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Abstract. Suppose T,S are bounded linear operators on a complex Hilbert space. We show that
the Davis-Wielandt radius dw(·) satisfies the following inequalities

dw(T +S) �
√

2
(
dw2(T )+dw2(S)

)
+6

∥∥|T |4 + |S|4∥∥
� 2

√
2
√

dw2(T )+dw2(S)

� 2
√

2
(
dw(T )+dw(S)

)
.

From the third inequality we obtain the following lower and upper bounds for the Davis-Wielandt
radius dw(T ) of the operator T :

dw(T ) � 1

4
√

2
max

{
dw

(
2Re(T )

)
,dw

(
2Im(T )

)}
,

dw(T ) � 2
√

2
(
dw

(
Re(T )

)
+dw

(
Im(T )

))
.

Further, we develop several new lower and upper bounds for the Davis-Wielandt radius of the
operator T which improve the existing ones. Application of these bounds are also provided.

1. Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖ induced
by the inner product. Let B(H) denote the C∗ -algebra of all bounded linear operators
acting on H . For T ∈ B(H) , T ∗ denotes the adjoint of T , and |T |= (T ∗T )1/2 , |T ∗|=
(TT ∗)1/2. The real part and the imaginary part of T ∈B(H) are denoted by Re(T ) and
Im(T ), respectively. Therefore, Re(T ) = (T +T ∗)/2 and Im(T ) = (T −T ∗)/2i. The
operator norm of T , denoted by ‖T‖ , is defined as ‖T‖= sup{‖Tx‖ : x∈H,‖x‖= 1}.
The numerical radius of T, denoted by w(T ), is defined as w(T ) = sup{|〈Tx,x〉| : x ∈
H,‖x‖ = 1}. It is well known that w(·) defines a norm on B(H) , and it satisfies the
following inequality w(T )� ‖T‖� 2w(T ) for every T ∈B(H). For more details about
the numerical radius and related inequalities, we refer the reader to see the books [3, 9,
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18] and the recent articles [8, 16]. The concept of numerical radius is useful in studying
the bounded linear operators, and attracted many researchers over the years. Based on
the importance of the numerical radius, many generalizations of it has been studied in
the literature, see [1, 7, 14, 17]. One such generalization is the Davis-Wielandt radius,
see [7, 17]. The Davis-Wielandt radius of T ∈ B(H) , denoted by dw(T ) , is defined as

dw(T ) = sup

{√
|〈Tx,x〉|2 +‖Tx‖4 : x ∈H,‖x‖ = 1

}
.

Clearly, dw(T ) � 0 and dw(T ) = 0 if and only if T = 0. Note that for λ ∈ C and
for a non-zero operator T ∈ B(H) , we have dw(λT ) = |λ |dw(T ), if |λ | = 1, also
dw(λT ) > |λ |dw(T ) if |λ |> 1 and dw(λT ) < |λ |dw(T ) if |λ |< 1. This implies that
dw(·) does not define a norm on B(H) . Note that the inequality dw(T +S) � dw(T )+
dw(S) does not always hold for arbitrary T,S ∈ B(H) . The above triangle inequality
for the Davis-Wielandt radius holds when Re(T ∗S) = 0, see [5, Corollary 2.2]. It
is not difficult to verify that the Davis-Wielandt radius dw(·) satisfies the following
inequality:

max
{
w(T ),‖T‖2} � dw(T ) �

√
w2(T )+‖T‖4 (1.1)

The inequalities (1.1) are sharp, see [5]. The second inequality in (1.1) becomes equal-
ity, i.e., dw(T ) =

√
w2(T )+‖T‖4 if and only if T is normaloid (i.e., w(T ) = ‖T‖ ),

see [19, Corollary 3.2]. Zamani and Shebrawi [20, Theorem 2.1] proved that

dw(T ) �
√

w2(T −|T |2)+2‖T‖2w(T ). (1.2)

Further in [20, Theorem 2.13, Theorem 2.14, Theorem 2.17] it is proved that

dw2(T ) � max{‖T‖2,‖T‖4}+
√

2w(|T |2T ), (1.3)

dw2(T ) � 1
2

(
w

(|T |4 + |T |2)+w
(|T |4 −|T |2))

+
√

2w(|T |2T ) (1.4)

and

dw2(T ) � ‖T‖max{w(T ),w(|T |2)}(1+‖T‖2 +2w(T ))
1
2 . (1.5)

Recently, Bhunia et al. in [5, Theorem 2.4] developed the upper bound

dw(T ) �
√
‖|T |2 + |T |4‖. (1.6)

Also in [5, Theorem 2.1 (i), (ii)] they developed the lower bounds

dw2(T ) � max
{
w2(T )+ c2(T ∗T ),‖T‖4 + c2(T )

}
(1.7)

and

dw2(T ) � 2max
{
w(T )c(T ∗T ),c(T )‖T‖2} . (1.8)
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For more results on the Davis-Wielandt radius and related inequalities we refer the
readers to [2, 4, 11, 12, 13, 19].

In this paper, we study Davis-Wielandt radius inequalities for the sum of two
bounded linear operators. We also develop several new lower and upper bounds for
the Davis-Wielandt radius of bounded linear operators and considering the numerical
examples we show that these bounds give better bounds than the existing bounds men-
tioned above. Applications of some inequalities obtained here are also given.

2. Main results

We begin this section by noting that the Davis-Wielandt radius does not satisfy
the triangle inequality, in general. In our first theorem we prove that dw(T + S) �
2
√

2(dw(T ) + dw(S)) holds for all T,S ∈ B(H) . To do so we need the following
lemma, known as Hölder–McCarthy inequality (see [15, p. 20]).

LEMMA 2.1. If T ∈ B(H) is positive and x ∈H with ‖x‖ = 1, then

〈Tx,x〉r � 〈T rx,x〉,

for all r � 1. The inequality is reversed when 0 < r � 1.

Now, we are in a position to prove the following theorem.

THEOREM 2.2. If T,S ∈ B(H) , then

dw(T +S) �
√

2(dw2(T )+dw2(S))+6‖|T |4 + |S|4‖

� 2
√

2
√

dw2(T )+dw2(S) (2.1)

� 2
√

2
(
dw(T )+dw(S)

)
.

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈(T +S)x,x〉|2 +‖(T +S)x‖4

� (|〈Tx,x〉|+ |〈Sx,x〉|)2 +(‖Tx‖+‖Sx‖)4

� 2(|〈Tx,x〉|2 + |〈Sx,x〉|2)+4(‖Tx‖2 +‖Sx‖2)2

� 2(|〈Tx,x〉|2 + |〈Sx,x〉|2)+8(‖Tx‖4 +‖Sx‖4)
� 2(|〈Tx,x〉|2 +‖Tx‖4 + |〈Sx,x〉|2 +‖Sx‖4)+6〈(|T |4 + |S|4)x,x〉

(by Lemma 2.1)
� 2

(
dw2(T )+dw2(S)

)
+6

∥∥|T |4 + |S|4∥∥ .
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Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw(T +S) �
√

2(dw2(T )+dw2(S))+6‖|T |4 + |S|4‖

�
√

2(dw2(T )+dw2(S))+6(‖T‖4 +‖S‖4)

�
√

8(dw2(T )+dw2(S)) (by first inequality in (1.1))

� 2
√

2
(
dw(T )+dw(S)

)
,

as desired. �
Note that the second inequality in Theorem2.2 is sharp, i.e., the inequality dw(T +

S) � 2
√

2
√

dw2(T )+dw2(S) is sharp. If we take H to be an n -dimensional complex

Hilbert space Cn and T = S =
(

0 1
0 0

)
⊕ 0 ∈ B(H) , then by a simple computation

we have dw(T + S) = 4 = 2
√

2
√

dw2(T )+dw2(S). However, the last inequality in
Theorem 2.2 is never sharp unless the operators T,S are both zero operators. A nat-
ural question that remains to be answered in this connection is “what is the best con-

stant c
(
2 � c < 2

√
2
)

available so that dw(T +S) � c
(
dw(T )+dw(S)

)
holds for all

bounded linear operators T and S?”
Next, by employing Theorem 2.2 we derive the following lower and upper bound

for the Davis-Wielandt radius of an operator T ∈ B(H) in terms of Re(T ) and Im(T ) .

COROLLARY 2.3. If T ∈ B(H), then

1

4
√

2
max

{
dw(2Re(T )),dw(2Im(T ))

}
� dw(T ) � 2

√
2
(
dw(Re(T ))+dw(Im(T ))

)
.

Proof. The first inequality follows from Theorem 2.2 by putting S = T ∗ and S =
−T ∗ , respectively. The second inequality also follows from Theorem 2.2 by replacing
T by Re(T ) and S by iIm(T ). �

Next bound for the Davis-Wielandt radius of an operator T reads as in the follow-
ing theorem, proof of which follows from [4, Corollary 2.21].

THEOREM 2.4. If T ∈ B(H) , then

dw(T ) �
√

min{β ,γ,δ ,μ},
where

β = min
0�α�1

{
α
2
‖Re(|T ||T ∗|)‖+

∥∥∥∥α
4
|T |2 +

(
1− 3α

4

)
|T ∗|2 + |T |4

∥∥∥∥
}

,

γ = min
0�α�1

{
α
2
‖Re(|T ||T ∗|)‖+

∥∥∥∥α
4
|T ∗|2 +

(
1− 3α

4

)
|T |2 + |T |4

∥∥∥∥
}

,
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δ = min
0�α�1

{
α
2
‖Re(|T ||T ∗|)‖+

∥∥∥∥α
4
|T |2 +

(
1− 3α

4

)
|T ∗|2 + |T ∗|4

∥∥∥∥
}

,

μ = min
0�α�1

{
α
2
‖Re(|T ||T ∗|)‖+

∥∥∥∥α
4
|T ∗|2 +

(
1− 3α

4

)
|T |2 + |T ∗|4

∥∥∥∥
}

.

REMARK 2.5. Clearly γ �
∥∥|T |2 + |T |4∥∥ and so

√
min{β ,γ,δ ,μ} �

√
‖|T |2 + |T |4‖.

Therefore, the bound in Theorem 2.4 is stronger than the existing bound (1.6).

Next we need the following lemma, known as generalized Cauchy-Schwarz in-
equality, see [10, Theorem 1].

LEMMA 2.6. Let T ∈ B(H) and let x,y ∈ H. If f and g are two non-negative
continuous functions on [0,∞) satisfying f (t)g(t) = t ∀t � 0 , then

|〈Tx,y
〉|2 �

〈
f 2(|T |)x,x〉〈g2(|T ∗|)y,y〉.

In particular, f (t) = g(t) =
√

t ∀t � 0,

|〈Tx,y
〉|2 �

〈|T |x,x〉〈|T ∗|y,y〉. (2.2)

By using the above lemma we obtain the following bound for the Davis-Wielandt
radius of an operator T.

THEOREM 2.7. If T ∈ B(H), then

dw(T ) � 4
√
‖ f 4(|T |)+ f 4(|T |2)‖‖g4(|T ∗|)+g4(|T |2)‖,

where f and g are as in Lemma 2.6.

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈Tx,x〉|2 +‖Tx‖4

= |〈Tx,x〉|2 + 〈|T |2x,x〉2
� 〈 f 2(|T |)x,x〉〈g2(|T ∗|)x,x〉+ 〈 f 2(|T |2)x,x〉〈g2(|T |2)x,x〉 (by Lemma 2.6)

�
[
〈 f 2(|T |)x,x〉2 + 〈 f 2(|T |2)x,x〉2

] 1
2
[
〈g2(|T ∗|)x,x〉2 + 〈g2(|T |2)x,x〉2

] 1
2

�
[
〈 f 4(|T |)x,x〉+ 〈 f 4(|T |2)x,x〉

] 1
2
[
〈g4(|T ∗|)x,x〉+ 〈g4(|T |2)x,x〉

] 1
2 (by Lemma 2.1)

= 〈( f 4(|T |)+ f 4(|T |2))x,x〉 1
2 〈(g4(|T ∗|)+g4(|T |2))x,x〉 1

2 .
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Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T ) �
∥∥∥ f 4(|T |)+ f 4(|T |2)

∥∥∥
1
2
∥∥∥g4(|T ∗|)+g4(|T |2)

∥∥∥
1
2
.

This completes the proof.
In particular, considering f (t) = g(t) =

√
t in Theorem 2.7 we get the following

corollary. �

COROLLARY 2.8. If T ∈ B(H), then

dw(T ) � 4
√
‖|T |2 + |T |4‖ ‖|T ∗|2 + |T |4‖.

Next we need the following lemma, known as Buzano’s inequality (see [6]).

LEMMA 2.9. Let x,y,e ∈H and let ‖e‖ = 1. Then

|〈x,e〉〈e,y〉| � 1
2

(‖x‖‖y‖+ |〈x,y〉|).
By applying the Buzano’s inequality we prove the following theorem.

THEOREM 2.10. If T ∈ B(H), then

dw(T ) �
√

1
4
w2 (|T |+ i|T∗|)+

1
4
w(|T ||T ∗|)+

1
8

min{α,β},

where α =
∥∥|T |2 + |T∗|2 +8|T |4∥∥ and β =

∥∥|T |2 + |T∗|2 +8|T∗|4∥∥ .

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈Tx,x〉|2 +‖Tx‖4

� 〈|T |x,x〉〈|T ∗|x,x〉+ 〈|T |2x,x〉2 (by (2.2))

� 1
4
(〈|T |x,x〉+ 〈|T ∗|x,x〉)2 + 〈|T |2x,x〉2

=
1
4
(〈|T |x,x〉2 + 〈|T ∗|x,x〉2 +2〈|T |x,x〉〈|T ∗|x,x〉)+ 〈|T |2x,x〉2

� 1
4
(|〈|T |x,x〉+ i〈|T ∗|x,x〉|2 +

∥∥|T |x∥∥∥∥|T ∗|x∥∥+ |〈|T |x, |T ∗|x〉|)+ 〈|T |2x,x〉2

(by Lemma 2.9)

� 1
4
|〈|T |x,x〉+ i〈|T ∗|x,x〉|2 +

1
8
(
∥∥|T |x∥∥2 +

∥∥|T ∗|x∥∥2)+
1
4
|〈|T ∗||T |x,x〉|

+〈|T |4x,x〉 (by Lemma 2.1)

=
1
4
|〈(|T |+ i|T∗|)x,x〉|2 +

1
8
〈(|T |2 + |T ∗|2 +8|T |4)x,x〉+ 1

4
|〈|T ∗||T |x,x〉.
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Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T ) � 1
4
w2 (|T |+ i|T∗|)+

1
8

∥∥|T |2 + |T∗|2 +8|T |4∥∥+
1
4
w(|T ||T ∗|). (2.3)

Replacing T by T ∗ , we also obtain

dw2(T ) � 1
4
w2 (|T |+ i|T ∗|)+

1
8

∥∥|T |2 + |T ∗|2 +8|T∗|4∥∥+
1
4
w(|T ||T ∗|). (2.4)

Therefore, the required inequality follows from (2.3) together with (2.4). �
Next upper bound reads as follows:

THEOREM 2.11. If T ∈ B(H), then

dw(T ) �
√

w2
(
|T |2 + eiθT

)
+2‖T‖2‖Re(eiθ T )‖,

for all θ ∈ R.

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈Tx,x〉|2 +‖Tx‖4 =
∣∣∣〈Tx,x〉+‖Tx‖2

∣∣∣2−2Re
(〈Tx,x〉‖Tx‖2)

= |〈(T + |T |2)x,x〉|2 −2‖Tx‖2〈Re(T )x,x〉
� |〈(T + |T |2)x,x〉|2 +2‖Tx‖2|〈Re(T )x,x〉|
� w2(T + |T |2)+2‖T‖2‖Re(T )‖.

Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T ) � w2(T + |T |2)+2‖T‖2‖Re(T )‖. (2.5)

Now replacing T by eiθ T , we get

dw2(T ) � w2
(
|T |2 + eiθT

)
+2‖T‖2‖Re(eiθ T )‖,

as desired. �

REMARK 2.12. (i) From Theorem 2.11 we can easily derive the following new
bound

dw(T ) �
√

w2(T ±|T |2)+2‖T‖2‖Re(T )‖, (2.6)

which is stronger than the existing bound (1.2).
(ii) Also, from Theorem 2.11 we can easily derive the following existing bound

dw(T ) �
√

min
0�θ�2π

w2
(
|T |2 + eiθ T

)
+2‖T‖2w(T ),

see [4, Theorem 2.6].
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In the following theorem we obtain new lower and upper bounds for the Davis-
Wielandt radius of an operator T.

THEOREM 2.13. If T ∈ B(H), then

max
{
w(Re(T )+ i|T |2),w(Im(T )+ i|T |2)} � dw(T )

� min

{√
w2(Re(T )+ i|T |2)+‖Im(T )‖2,

√
w2(Im(T )+ i|T |2)+‖Re(T )‖2

}
.

Proof. Take x ∈ H with ‖x‖ = 1. From the Cartesian decomposition of T (that
is, T = Re(T )+ iIm(T )) we have,

|〈Tx,x〉|2 +‖Tx‖4 = |〈Re(T )x,x〉|2 + |〈Im(T )x,x〉|2 + 〈|T |2x,x〉2
= |〈(Re(T )+ i|T |2)x,x〉|2 + |〈Im(T )x,x〉|2 (2.7)

� w2(Re(T )+ i|T |2)+‖Im(T )‖2.

Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T ) � w2(Re(T )+ i|T |2)+‖Im(T )‖2. (2.8)

Similarly, we also obtain

dw2(T ) � w2(Im(T )+ i|T |2)+‖Re(T )‖2. (2.9)

Combining (2.8) and (2.9) we have the desired second bound. Now, it follows from
(2.7) that

|〈Tx,x〉|2 +‖Tx‖4 � |〈(Re(T )+ i|T |2)x,x〉|2.

Taking the supremum over x ∈H with ‖x‖ = 1, we have

dw(T ) � w(Re(T )+ i|T |2). (2.10)

Similarly, we also have

dw(T ) � w(Im(T )+ i|T |2). (2.11)

Therefore, the desired first inequality follows by combining (2.10) and (2.11). �

By employing Theorem 2.13 we obtain the following corollary that gives an equal-
ity for the numerical radius w(T ) of an operator T with Im(T ) = (Re(T ))2 .

COROLLARY 2.14. Let T ∈ B(H) be such that Im(T ) = (Re(T ))2 . Then

w(T ) = ‖Re(T )‖
√

1+‖Re(T )‖2.
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Proof. Suppose S ∈ B(H) is self-adjoint. Then it follows from Theorem 2.13 that
dw(S) = w(S+ iS2). Also, dw(S) =

√‖S‖2 +‖S‖4.

Thus, w(S+ iS2) = ‖S‖
√

1+‖S‖2 . Taking S = Re(T ), the proof follows. �

Now, we consider an example to show that the bounds obtained in Theorem 2.7,
Theorem 2.10 and Theorem 2.13 are better than the existing ones. The bounds

(a) dw2(T ) � 1
2{w2(T +T ∗T )+w2(T −T ∗T )},

(b) dw2(T ) �
∥∥|T |2 + |T |4∥∥,

(c) dw2(T ) � 1
2

(
w(T 2)+‖T‖2

)
+‖T‖4,

obtained in [5, Theorem 2.2, Theorem 2.4 (i), Theorem 2.4 (ii)]. If we take

T =
[
0 1
2 0

]
,

then from Corollary 2.8, Theorem2.10 and Theorem 2.13, we get dw(T )� 4.294,4.286
and 4.301, respectively, whereas the bounds in (a),(b) and (c) respectively give dw(T )�
4.621, 4.472 and 4.358. Thus, for this example, the upper bounds of dw(T ) in Theo-
rem 2.7, Theorem 2.10 and Theorem 2.13 are better than the existing bounds mentioned
above.

Next bound reads as follows:

THEOREM 2.15. If T ∈ B(H), then

dw(T ) �
√

w2(|T |2 + eiθ T )+
1
2
‖|T |4 + |T ∗|2‖+w(T |T |2),

for all θ ∈ R.

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈Tx,x〉|2 +‖Tx‖4

=
∣∣〈Tx,x〉+‖Tx‖2

∣∣2 −2Re
(‖Tx‖2〈Tx,x〉)

�
∣∣〈(T + |T |2)x,x〉∣∣2 +2

∣∣〈|T |2x,x〉〈Tx,x〉∣∣
�

∣∣〈(T + |T |2)x,x〉∣∣2 +
∥∥|T |2x∥∥‖T ∗x‖+

∣∣〈|T |2x,T ∗x〉∣∣ (by Lemma 2.9)

�
∣∣〈(T + |T |2)x,x〉∣∣2 +

1
2

(∥∥|T |2x∥∥2
+‖T ∗x‖2

)
+

∣∣〈T |T |2x,x〉∣∣
=

∣∣〈(T + |T |2)x,x〉∣∣2 +
1
2
〈(|T |4 + |T ∗|2)x,x〉+ ∣∣〈T |T |2x,x〉∣∣

� w2(T + |T |2)+
1
2

∥∥|T |4 + |T ∗|2∥∥+w(T |T |2).
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Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T ) � w2(|T |2 +T )+
1
2

∥∥|T |4 + |T∗|2∥∥+w(T |T |2).

Now replacing T by eiθ T , we have

dw2(T ) � w2(|T |2 + eiθT )+
1
2

∥∥|T |4 + |T ∗|2∥∥+w(T |T |2),

as desired. �
Applying similar arguments as used in Theorem 2.15, we also obtain the following

upper bound.

THEOREM 2.16. If T ∈ B(H), then

dw(T ) �
√

w2(|T |2 + eiθT )+
1
2
‖|T |4 + |T |2‖+w(|T |2T ),

for all θ ∈ R.

Now we consider the following numerical example to show the bounds obtained
in Theorem 2.15 and Theorem 2.16 are sharper than the existing ones. If we take

T =
[
1 1
0 0

]
,

then Theorem 2.15 and Theorem 2.16 (for θ = π ) give dw(T ) � 2.547 and 2.464,
respectively, whereas the bounds in (1.3), (1.4) and (1.5) respectively give dw(T ) �
2.613, 2.613 and 2.565. Thus, for this example, the upper bounds of dw(T ) obtained
in Theorem 2.15 and Theorem 2.16 are better than the existing bounds in (1.3), (1.4)
and (1.5).

Finally, we obtain the following inequality.

THEOREM 2.17. If T ∈ B(H), then

dw2(T )+2‖T‖2‖Re(T )‖ � max
{
w2(T + |T |2),w2(T −|T |2)} .

Proof. Take x ∈H with ‖x‖ = 1. We have

|〈Tx,x〉|2 +‖Tx‖4 = |〈(T + |T |2)x,x〉|2 −2‖Tx‖2〈Re(T )x,x〉
� |〈(T + |T |2)x,x〉|2 −2‖Tx‖2|〈Re(T )x,x〉|
� |〈(T + |T |2)x,x〉|2 −2‖T‖2‖Re(T )‖.

Taking the supremum over x ∈H with ‖x‖ = 1, we obtain

dw2(T )+2‖T‖2‖Re(T )‖ � w2(T + |T |2). (2.12)
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Now replacing T by −T , we have

dw2(T )+2‖T‖2‖Re(T )‖ � w2(T −|T |2). (2.13)

The desired inequality follows from (2.12) together with (2.13). �

Now, we consider

T =
[
2 0
0 0

]
,

then both Theorem 2.13 and Theorem 2.17 give dw(T ) � 4.472, whereas the bounds
in (1.7) and (1.8) respectively give dw(T ) � 4 and 0. Thus, for this example the lower
bounds obtained in Theorem 2.13 and Theorem 2.17 are better than the existing lower
bounds in (1.7) and (1.8).
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