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Abstract. The spectrum of an infinite-dimensional doubly stochastic matrix, when considered as
a bounded operator on the sequence space �p with 1 � p < ∞ , is contained within the closed
unit disc D . In our work, we present an infinite doubly stochastic matrix that exhibits the entire
closed unit disc as its spectrum. However, we prove that the points eiπr , where r is an irrational
real number, cannot serve as eigenvalues for any doubly stochastic matrices, be it finite or infinite
in size. On the other hand, we show that every other point within the closed unit disc can indeed
be an eigenvalue of an infinite-dimensional doubly stochastic matrix. In fact, we construct a
specific example of an infinite doubly stochastic matrix whose point spectrum precisely consists
of D∪{eiπr : r ∈ Q} . Additionally, we investigate the behavior of doubly stochastic matrices in
the context of the sequence space �∞ , highlighting the contrasts with the �p setting for 1 � p <
∞ .

1. Introduction

A stochastic matrix is a square matrix with non-negative entries whose rows sum
up to one. In 1938, in a lecture on Markov chains given at the meeting of the Moscow
Mathematical Society, finding the location of eigenvalues of stochastic matrices was
proposed by Kolmogorov. This region, i.e., the loci of all eigenvalues of all n× n
stochastic matrices, was first characterized by Dmitriev and Dynkin [7] for 1 � n � 5,
and then by Karpelevich [11] for all integers n � 1. His formulationwas later simplified
by Ito [9]. More recently, Johnson and Paparella provided a matricial approach to
Karpelevich theorem [10]. Here, we study this question for infinite dimensional doubly
stochastic matrices. To set the stage and explain in more detail, let us start with some
general definitions.

Let I be a, finite or infinite (countable or uncountable), index set. Then �p(I) ,
p ∈ [1,∞) , is the Banach space of (generalized) sequences x :=

(
xi
)
i∈I such that

‖x‖p :=

(
∑
i∈I

|xi|p
)1/p

< ∞. (1.1)
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In some occasions, we write x(i) for xi to emphasize further that x is a function on the
index set I . The Banach space �∞(I) consists of all bounded sequences and is equipped
with the uniform norm

‖x‖∞ := sup
i∈I

|xi|. (1.2)

Assume that T : �p(I) → �p(I) is a bounded linear operator. Then, with respect to the
canonical (Riesz) basis {ei : i ∈ I} , T has the unique matrix representation [ti j]i, j∈I ,
where ti j = (Te j)(i) . More explicitly, for each x ∈ �p(I) , we have

(Tx)(i) = ∑
j∈I

ti jx j, i ∈ I. (1.3)

As is the tradition, we do not distinguish between T and its corresponding matrix [ti j] .
Note that if I is infinite, in particular if it is uncountable, we should interpret (1.1) and
(1.3) as the limit of all finite sums. However, it is more practical to consider them as
Lebesgue integrals formed with the counting measure on I .

We say that x ∈ �p(I) is non-negative, and write x � 0, if

xi � 0, i ∈ I.

The collection of all x ∈ �p(I) , x � 0, will be denoted by �p(I)+ . A bounded linear
operator T : �p(I) → �p(I) is said to be non-negative if Tx � 0 for all x ∈ �p(I)+ .
Clearly, T is non-negative if and only if ti j � 0, for all i, j ∈ I . A non-negative operator
T is called stochastic if

∑
j∈I

ti j = 1, i ∈ I.

If, moreover,

∑
j∈I

ti j = 1, i ∈ I, and ∑
i∈I

ti j = 1, j ∈ I,

then we say that T is doubly stochastic. Finally, T is doubly sub-stochastic if it is
non-negative and

∑
j∈I

ti j � 1, i ∈ I, and ∑
i∈I

ti j � 1, j ∈ I.

In the following, we will briefly write d.s. and d.s.s. respectively for doubly stochastic
and doubly sub-stochastic. Detailed treatment of this topic is available in textbooks
[16, 20]. Se also [3, 5, 15].

An I × I d.s.s. matrix T always acts boundedly on �p(I) . In fact, the classical
Schur’s test immediately implies

‖T‖�p(I)→�p(I) � 1. (1.4)

See [2, Theorem 2.2] and [8, Chapter 3].
It is clear that every d.s. operator is a priori a d.s.s. operator. Hence, by the esti-

mation (1.4), the norm of any d.s. operator is also less than or equal to one. We denote
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the family of all d.s. operators on �p(I) by DS(�p(I)) . According to [1, Theorem
2.4], DS(�p(I)) is closed under composition (infinite matrix multiplication). The same
property holds for the family of d.s.s. operators on �p(I) .

The spectrum and point spectrum (eigenvalues) of a bounded operator T are re-
spectively denoted by σ(T ) and σ℘(T ) . There are two sets which are our main con-
cerns in this work. We define the loci of eigenvalues of all d.s. operators on �p(I)
by

Ωp,I :=
⋃

T∈DS(�p(I))

σ℘(T ),

and the loci of spectrum of all d.s. operators on �p(I) by

Ω̃p,I :=
⋃

T∈DS(�p(I))

σ(T ).

Despite clearly Ωp,I ⊂ Ω̃p,I , we did not use Ωp,I for the loci spectrum since, at this
point, it is not even known if Ω̃p,I is closed. However, after stating the main results the
relation between the two sets is clarified. See Theorem 2.1 and the comment after it.

If I = {1,2, . . . ,n} , the above two sets coincide and are independent of p . In
the literature, the common set is denoted by Ωn . In other words, Ωn is the loci of all
eigenvalues of all n× n doubly stochastic matrices. In 1956, Perfect and Mirsky [19]
studied Ωn and showed that

∪n
k=2 Πk ⊆ Ωn ⊂ D, n � 2, (1.5)

where
Πk := co {ei2π s

k : 1 � s � k},
the convex hull of the k th roots of unity, D := {λ ∈ C : |λ | < 1} is the open unit disc
and D denotes its closure, the closed unit disc. Furthermore, they also conjectured
that Ωn = ∪n

k=2Πk . The conjecture trivially holds for n = 2 and n = 3. In 2007, J.
Mashreghi and R. Rivard disproved the conjecture for n = 5 [17]. Surprisingly, in
2014 and using novel techniques, J. Levick, R. Pereira, and D. W. Kribs established
the conjecture for n = 4 [14]. They also formulated new variations of the conjecture.
However, in 2022, B. Kim and J. Kim showed the invalidity of the proposed variations
[13]. Up to now, the status of Perfect–Mirsky conjecture is not known for n � 6. In
this note, we completely settle this question when I is an infinite set.

2. Main results

In this section, we characterize the eigenvalues location and spectrum location of
infinite d.s. operators on �p(I) . Contrary to the finite dimensional case, the following
two theorems show that the location of eigenvalues and the spectrum values are both
independent of the cardinality of I whenever I is an infinite (countable or uncountable)
set.
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THEOREM 2.1. Let I be an infinite index set. Then

(i) Ω∞,I = D ,

(ii) and, for 1 � p < ∞ ,
Ωp,I = D∪{eiπr : r ∈ Q}.

Theorem 2.1 reveals a dichotomy about the set Ωp,I , as long as the index set I
is not finite. On the one hand, Ω∞,I is the compact set D . On the other hand, Ωp,I ,
independent of the value of p < ∞ , is a proper not-closed subset of D .

THEOREM 2.2. Let 1 � p � ∞ , and let I be an infinite index set. Then Ω̃p,I = D .

REMARK. Theorems 2.1 and 2.2 ensure that it is now legitimate to write Ω̃p,I =
Ωp,I for any value of p and any index set I .

Recalling that Ωp,I is the collection of all eigenvalues of all d.s. operators on �p(I) ,
there is a more difficult, and yet open, question to ask: which subsets of D∪{eiπr : r ∈
Q} can be served as the set of eigenvalues of a fixed (but arbitrary) d.s. operator? We
provide a partial answer below. At the same time, we show that there is a d.s. operator
whose spectrum is precisely D .

THEOREM 2.3. Let I be an infinite index set. Then the following hold.

(i) If
E ⊂ D∪{eiπr : r ∈ Q} and card(E) � card(I),

then there is an operator T ∈ DS(�p(I)) such that

E ⊂ σ℘(T ).

(ii) There is an operator T ∈ DS(�p(I)) for which

σ(T ) = D.

We highlight two special cases in which the condition card(E) � card(I) trivially
holds. First, if I is uncountable, then any subsets of D∪ {eiπr : r ∈ Q} fulfills the
required condition. Second, if E is countable, since I is at least countable, then again
E satisfies the requirements. In these two cases, the conclusion of part ( i) in Theorem
2.3 necessarily holds. In particular, we have the following interesting result.

COROLLARY 2.4. Let I be an uncountable index set. Then there is an operator
T ∈ DS(�p(I)) such that

σ℘(T ) = D∪{eiπr : r ∈ Q}.
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3. The proof of Theorem 2.1

The following definitions of formal sum and direct sum are needed in constructions
appearing below. See [4] for further detail. Let {Iγ : γ ∈ Γ} be a partition of I . Suppose
that {xγ : Iγ → R : γ ∈ Γ} is a family of functions (generalized sequences) and {Tγ =
[tγ

i j]i, j∈Iγ : γ ∈ Γ} is a family of square matrices. Then is

x =
⊕
γ∈Γ

xγ : I → R,

the formal sum of xγ , is defined by x(i) = xγ(i) whenever i ∈ Iγ . Note that there is a
unique γ for which i ∈ Iγ . The direct sum of matrices Tγ is the I× I (block) matrix

T =
⊕
γ∈Γ

Tγ = [ti j],

where ti j is defined by

ti j =
{

tγ
i j, if i, j ∈ Iγ for some γ,

0, otherwise.

Naively speaking, we can say that T is the block matrix with Tγ on its diagonal and
zero elsewhere.

In the light of the above definition, if Tγ is a family of bounded operators on
�p(Iγ) , we may consider the mapping (a direct sum of operators) T :=

⊕
γ∈Γ Tγ . Then

T is d.s. if and only if each Tγ is d.s., and λ is an eigenvalue of T if and only if λ is
an eigenvalue of some Tγ , i.e.,

σ℘(T ) =
⋃
γ∈Γ

σ℘(Tγ ).

More generally, T is a bounded operator on �p(I) if and only if each Tγ is a bounded
operator on �p(Iγ) and, moreover, their norms are uniformly bounded by a constant
independent of γ .

In order to shorten the proof of Theorem 2.1, we present some parts of the proof
as independent lemmas, which are interesting in their own right. Let us start with a
simple observation. If λ is an eigenvalue of an operator T ∈ DS(�p(I)) , 1 � p � ∞ ,
then Tx = λx holds for an eigenvector x ∈ �p(I)\{0} . Therefore, we have |λ | · ‖x‖ =
‖Tx‖ � ‖T‖ · ‖x‖ . Hence, by (1.4),

|λ | � 1. (3.1)

The first lemma describes the lattice of Ωp,I , when p ranges over the interval [1,∞] and
the index set I takes different cardinalities. In some sense, we can say that the lattice
is increasing with respect to both parameters. However, the final result (Theorem 2.1),
provides the complete picture of the lattice.
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LEMMA 3.1. Let I and J be arbitrary index sets and p,q ∈ [1,∞] . Then the
following hold.

(i) If card(I) � card(J) , then Ωp,I ⊆ Ωp,J .

(ii) If p � q, then Ωp,I ⊆ Ωq,I .

Proof. (i) : Let T ∈ DS(�p(I)) . Then

T
⊕

idJ�I ∈DS(�p(J)),

and thus
σ℘(T ) ⊆ σ℘(T

⊕
idJ�I) ⊆

⋃
S∈DS(�p(J))

σ℘(S) = Ωp,J.

This shows
Ωp,I =

⋃
T∈DS(�p(I))

σ℘(T ) ⊆ Ωp,J.

Note that if J is infinite, we may even replace idJ�I by idJ in the above argument.

(ii) : If λ ∈ Ωp,I , then there is a d.s. operator T = [ti j] : �p(I) → �p(I) and a non-
zero x ∈ �p(I) such that Tx = λx . However, by (1.4), [ti j] is also a d.s. operator on
�q(I) , which we denote by T̂ . Recall that �p(I) ⊂ �q(I) , and since

T̂x = Tx = λx,

we conclude that λ ∈ Ωq,I . �
As an immediate consequence of the previous lemma, if 1 � p � ∞ and I is any

infinite index set, then ⋃
n�1

Ωn ⊆ Ωp,I ⊆ D. (3.2)

To continue, the next result states that the kernel of any d.s. operator does not contain
any positive non-zero elements.

LEMMA 3.2. Let T ∈ DS(�p(I)) . Then

ker(T )∩ �p(I)+ = {0}.

Proof. Let x ∈ �p(I)+ be such that Tx = 0. Hence

∑
j∈I

ti jx( j) = 0, i ∈ I.

Since all components are positive, by the Fubini–Tonelli theorem (discrete version) and
that T is d.s.,

0 = ∑
i∈I

(
∑
j∈I

ti jx( j)

)
= ∑

j∈I

(
∑
i∈I

ti j

)
x( j) = ∑

j∈I
x( j).
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Therefore,
x( j) = 0, j ∈ I. �

A comment is in order: special care is needed in applying Lemma 3.2. While it
confirms there is no positive vector in the kernel of a d.s. operator T , it is quite possible
that ker(T ) 	= {0} , For example, let

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 0 0 0 · · ·
1/2 1/2 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then Te1 = Te2 = 1
2(e1 + e2) , and thus T (e1 − e2) = 0. In other words, e1 − e2 ∈

ker(T ) .
This said, the possibility of ker(T )= {0} is not ruled out. Let us present a concrete

example. Let

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 0 0 0 · · ·
1/2 0 1/2 0 0 · · ·
0 1/2 0 1/2 0 · · ·
0 0 1/2 0 1/2
0 0 0 1/2 0

. . .
...

...
...

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Assume that Tx = λx , where x = (xn)n�1 ∈ �p , 1 � p < ∞ . We know that λ ∈ D , and
thus we consider three cases.

Case I, λ = 1: In this case, the equation x = Tx is written as

2x1 = x1 + x2,

2x2 = x1 + x3,

2x3 = x2 + x4,

2x4 = x3 + x5,

...

and simplifies to x1 = x2 = x3 = · · · . Since x ∈ �p , we must have x = 0.

Case II, λ = −1: In this case, the equation λx = Tx is written as

−2x1 = x1 + x2,

−2x2 = x1 + x3,

−2x3 = x2 + x4,

−2x4 = x3 + x5,

...
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The first equation simplifies to x2 = −3x1 , and the general solution of the rest of the
system is

xn = a(−1)n +bn(−1)n, n � 1,

where a and b are arbitrary constants. The initial requirement x2 = −3x1 implies that
b = −2a . Thus we have

xn = (−1)n(1−2n)a, n � 1.

But, since x ∈ �p , we must have a = 0, which leads to x = 0.

Case III, λ ∈ D\ {−1,1} : In this case, the equation λx = Tx is written as

2λx1 = x1 + x2,

2λx2 = x1 + x3,

2λx3 = x2 + x4,

2λx4 = x3 + x5,

...

The first equation simplifies to x2 = (2λ − 1)x1 . Using the general theory difference
equations, the general solution of the rest of the system is

xn = a
(

λ +
√

λ 2−1
)n

+b
(

λ −
√

λ 2 −1
)n

, n � 1,

where a and b are arbitrary constants. However, since λ 	= 1, the above equation for
n = 1 along with x2 = (2λ −1)x1 implies b = ca , where c is a complex number which
depends on λ and c 	= 0. The precise value of c is not important. That c 	= 0 is enough
for the rest. Thus we have

xn = a
[(

λ +
√

λ 2 −1
)n

+ c
(

λ −
√

λ 2−1
)n]

, n � 1.

At this point, we again use the fact that x ∈ �p . Since(
λ +

√
λ 2−1

)
×
(

λ −
√

λ 2−1
)

= 1,

at least one of the sums

∞

∑
n=1

(
λ +

√
λ 2−1

)pn
or

∞

∑
n=1

(
λ −

√
λ 2−1

)pn

diverges. Hence, in order to ensure

∞

∑
n=1

|xn|p < ∞,

we must have a = 0, which again leads to x = 0. The above three cases show that
ker(T ) = {0} .
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We continue with the proof of Theorem 2.1. Part (i) is straightforward. By (3.1),
we know that Ω∞,I ⊆ D . To verify D ⊆ Ω∞,I , let λ ∈ D and consider two cases.

Case I, |λ | < 1: It is clear that

{ei 2πk
n : n � 1, 0 � k � n−1}= {eiπr : r ∈ Q}.

Hence, by (1.5),
∪n�1Πn = D∪{eiπr : r ∈ Q} ⊂ ∪n�1Ωn.

Therefore, by (3.2), we conclude that

D∪{eiπr : r ∈ Q} ⊆ Ωp,I ⊆ D, 1 � p � ∞. (3.3)

In particular, we have D ⊂ Ω∞,I .

Case II, |λ | = 1: Since I is infinite, without loss of generality, we assume that
I = Z
 I0 , where 
 denotes the disjoint union. Let T : �∞(I)→ �∞(I) be the right shift
on Z and the identity operator on I0 , i.e.,

(Tx)(k) =
{

x(k+1) if k ∈ Z,
x(k) if k ∈ I0.

It is easy to see that T is a d.s. operator. We claim that

σ℘(T ) = ∂T. (3.4)

To verify this, fix λ ∈ ∂D and let x : I → R be defined by

x(k) =
{

λ k if k ∈ Z,
0 if k ∈ I0.

Clearly, x ∈ �∞(I) , and

(Tx)(k) = x(k+1) = λ k+1 = λx(k), k ∈ Z,

and
(Tx)(k) = x(k) = 0 = λx(k), k ∈ I0.

Therefore, Tx = λx , i.e., λ is even an eigenvalue of T . In particular, ∂D ⊂ Ω∞,I .
Now suppose that λ ∈ σ℘(T ) with the corresponding eigenvector x . We decom-

pose the eigenvector as x = x′ +x′′ , where x′ ∈ �∞(Z) and x′′ ∈ �∞(I0) . Therefore, the
equation Tx = λx entails to two sets of equations:

x′(n+1) = λx′(n), n ∈ Z,

and
x′′(n) = λx′′(n), n ∈ I0.
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Since x 	= 0, it follows that either x′ 	= 0 or x′′ 	= 0. In the latter case, λ = 1 ∈ ∂D . In
the former, the equation reduces to

x′(n) = λ nx′(0), n ∈ Z,

and the requirement x′ ∈ �∞(Z) is fulfilled if and only if |λ | = 1. Hence, (3.4) is
established. Cases I and II together show that Ω∞,I = D .

Part (ii): According to (3.3),

D∪{eiπr : r ∈ Q} ⊆ Ωp,I, 1 � p < ∞. (3.5)

Recall that Ωp,I ⊂ D . To show the equality in (3.5), suppose that eiθ is an eigenvalue
of some d.s. operator T = [trs] : �p(I) → �p(I) , with the corresponding eigenvector
x = (x j) j∈I ∈ �p(I) , i.e.,

Tx = eiθ x. (3.6)

Without loss of generality, assume that sup j∈I |x j| = 1. Since x ∈ �p(I) , with p < ∞ ,
then E := { j ∈ I : |x j| = 1} is a non-empty finite subset of I , and

c := max
j/∈E

|x j| < 1.

Put E = {i1, . . . , iN} .
The i1 th row of (3.6) is

eiθ xi1 = ∑
j∈I

ti1 jx j = ∑
j∈E

ti1 jx j + ∑
j 	∈E

ti1 jx j. (3.7)

Thus,

1 = |eiθ xi1 | � ∑
j∈E

ti1 j|x j|+ ∑
j 	∈E

ti1 j|x j|

� ∑
j∈E

ti1 j + c ∑
j 	∈E

ti1 j,

which implies

∑
j 	∈E

ti1 j � c ∑
j 	∈E

ti1 j.

This is only possible if
ti1 j = 0, j 	∈ E .

Back to the i1 th row of (3.6), which now becomes

eiθ xi1 = ∑
j∈E

ti1 jx j. (3.8)

But the points of unit circle are extreme points of the closed unit disc. Hence, (3.8)
implies eiθ xi1 ∈ E . Similarly, repeating the above argument for the row ik gives

eiθ xik ⊆ E , 1 � k � N,
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and thus eiθE ⊆ E . Since both sides have the same cardinality, we deduce the crucial
identity eiθE = E , which by induction gives

einθE = E , n ∈ Z.

In return, the above identity immediately implies θ = πr for some rational real number
r . For this, we used a well-known result of real and complex analysis: Let r ∈ R . Then
the set {einπr : n ∈ Z} is a dense subset of ∂D if and only if r is an irrational number
[12]. This finishes the proof of Theorem 2.1.

The above results show the eigenvalues location of d.s. operators on �p(I) is inde-
pendent of the choice of infinite set I . More explicitly, if A,B are two infinite set and
1 � p,q < ∞ , then

(i) Ωp,A = Ωq,B = ∪∞
n=1Ωn ,

(ii) Ω∞,A = Ω∞,B = D .

4. The proof of Theorem 2.2

If I is a finite index set with n elements, then it is clear that Ω̃p,I = Ωp,I = Ωn .
In this section, we show when I is an infinite set, then Ω̃p,I = D . This is an interesting
result, since despite being possible that σ℘(T ) = /0 , due to Gelfand’s theorem, σ(T ) is
always a non-empty compact subset of the complex plane. See [18, Theorem 1.2.5].

It is well-known that σ(T ) is confined in a closed disc of radius ‖T‖ . Hence, by
(1.4), we rather easily see that

Ω̃p,I ⊆ D.

Let λ ∈ D . We consider the following two cases.

(i) |λ | < 1: From 3.3, we have

λ ∈ Ωp,I ⊆ Ω̃p,I.

(ii) |λ | = 1: Let

λk =
k

k+1
λ , k � 1.

By part (i) , λk ∈ Ωp,I . More explicitly, λk is the eigenvalue of an nk × nk d.s.
matrix Tk . Without loss of generality, we may assume that I = N
 I0 . Then let

T =
(
T1

⊕
T2

⊕
· · ·)⊕ idI0 =

⎡⎢⎢⎢⎢⎢⎣
T1

T2

. . .
0

0 idI0

⎤⎥⎥⎥⎥⎥⎦ .

It is clear that T ∈DS(�p(I)) and that

{λk : k � 1} ⊆ σ℘(T ) ⊆ σ(T ).
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Since σ(T ) is compact, we conclude that λ ∈ {λk : k � 1} ⊆ σ(T ) . Therefore,
λ ∈ Ω̃p,I .

The above two cases show Ω̃p,I = D .

5. The proof of Theorem 2.3

(ii) : We need a simple fact from set theory. Since card(E) � card(I) , there is a
partition {Iλ : λ ∈ E} of I such that

card(Iλ ) = card(I), λ ∈ E.

Then, by Theorem 2.1, for each λ ∈ E , there is a d.s. operator Tλ : �p(Iλ ) → �p(Iλ )
such that

λ ∈ σ℘(Tλ ).

Note that Tλ might have other eigenvalues. However, this does not affect our final
conclusion. Now set

T =
⊕
λ∈E

Tλ .

Then T ∈DS(�p(I)) and

σ℘(T ) =
⋃

λ∈E

σ℘(Tλ ) ⊇
⋃

λ∈E

{λ} = E.

(ii) : Take any countable dense subset E ⊆ D . Since ℵ0 = card(E) � card(I) ,
according to part (i) , there is a d.s. operator T ∈ DS(�p(I)) such that

E ⊂ σ℘(T ).

Then the chain of inclusions

E ⊂ σ℘(T ) ⊆ σ(T ) ⊆ D,

show that E = σ(T ) = D .

RE F ER EN C ES

[1] F. BAHRAMI, A. BAYATI ESHKAFTAKI, S. M. MANJEGANI, Linear preservers of majorization on
�p(I) , Linear Algebra Appl., 436: 3177–3195, 2012.

[2] A. BAYATI ESHKAFTAKI, Doubly (sub)stochastic operators on �p spaces, J. Math. Anal. Appl., 498
(1): 124923, 2021.

[3] A. BAYATI ESHKAFTAKI, Increasable doubly substochastic matrices with application to infinite linear
equations, Linear and Multilinear Algebra, 70 (20): 5902–5912, 2021.

[4] A. BAYATI ESHKAFTAKI, Schur-Convex Functions on lp Spaces and Applications, Results Math 77,
Article No. 61, 2022.

[5] L. BENVENUTI, A note on eigenvalues location for trace zero doubly stochastic matrices, Electron. J.
Linear Algebra, 30: 599–604, 2015.



THE INFINITE DIMENSIONAL PERFECT-MIRSKY CONJECTURE 791

[6] H. W. CORLEY, E. O. DWOBENG, Relating optimization problems to systems of inequalities and
equalities, American Journal of Operation Research, 10: 284–298, 2020.

[7] N. DMITRIEV, E. DYNKIN, On characteristic roots of stochastic matrices, Izvestiya Akademii Nauk
SSSR Seriya Matematicheskaya, 10 (2): 167–184, 1946.

[8] S. GARCIA, J. MASHREGHI, W. ROSS, Operator Theory by Example, Oxford Graduate Texts in
Mathematics 30, Oxford University Press, 2023.

[9] H. ITO, A new statement about the theorem determining the region of eigenvalues of stochastic matri-
ces, Linear Algebra Appl., 267: 241–246, 1997.

[10] C. R. JOHNSON, P. PAPARELLA, A matricial view of the Karpelevic theorem, Linear Algebra Appl.,
520: 1–15, 2017.

[11] F. I. KARPELEVICH, On the characteristic roots of matrices with nonnegative elements, Izvestiya
Akademii Nauk SSSR Seriya Matematicheskaya, 15 (4): 361–383, 1951.

[12] Y. KATZNELSON, An Introduction to Harmonic Analysis, 3rd edition, Cambridge Mathematical Li-
brary series, Cambridge University Press, 2004.

[13] B. KIM, J. KIM, Conjectures about determining the regions of eigenvalues of stochastic and doubly
stochastic matrices, Linear Algebra Appl., 637: 157–174, 2022.

[14] J. LEVICK, R. PEREIRA, AND D. W. KRIBS, The four-dimensional Perfect-Mirsky Conjecture, Pro-
ceedings of the American Mathematical Society, 143: 1951–1956, 2014.

[15] M. LJUBENOVIC, D. DJORDJEVIC, Linear preservers of weak majorization on �1(I)+ , when I is an
infinite set, Linear Algebra Appl., 517: 177–198, 2017.

[16] A. W. MARSHALL, I. OLKIN, B. C. ARNOLD, Inequalities; Theory of Majorization and Its Applica-
tions, 2nd ed., Springer Verlag, 2011.

[17] J. MASHREGHI, R. RIVARD, On a conjecture about the eigenvalues of doubly stochastic matrices,
Linear and Multilinear Algebra, 55: 491–498, 2007.

[18] G. J. MURPHY, C*-algebras and operator theory, Academic press, 2014.
[19] H. PERFECT, L. MIRSKY, Spectral properties of doubly-stochastic matrices, Monatshefte fur Mathe-

matik, 69: 35–57, 1965.
[20] P. N. SHIVAKUMAR, K. C. SIVAKUMAR, Y. ZHANG, Infinite Matrices and their Recent Applications,

Springer Verlag, 2016.

(Received March 22, 2023) Ali Bayati Eshkaftaki
Department of Mathematics

Shahrekord University
Iran

e-mail: bayati.ali@sku.ac.ir

Javad Mashreghi
Department of Mathematics

Laval University
Canada

e-mail: Javad.Mashreghi@mat.ulaval.ca

Mostafa Nasri
Department of Mathematics and Statistics

University of Winnipeg
Canada

e-mail: m.nasri@uwinnipeg.ca

Operators and Matrices
www.ele-math.com
oam@ele-math.com


