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(Communicated by F. Kittaneh)

Abstract. The main goal of this paper, is to develop a general method for improving some new
real power inequalities for (p,h) -convex and (p,h) -log-convex functions, which extends and
unifies two recent and important results due to M. A. Ighachane and M. Bouchangour, (Filomat,
37 (16), (2023), 5259–5271) and (Operators and Matrices, 17 (1), (2023), 213–233). As appli-
cations of our results, we present further inequalities for the symmetric norms for τ -measurable
operators.

1. Introduction and preliminaries

During the last years, various types and generalizations of convex functions have
been introduced and studied by many mathematicians because of their important role in
the theory of inequalities, see for instance [2, 4, 10, 14, 18] and the references therein.
Among these types are the functions (p,h)-convex and (p,h)-log-convex (e.g., see
[4, 14]), which are respectively generalizations of the well-known concepts of convexity
and log-convexity. Before giving the definitions of these functions, let us first recall
some notations and terminology that will be used in the following.

Along this work, p ∈ R \ {0} and h : J −→ (0,+∞) is a function defined on an
interval J of R

+ . Recall that the function h is said to be super-multiplicative if for all
x,y ∈ J , we have

xy ∈ J and h(x)h(y) � h(xy). (1)

If the inequality sign in (1) is reversed, then h is called a sub-multiplicative function.
If the equality holds in (1), then h is said to be a multiplicative function. Similary, h is
said to be super-additive function, if we have

x+ y ∈ J and h(x)+h(y) � h(x+ y) for all x,y ∈ J. (2)

If the inequality sign in (2) is reversed, we say that h is a sub-additive function. If the
equality (2) holds, we say that h is an additive function. It should be notice that if h
is super-additive function then h(x− y) � h(x)−h(y) whenever x− y ∈ J , and if h is
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super-multiplicative then h

(
x
y

)
� h(x)

h(y)
whenever

x
y
∈ J and h(y) �= 0, in particular,

h

(
1
x

)
� 1

h(x)
for all x ∈ J such that h(x) �= 0.

EXAMPLE 1. ([7])

1. Let h : (0,+∞) −→ (0,+∞) be a function given by h(x) = xk . Then h is

(a) additive if k = 1,

(b) sub-additive if k ∈ (−∞,−1]∪ [0,1) ,

(c) super-additive if k ∈ (−1,0)∪ (1,∞) .

2. Let h : [1,+∞) −→ R
+ defined by h(x) = x3 − x2 + x. We have

(a) h(xy)−h(x)h(y) = xy(x+ y)(1− x)(1− y)� 0

(b) h(x+ y)−h(x)−h(y)= xy(x+ y+(x−1)+ (y−1))� 0.

Then h is a super-multiplicative and super-additive function.

3. If h : [0,+∞) −→ [0,+∞) is a convex function such that h(0) = 0, then h is
a super-additive function. In particular, for each k > 0, the following function
h(x) = exp(xk)−1 for x > 0 is super-additive.

From now on, we assume that the interval J contains [0,1] . Let a,b > 0 and
α ∈ [0,1] , the h(α)-arithmetic and power means of a and b are respectively given by:

a∇h(α)b = h(1−α)a+h(α)b and a�p,αb =
[
(1−α)ap + αbp] 1

p .

Note that b∇h(1−α)a = a∇h(α)b and b�p,1−αa = a�p,αb . A subset I of R
+ is said to be

p -convex if a�p,αb ∈ I for all a,b ∈ I and all α ∈ [0,1] . It is clear that I is a 1-convex
set if and only if it is a convex set. For more informations about the p -convex sets, we
refer the reader to [20].

In all what follows, I is a p -convex set of R
+ and f : I −→ [0,+∞) is a function

defined on I . The function f is said to be (p,h)-convex if it satisfies the following
inequality

f
(
[(1−α)ap + αbp]

1
p

)
� h(1−α) f (a)+h(α) f (b), (3)

for all a,b ∈ I and α ∈ [0,1] . In other word, f is (p,h)-convex if and only if the
following inequality holds

f (a�p,αb) � f (a)∇h(α) f (b) (a,b ∈ I and 0 � α � 1).

Clearly, if h = id ( id stands for the identity function) in (3) then we get the definition
of the p -convexity [20], in addition if we take p = 1 (resp. p = −1) then we get the
usual definition of the convexity (resp. harmonic convexity [10]):

f
(
(1−α)a+ αb

)
� (1−α) f (a)+ α f (b),
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(
resp. f

(
ab

(1−α)a+ αb

)
� (1−α) f (a)+ α f (b)

)
.

The function f is called (p,h)- log-convex if the function log◦ f is (p,h)-convex,
where log stands for the logarithmic function. This definition is equivalent to

f (a�p,αb) � f h(1−α)(a) f h(α)(b),

for all a,b ∈ I and α ∈ [0,1] .

EXAMPLE 2. For r ∈ [0,1] , we define the function h(t) = tr for 0 � t � 1. A
straightforward calculation shows that h(t) � t for all t ∈ [0,1] . On the other hand, the
function f : [0,+∞) −→ (0,+∞) given by f (x) = exp

, where p > 0, is (p,h)-convex
and also (p,h)- log-convex. In fact, for a,b � 0 we have

f
(
(1−α)ap + αbp]

1
p

)
= e(1−α)ap+αbp

� (1−α)eap
+ αebp

[by the convexity of t �→ et ]
� h(1−α) f (a)+h(α) f (b),

and

log f
(
(1−α)ap + αbp]

1
p

)
= (1−α)ap + αbp

� h(1−α) log f (a)+h(α) log f (b),

EXAMPLE 3. By mimicking the argument of Example 2, we can show that if g :
[0,+∞)−→R is a convex function and h : J −→ [0,+∞) is a function such that h(t)� t
for all t ∈ [0,1] , then the function f : [0,+∞) −→ R given by f (x) = g(xp) , where
p > 0, is (p,h)-convex. In particular, if we take g(x) = x for x � 0 and h(t) =

√
t

for t � 0, then the function f given by f (x) = xp (x � 0) is (p,h)-convex for every
p > 0.

For more information regarding the functions (p,h)-convex and (p,h)-log-convex
and their various inequalities, we refer the reader to [4, 7, 14] and the references therein.

Several recent investigations have focused on possible improvements of inequal-
ities related to the functions (p,h)-convex and (p,h)-log-convex. For example, in
2023, Ighachane and Bouchangour [7] established the following inequalities for (p,h)-
convex, which generalizes an important result due to Sababheh [17].

THEOREM 1. ([7]) If f is a positive (p,h)-convex function for a non-negative
supermultiplicative and super-additive function h, then we have

hλ
(

α
β

)
�

(h(1−α) f (a)+h(α) f (b))λ − f λ
[
((1−α)ap + αbp)

1
p

]
(h(1−β ) f (a)+h(β ) f (b))λ − f λ

[
((1−β )ap + βbp)

1
p

] � hλ
(

1−α
1−β

)
,

(4)
where λ � 1, p ∈ R\{0} and 0 � α � β � 1.
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The main objective of this paper is to provide a unified treatment of (p,h)-convex
and (p,h)-log-convex functions. More precisely, we will present a general improve-
ment of Theorem 1.

This paper is organized as follows. After the forgoing section, we state and
prove our main results concerning the refinement of Theorem 1 using the weak sub-
majorization in the second section. Then by carefully selecting suitable (p,h)-log-
convex functions we refine and reverse certain Hölder-type inequalities for τ -measu-
rable operators.

2. Some new inequalities for (p,h)-convex functions via weak sub-majorization

In this section, we give an improved version of Theorem 1. We begin with recalling
the theory of weak sub-majorization. Throughout this section, we denote by x∗ =
(x∗1, . . . ,x

∗
n) the vector obtained from the vector x = (x1, . . . ,xn) ∈ R

n by rearranging
the components of it in decreasing order. Then, for two vectors x = (x1, . . . ,xn) and
y = (y1, . . . ,yn) in R

n, x is said to be weakly sub-majorized by y , written x ≺w y , if

k

∑
i=1

x∗i �
k

∑
i=1

y∗i for all k = 1, . . . ,n.

The following lemma states an important feature of the theory of weak sub-majorization
that will be used in proofs of our results.

LEMMA 1. [13, pp. 13] Let x = (xi)n
i=1 ,y = (yi)n

i=1 ∈ R
n and let φ be a continu-

ous increasing convex function defined on a real interval containing the components of
x and y. If x ≺w y then

n

∑
i=1

φ (xi) �
n

∑
i=1

φ (yi) .

In order to accomplish our results, we need the following auxiliary lemmas.

LEMMA 2. Let h be a non-negative super-multiplicative and super-additive func-
tion on J, f : [a,b]→ [0,+∞) be a (p,h)-convex function and let 0 < α < 1 . Then we
have

f (a)∇h(α) f (b) � f (a�p,αb)+h(2r)
(

f (a)∇h( 1
2 ) f (b)− f

(
a�p, 1

2
b
))

, (5)

with r = min{α,1−α} .

Proof. To prove (5), we discuss two cases:

(1) First case: If we assume that 0 < α � 1
2

, then r = α . So, by letting λ = 1 and

β =
1
2

in the first inequality of Theorem 1, we get the desired inequality.
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(2) Second case: If we assume that
1
2

� α < 1, then 0 < 1−α � 1
2

and r = 1−α .

So the desired inequality is obtained by changing a,b and α by b,a and 1−α
in the first case, respectively.

This completes the proof. �

REMARK 1. It is easy to see that under assumptions of Lemma 2, we can shows
a better inequality of the following form

f (a)∇h(α) f (b) � f (a�p,αb)+2h(r)
(

f (a)∇ f (b)− f
(
a�p, 1

2
b
))

, (6)

where r = min{α,1−α} . To see that (6) is better than (5), due to the super-multipli-
cative and super-addtive of h with its range in [0,∞) , we can show that h is increasing
on J and if α ∈ [0, 1

2

]
. Then via Jensen inequality, we have

f (a)∇h(α) f (b)− f (a�p,αb) � 2h(α)
(

f (a)∇ f (b)− f
(
a�p, 1

2
b
))

� h(α)[ f (a)+ f (b)]−h(2α) f
(
a�p, 1

2
b
)

� h(2α)
[
f (a)∇h( 1

2 ) f (b)− f
(
a�p, 1

2
b
)]

.

A familiar argument holds also true for α ∈ [ 1
2 ,1
]
. Thus, thanks to (6), we can make

the better results.

LEMMA 3. Let h be a non-negative super-multiplicative and super-additive func-
tion on J, f : [a,b] → [0,+∞) be a (p,h)-convex function and let 0 < α � β < 1 .
Then we have

f (a)∇h(α) f (b) � f (a�p,αb)+h

(
α
β

)(
f (a)∇h(β ) f (b)− f (a�p,β b)

)
+h(2r0)

(
f (a)∇h( 1

2 ) f (a�p,β b)− f
(
a�

p, β
2
b
))

, (7)

where r0 = min

{
α
β

,1− α
β

}
.

Proof. Since h is super-multiplicative and super-additive, we have

f (a)∇h(α) f (b)−h

(
α
β

)(
f (a)∇h(β ) f (b)− f (a�p,βb)

)

=
(

h(1−α)−h(1−β )h
(

α
β

))
f (a)+

(
h(α)−h

(
α
β

)
h(β )

)
f (b)

+h

(
α
β

)
f (a�p,β b)
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� h

(
1− α

β

)
f (a)+h

(
α
β

)
f (a�p,β b)

� f

[((
1− α

β

)
ap +

α
β

(a�p,β b)p
) 1

p
]

+h(2r0)
(

f (a)∇h( 1
2) f (a�p,β b)− f

(
a�

p, β
2
b
))

[by applying (5)]

= f (a�p,αb)+h(2r0)
(

f (a)∇h( 1
2 ) f (a�p,β b)− f

(
a�

p, β
2
b
))

. �

REMARK 2. Notice that Lemma 3 presents one refinement term of the first in-
equality in Theorem 1, for λ = 1.

LEMMA 4. Let h be a non-negative super-multiplicative and super-additive func-
tion on J, f be a positive (p,h)-convex function on [a,b], 0 < α � β < 1 and x =
(x1,x2,x3) , y = (y1,y2,y3) ∈ R

3 be two vectors with components

x1 = f (a�p,αb), x2 = h

(
α
β

)(
f (a)∇h(β ) f (b)

)
,

x3 = h(2r0)
(

f (a)∇h( 1
2 ) f (a�p,β b)

)
,

and

y1 = f (a)∇h(α) f (b), y2 = h

(
α
β

)
f (a�p,β b), y3 = h(2r0) f

(
a�

p, β
2
b
)

,

where r0 = min

{
α
β

,1− α
β

}
. Then, we have x ≺w y, namely, the vectors x∗ and y∗

have components satisfying that

x∗1 � y∗1, (8)

x∗1 + x∗2 � y∗1 + y∗2, (9)

x∗1 + x∗2 + x∗3 � y∗1 + y∗2 + y∗3. (10)

Proof. The inequality (10) comes directly from Lemma 3 and we have

x1 + x2 + x3 � y1 + y2 + y3. (11)

Let us now show the inequality (8). First, notice that y∗1 equals y1 . Indeed, on one hand
we have

y1− x2 =
(

h(1−α)−h(1−β )h
(

α
β

))
f (a)+

(
h(α)−h

(
α
β

)
h(β )

)
f (b)

� h

(
1− α

β

)
f (a) � 0. (12)
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This shows that y1 � x2 . Since x2 � y2 , then we get that y1 � y2 . On the other hand, it
is easy to verify that

r0 =

⎧⎪⎨
⎪⎩

α
β

if α ∈
(
0, β

2

]
,

1− α
β

if α ∈
[

β
2 ,β

]
.

(13)

From (13), it follows that 1−α − r0 ∈ [0,1] , in addition, if α ∈
[

β
2 ,β

]
then 0 �(

2α
β −1

)
(1−β ) � 1 and 0 � 2α −β � 1. Also, if α ∈

(
0, β

2

]
then 0 < 1− 2α

β � 1.

From this we get that

y1− x3 =
(

h(1−α)−h(2r0)h
(

1
2

))
f (a)+h(α) f (b)−h(2r0)h

(
1
2

)
f (a�p,β b)

� h(1−α − r0) f (a)+h(α) f (b)−h(r0) f (a�p,β b)

� h(1−α − r0) f (a)+h(α) f (b)−h(r0)
[
h(1−β ) f (a)+h(β ) f (b)

]
=
[
h(1−α − r0)−h(r0)h(1−β )

]
f (a)+

[
h(α)−h(r0)h(β )

]
f (b)

�
[
h(1−α − r0)−h(r0− r0β )

]
f (a)+

[
h(α)−h(r0β )

]
f (b)

� h
(
1−α −2r0 + r0β

)
f (a)+

[
h(α)−h(r0β )

]
f (b),

so,

y1− x3 �
[
h
(2α

β
−1+ β −2α

)
f (a)+h(2α −β ) f (b)

]
χ[ β

2 ,β
](α)

+
[
h
(
1− 2α

β

)
f (a)

]
χ(

0, β
2

](α)

�
[
h

((2α
β

−1
)(

1−β
))

f (a)+h(2α −β ) f (b)
]
χ[ β

2 ,β
](α)

+
[
h
(
1− 2α

β

)
f (a)

]
χ(

0, β
2

](α)

� 0,

where χA stands for the characteristic function of an interval A . Hence, y1 � x3 .
Consequently, y1 � y3 , because x3 � y3 . Moreover, by the previous notes, we have
xi � y1 for every i = 1,2,3. In particular, we obtain the inequality (8).

It remains to prove the inequality (9) . To do this, it is sufficient to show the
following inequalities.

x1 + x2 � y1 + y2, (14)

x1 + x3 � y1 + y3, (15)

x2 + x3 � y1 + y2. (16)
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Observe that the inequality (14) follows immediately from the first inequality in Theo-
rem 1 for λ = 1. On the other side, it follows from (11) that

x1 + x3 � y1 + y3− (x2− y2) � y1 + y3. (17)

Hence, the inequality (15) is obtained by using (17) together with the fact that y2 � x2 .
Let us now treat our last inequality (16). Since = min{α

β ,1− α
β }, we have

y1 + y2− (x2 + x3) = f (a)∇h(α) f (b)+h

(
α
β

)
f (a�p,β b)

−
(

h

(
α
β

)
f (a)∇h(β ) f (b)+h(2r0)( f (a)∇h( 1

2 ) f (a�p,β b))
)

=
(

h(1−α)−h

(
α
β

)
h(1−β )−h(2r0)h

(
1
2

))
f (a)

+
(

h(α)−h

(
α
β

)
h(β )

)
f (b)

+
(

h

(
α
β

)
−h(2r0)h

(
1
2

))
f (a�p,β b)

� h

(
1− α

β
− r0

)
f (a)+h

(
α
β
− r0

)
f (a�p,β b)

� 0.

This complete the proof. �
In the following, we state our first main results. Our arguments are influenced by

the ones given in [6]. The following results as mentioned before generalize the results
given by Ighachane and Bouchangour in [7].

THEOREM 2. Let h be a non-negative super-multiplicative and super-additive
function on J, f be a (p,h)-convex function on [a,b] and φ be a strictly increasing
convex function defined on R

+ . Then for 0 < α � β < 1 , we have

φ
(

f (a)∇h(α) f (b)
)

� φ ◦ f (a�p,αb)+ φ
(

h

(
α
β

)
( f (a)∇h(β ) f (b))

)
−φ

(
h

(
α
β

)
f (a�p,β b)

)

+φ
(
h(2r0)( f (a)∇h( 1

2 ) f (a�p,β b))
)
−φ

(
h(2r0) f

(
a�

p, β
2
b
))

, (18)

where r0 = min

{
α
β

,1− α
β

}
.

Proof. Let x = (x1,x2,x3) and y = (y1,y2,y3) two vectors in R
3 with the same

components as in Lemma 4. Since x ≺w y , it follows from Lemma 1 that

φ(x1)+ φ(x2)+ φ(x3) � φ(y1)+ φ(y2)+ φ(y3),
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or equivalently,

φ(y1) � φ(x1)+ (φ(x2)−φ(y2))+ (φ(x3)−φ(y3)) .

This complete the proof. �
The following theorem is the reversed version of the previous one. We prove it

using the previous theorem and some specific changes of variables. Furthermore, we
point out that we can prove this result by adopting the same ideas as in Theorem 2.

THEOREM 3. Let h be a non-negative super-multiplicative and super-additive
function on J, f be a (p,h)-convex function on [a,b] and φ be a strictly increasing
convex function defined on R

+ . Then for 0 < α � β < 1 , we have

φ
(

f (a)∇h(β ) f (b)
)

� φ ◦ f (a�p,βb)+ φ
(

h

(
1−β
1−α

)
( f (a)∇h(α) f (b))

)
−φ

(
h

(
1−β
1−α

)
f (a�p,αb)

)

−φ
(
h(2R0)( f (b)∇h( 1

2 ) f (a�p,αb))
)
−φ

(
h(2R0) f

(
a�p, 1+α

2
b
))

, (19)

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.

Proof. On one hand, if the function f is (p,h)-convex on the interval J , then its

the same for the function g defined on the same interval by g(x) = f
(
[ap +bp− xp]

1
p

)
.

On the other hand, notice that if 0 � α � β � 1 then 0 � 1−β � 1−α � 1. Hence,
by changing α,β and f by 1−β ,1−α and g , respectively, in Theorem 2. We get the
desired results. �

It’s worth noting that Theorems 2 and 3 present respectively the general version
and the general reversed version of Lemma 3. In the following, by choosing some
appropriate convex functions, we derive some very nice and interesting refinements
for the correspondent inequalities for (p,h)-convex and (p,h)-log-convex functions,
which improve the main results of [7].

Replacing f by log f in (18) and (19), we obtain the following inequalities for
(p,h)-log-convex functions.

COROLLARY 1. Let h be a non-negative super-multiplicative and super-additive
function on J, f be a (p,h)-log-convex function on [a,b] and φ be a strictly increasing
convex function defined on R

+ . Then for 0 < α � β < 1 , we have

φ
(
log
(

f h(1−α)(a) f h(α)(b)
))

� φ ◦ log f (a�p,αb)

+φ

(
log
((

f h(1−β )(a) f h(β )(b)
)h
(

α
β

) ))
−φ

(
log
(
f
h
(

α
β

)
(a�p,β b)

))

+φ
(

log
(

f h( 1
2 )(a) f h( 1

2 )(a�p,β b)
)h(2r0)

)
−φ

(
log
(

f h(2r0)
(
a�

p, β
2
b
)))

, (20)
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where r0 = min

{
α
β

,1− α
β

}
, and

φ
(
log
(

f h(1−β )(a) f h(β )(b)
))

� φ ◦ log f (a�p,β b)

+φ

(
log
((

f h(1−α)(a) f h(α)(b)
)h
(

1−β
1−α

) ))
−φ

(
log
(

f
h
(

1−β
1−α

)
(α)
))

+φ
(

log
((

f h( 1
2 )(b) f h( 1

2 )(a�p,αb)
)h(2R0)))

−φ
(
log
(

f h(2R0)
(
a�p, 1+α

2
b
)))

, (21)

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.

The following corollary comes directly by choosing φ(x) = xλ (λ � 1) in Theo-
rems 2 and 3.

COROLLARY 2. Let h be a non-negative super-multiplicative and super-additive
function on J, f be a (p,h)-convex function on [a,b], 0 < α � β < 1 and λ > 1.
Then we have

(
f (a)∇h(α) f (b)

)λ

� f λ (a�p,αb)+hλ
(

α
β

)((
f (a)∇h(β ) f (b)

)λ − f λ (a�p,β b)
)

+hλ (2r0)
((

f (a)∇h( 1
2 ) f (a�p,β b)

)λ − f λ
(
a�

p,
β
2
b
))

, (22)

where r0 = min

{
α
β

,1− α
β

}
, and

(
f (a)∇h(β ) f (b)

)λ

� f λ (a�p,β b)+hλ
(

1−β
1−α

)((
f (a)∇h(α) f (b)

)λ − f λ (a�p,αb)
)

+hλ (2R0)
((

f (b)∇h( 1
2 ) f (a�p,αb)

)λ − f λ
(
a�p, 1+α

2
b
))

, (23)

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.

By selecting φ(x) = exp(λx) (with λ > 0) in Corollary 1, we get the following
new and important refinement and reversed for (p,h)-log-convex functions.
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COROLLARY 3. Let h be a non-negative super-multiplicative and super-additive
function on J, f be a (p,h)-log-convex function on [a,b]. Then for λ > 0 and 0 <
α � β < 1 , we have

(
f h(1−α)(a) f h(α)(b)

)λ

� f λ (a�p,αb)+

((
f h(1−β )(a) f h(β )(b)

)λh
(

α
β

)
− f

λh
(

α
β

)
(a�p,β b)

)

+
(

f h( 1
2 )(a) f h( 1

2 )(a�p,β b)
)λh(2r0)− f λh(2r0)

(
a�

p, β
2
b
)

, (24)

where r0 = min

{
α
β

,1− α
β

}
, and

(
f h(1−β )(a) f h(β )(b)

)λ

� f λ (a�p,βb)+
(

( f h(1−α)(a) f h(α)(b))λh
(

1−β
1−α

)
− f

λh
(

1−β
1−α

)
(a�p,αb)

)

+
(

f h( 1
2 )(b) f h( 1

2 )(a�p,αb)
)λh(2R0)− f λh(2R0)

(
a�p, 1+α

2
b
)

, (25)

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.

REMARK 3. Before proceeding to further results, we explain a little about the re-
lation among the Corollary 2 and Theorem 1. Notice that the first inequality in Theorem
1 can be written as follows

hλ
(

α
β

)[(
f (a)∇h(β ) f (b)

)λ − f λ (a�p,β b)
]

�
(

f (a)∇h(α) f (b)
)λ − f λ (a�p,αb),

(26)
with 0 � α < β � 1 and λ � 1. While the second inequality in the same theorem can
be stated in the following way

hλ
(

1−β
1−α

)[(
f (a)∇h(α) f (b)

)λ − f λ (a�p,αb)
]

�
(

f (a)∇h(β ) f (b)
)λ − f λ (a�p,β b),

(27)
where 0 � α < β � 1 and λ � 1. Consequently, the first inequality in Corollary 2
present one refining term of (26), while the second inequality in Corollary 2 present
one refining term of (27). Therefore, Corollary 2 gives a considerable refinement of
Theorem 1. Since Theorem 1 was a generalization of the results in [1, 6, 7, 17], it
follows that our results in this section provide better new estimates than the results in
these references. This is the main significance of our results.

REMARK 4. If we take h(x) = x and p = 1 in this work then we obtain the main
results of [8].
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Since the main result of [8] is a generalization of the results in [9, 11, 12]. It
follows that our main results in this section provide better new estimates than the results
in these references.

3. New inequalities for τ -measurable operators via log-convexity of norms

Let H be a seprable Hilbert space and B(H ) the algebra of all bounded linear
operator on H . Throughout this section, we denote by M ⊂ B(H ) a finite von
Neumann algebra on H and by M + the set of all operators A ∈ M such that A � 0.
Recall that a trace on the von Neumann algebra M , denoted by τ , is an additive,
positively homogeneous and unitarily invariant map from M + to [0,+∞) . The unitary
invariant of τ is defined as follows τ(T ) = τ(U∗TU) for all T ∈ M + and unitary
U ∈ M .

We say that an operator A : D(A) → H is τ -measurable if A affiliated with M
(that is AU =UA for all unitary U ∈M ) and there exists δ > 0 such that τ

(
e|A|(δ ,∞)

)
< ∞ . For 0 < p < +∞, Lp(M ,τ) is defined as the set of all τ -measurable operators
A affiliated with M such that

‖A‖p = τ(|A|p) 1
p < +∞.

Lp(M ,τ) is a Banach space under ‖.‖p for 1 � p < +∞, see [15] for more infor-
mation. From now on, E denotes a symmetric Banach space on (0,∞) and μ(A)
is the decreasing rearrangement function of A (cf. [5]) defined by t �→ inf{δ > 0 :
τ
(
e|A|(δ ,∞)

)
� t} .

Next, we consider the non-commutative symmetric Banach space (E (M ),‖.‖E (M ))
(cf. [19]), defined by

E (M ) := {A ∈ L0(M ) : μ(A) ∈ E } and ‖A‖E (M ) = ‖μ(A)‖E ,

As known (Lp(M ),‖.‖p) , 0 < p < ∞ becomes a special case of the previous construc-
tion and the same for L∞(M ) = M . Moreover, for 0 < r < ∞ , define

E (M )(r) := {A ∈ L0(M ) : |A|r ∈ E } and ‖A‖E (M )(r) = ‖|A|r‖
1
r
E (M ).

It is well-known that if E is a symetric (quasi) Banach space, then it is the same for
E (M )(r) (cf. [3, Proposition 3.1]). Recall that a norm ‖.‖ on M is symmetric if
‖UAV‖ = ‖A‖ for all A ∈ M and all unitary U,V ∈ M .

In this section, we refine and reverse certain Hölder-type inequalities for τ -measu-
rable operators by carefully selecting suitable log-convex functions.

The famous Hölder’s inequality for τ -measurable operators is stated as follows:∥∥A1−tXBt
∥∥

E (M )(r) � ‖AX‖1−t
E (M )(r)

‖XB‖t
E (M )(r) , (28)

for every r > 0, A,B ∈ M + , X ∈ E (M )(r) and 0 < t < 1.
It has been proven in [16] that for A,B ∈ M + and X ∈ E (M )(r) , the function

f1(t) = ‖A1−tXBt‖E (M )(r)
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is log-convex on [0,1], for any symmetric norm ‖.‖E (M )(r) . By applying Corollary
3, with h(x) = x and p = 1, to the function f1 we get the following theorem which
refines and reverses the corresponding Hölder-type inequality (28) for τ -measurable
operators.

THEOREM 4. Let r > 0 , A,B ∈ M + and X ∈ E (M )(r) . Then, for 0 � α � β �
1 , we have (

‖AX‖1−β
E (M )(r)

‖XB‖β
E (M )(r)

) α
β −

∥∥∥A1−β XBβ
∥∥∥ α

β

E (M )(r)

+
(√

‖AX‖E (M )(r)‖A1−βXBβ‖E (M )(r)

)2r0 −
∥∥∥A1− β

2 XB
β
2

∥∥∥2r0

E (M )(r)

� ‖AX‖1−α
E (M )(r)

‖XB‖α
E (M )(r) −

∥∥A1−αXBα∥∥
E (M )(r) ,

where r0 = min

{
α
β

,1− α
β

}
, and

(
‖AX‖1−α

E (M )(r)
‖XB‖α

E (M )(r)

) 1−β
1−α −∥∥A1−αXBα∥∥ 1−β

1−α
E (M )(r)

+
(√

‖XB‖E (M )(r)‖A1−αXBα‖E (M )(r)

)2R0 −
∥∥∥A1− 1+α

2 XB
1+α

2

∥∥∥2R0

E (M )(r)

� ‖AX‖1−β
E (M )(r)

‖XB‖β
E (M )(r)

−
∥∥∥A1−β XBβ

∥∥∥
E (M )(r)

,

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
. In particular, if M is a finite von Neumann

algebra, then

(
τ(A)1−β τ(B)β

) α
β − τ

α
β
(
A1−βBβ

)
+
(√

τ(A)τ(A1−β Bβ )
)2r0

−τ2r0
(
A1− β

2 B
β
2

)
� τ(A)1−α τ(B)α − τ

(
A1−αBα) ,

where r0 = min

{
α
β

,1− α
β

}
, and

(
τ(A)1−β τ(B)β

) 1−β
1−α − τ

1−β
1−α
(
A1−β Bβ

)
+
(√

τ(B)τ(A1−αBα)
)2R0

−τ2R0

(
A1− 1+α

2 B
1+α

2

)
� τ(A)1−β τ(B)β − τ

(
A1−β Bβ

)
,

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.
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Furthermore, it has been established in [16] that for A,B∈M + and X ∈ E (M )(r) ,
the function f2(t) = ‖AtXBt‖E (M )(r) is log-convex on [0,1] for any symmetric norm
‖.‖E (M )(r) . Applying again Corollary 3, with h(x) = x and p = 1, to the function f2 ,
we obtain the following theorem.

THEOREM 5. Let r > 0 , A,B∈M + and X ∈ E (M )(r) . Then, for 0 � α � β � 1 ,
we have (

‖X‖1−β
E (M )(r)

‖AXB‖β
E (M )(r)

) α
β −

∥∥∥Aβ XBβ
∥∥∥ α

β

E (M )(r)

+
(√

‖X‖E (M )(r)‖AβXBβ‖E (M )(r)

)2r0 −
∥∥∥A β

2 XB
β
2

∥∥∥2r0

E (M )(r)

� ‖X‖1−α
E (M )(r)

‖AXB‖α
E (M )(r) −‖AαXBα‖E (M )(r) ,

where r0 = min

{
α
β

,1− α
β

}
, and

(
‖X‖1−α

E (M )(r)
‖AXB‖α

E (M )(r)

) 1−β
1−α −‖AαXBα‖

1−β
1−α
E (M )(r)

+
(√

‖AXB‖E(M )(r)‖AαXBα‖E (M )(r)

)2R0 −
∥∥∥A 1+α

2 XB
1+α

2

∥∥∥2R0

E (M )(r)

� ‖X‖1−β
E (M )(r)

‖XB‖β
E (M )(r)

−
∥∥∥Aβ XBβ

∥∥∥
E (M )(r)

,

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.

In particular, if X = I , we get(
‖AB‖β

E (M )(r)

) α
β −

∥∥∥Aβ Bβ
∥∥∥ α

β

E (M )(r)

+
(√

‖Aβ Bβ‖E (M )(r)

)2r0 −
∥∥∥A β

2 B
β
2

∥∥∥2r0

E (M )(r)

� ‖AB‖α
E (M )(r) −‖AαBα‖E (M )(r) ,

where r0 = min

{
α
β

,1− α
β

}
, and

(
‖AB‖α

E (M )(r)

) 1−β
1−α −‖AαBα‖

1−β
1−α
E (M )(r)

+
(√

‖AB‖E (M )(r)‖AαBα‖E (M )(r)

)2R0 −
∥∥∥A 1+α

2 B
1+α

2

∥∥∥2R0

E (M )(r)

� ‖AB‖β
E (M )(r)

−
∥∥∥Aβ Bβ

∥∥∥
E (M )(r)

,

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.
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It has been shown in [16] that for A,B ∈ M + and X ∈ E (M )(r) , the function

f3(t) = ‖A1−tXBt‖E (M )(r)‖AtXB1−t‖E (M )(r) ,

is log-convex on [0,1] for any symmetric norm ‖.‖E (M )(r) . Therefore, applying Corol-
lary 3 with h(x) = x and p = 1, we obtain the following theorem.

THEOREM 6. Let r > 0 , A,B ∈ M + and X ∈ E (M )(r) . Then, for 0 � α � β �
1 , we have

(
‖AX‖E (M )(r)‖XB‖E (M )(r)

) α
β −

(
‖A1−βXBβ‖E (M )(r)‖AβXB1−β‖E (M )(r)

) α
β

+

(√
‖AX‖E (M )(r)‖XB‖E (M )(r)

(
‖A1−βXBβ‖E (M )(r)‖Aβ XB1−β‖E (M )(r)

))2r0

−
(
‖A1− β

2 XB
β
2 ‖E (M )(r)‖A

β
2 XB1− β

2 ‖E (M )(r)

)2r0

�
(
‖AX‖E (M )(r)‖XB‖E (M )(r)

)
−
(
‖A1−αXBα‖E (M )(r)‖AαXB1−α‖E (M )(r)

)
,

where r0 = min

{
α
β

,1− α
β

}
, and

(
‖AX‖E (M )(r)‖XB‖E (M )(r)

) 1−β
1−α −

(
‖A1−αXBα‖E (M )(r)‖AαXB1−α‖E (M )(r)

) 1−β
1−α

+

(√
‖AX‖E (M )(r)‖XB‖E (M )(r)

(
‖A1−αXBα‖E (M )(r)‖AαXB1−α‖E (M )(r)

))2R0

−
(
‖A1− 1+α

2 XB
1+α

2 ‖E (M )(r)‖A
1+α

2 XB1− 1+α
2 ‖E (M )(r)

)2R0

�
(
‖AX‖E (M )(r)‖XB‖E (M )(r)

)
−
(
‖A1−βXBβ‖E (M )(r)‖AβXB1−β‖E (M )(r)

)
,

where R0 = min

{
1−β
1−α

,1− 1−β
1−α

}
.
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