a relation between K0(Xp) and K0(X). For that, we
start with the following characterization of order projections in Xx in terms of order
projections in X.

LEMMA 4.1. In an absolute matrix order unit space X, let x ∈ |M|∞(X) such
that ‖x‖ = 1. Then OPl(X)∩Ml(Xx) ⊆ OPl(Xx) = {p ∈ OPl(X) : p � xl} for every
l ∈ N. The equality holds if and only if x ∈ OP(X).

Proof. Let p∈OPl(X)∩Ml(Xx). By Proposition 3.8, we get that 0 � p � xl . For
‖x‖ = 1, we also get that 0 � xl � el. Then 0 � xl − p � el − p. Since p ∈ OPl(X),
we have p ⊥ el − p. By [11, Definition 3.4(4)], we conclude p ⊥ xl − p. Thus p ∈
OPl(Xx). Next, assume that x ∈ OP(X). Let p ∈ OPl(Xx). Then 0 � p � xl such
that p ⊥ xl − p. By Lemma 2.9 and [11, Proposition 5.6], we have that p ∈ OPl(X).
Thus by Proposition 2.10, the equality holds. Conversely, assume that equality holds.
Then xl ∈ OP(Xx) so that xl ∈ OPl(X). Again applying Lemma 2.9, we get that x ∈
OPl(X). �

The partial isometric equivalence (denoted by ∼ ) on order projections is defined
in [13]. Now, we characterize ∼ in Xx in terms of ∼ in X.

PROPOSITION 4.2. In an absolute matrix order unit space X, let p ∈ OPl(X)∩
Ml(Xx) and q ∈ OPm(X)∩Ml(Xx) for some x ∈ |M|∞(X) such that ‖x‖ = 1. Then
p ∼ q in Xx if and only if p ∼ q in X.

Proof. Suppose that p ∼ q in X. There exists y ∈ Ml,m(X) satisfying p = |y∗|m,l

and q = |y|l,m. By Lemma 4.1, we get that p∈OPl(Xx) and q∈OPm(Xx). For ‖p‖l �
1 and ‖q‖m � 1, we have p � xl and q � xm. Then[

xl 0
0 xm

]
�

[|y∗|m,l 0
0 |y|l,m

]

=
∣∣∣∣
[

0 y
y∗ 0

]∣∣∣∣
l+m

� ±
[

0 y
y∗ 0

]

so that

[
xl y
y∗ xm

]
∈ Ml+m(X)+. Thus y ∈ Ml,m(Xx) and consequently p ∼ q in Xx.

Next, p ∼ q in Xx implies p ∼ q in X follows trivially. �
The corresponding characterization for partial isometrises of Xx is also given in

terms of partial isometrises of X by the following result.

COROLLARY 4.3. In an absolute matrix order unit space X, let x ∈ |M|∞(X)
such that ‖x‖ = 1. Then PIl,m(X)∩Ml,m(Xx) ⊆ PIl,m(Xx). The equality holds if and
only if x ∈ OP(X).
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The condition (T ) is also defined in [13]. Under (T ), the relation ∼ becomes
an equivalence relation on order projections. In the next result, it is shown that (T ) is
transfered on Xp as a heredity.

PROPOSITION 4.4. Let X an absolute matrix order unit space. Then (T) holds in
X implies (T) holds in Xp for every p ∈ OP(X).

Proof. Assume that (T) holds in X. Let p ∈ OP(X). Also, let y ∈ PIm,n(Xp)
and z ∈ PIl,n(Xp) satisfying |y|m,n = |z|l,n. Then by Corollary 4.3, we have that y ∈
PIm,n(X) and z ∈ PIl,n(X) . By assumption, there exists w ∈ PIm,l(X) such that |w∗|l,m
= |y∗|n,m and |w|m,l = |z∗|n,l. Again, by Corollary 4.3, we get that w∈ PIm,l(Xp). Thus
(T) also holds in Xp. �

Finally, we derive a relation between K0(Xp) and K0(X) by the following result.

THEOREM 4.5. Let (T ) holds in an absolute matrix order unit space X and p ∈
OP(X). Then [(q,r)] �−→ [(q,r)] defines a group homomorphism K0(Xp) to K0(X).
Moreover, if q ≈ r in OP∞(X) implies q ≈ r in OP∞(Xp) for every pair of q,r ∈
OP∞(Xp), then this group homomorphism turns out to be an injection.

Proof. Consider the inclusion map i : Xp ↪→ X. By [14, Theorem 5.2], there ex-
ists a unique group homomorphism K0(i) : K0(Xp) →K0(X) satisfying the following
commutative diagram:

OP∞(Xp) OP∞(X)

K0(Xp) K0(X)

i

χXp χX

K0(i)

so that
K0(i)(χXp(q)) = χX(q) for every q ∈ OP∞(Xp).

Now, for [(q,r)] ∈ K0(Xx), we have:

K0(i)([(q,r)]) = K0(i)([(q,0)])− [(0,r)])
= K0(i)(χXp(q)− χXp(r))
= K0(i)(χXp(q))−K0(i)(χXp(r))
= χX(q)− χX(r)
= [(q,r)].

Thus [(q,r)] �−→ [(q,r)] defines a group homomorphism from K0(Xp) to K0(X) .
Next, let q,r ∈OP∞(Xp) such that [(q,r)] = 0 in X. In this case, we have q⊕0≈

0⊕ r in X. By assumption, we conclude that q⊕0 ≈ 0⊕ r in Xp. Thus [(q,r)] = 0 in
Xp. Hence the group homomorphism is injective. �
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