ADDENDUM TO: ON A REDUCTION PROCEDURE FOR HORN INEQUALITIES IN FINITE VON NEUMANN ALGEBRAS

Benoît Collins and Ken Dykema

(Communicated by J. Ball)

Abstract. A proof of the assertion $(X Z)^{\sharp}(p)=X^{\sharp}\left(Z^{\sharp}(p)\right)$ is provided.

A. Addendum

The assertion contained in equation (11) on page 7 of [1] needs some justification, which was not provided in [1]. In this addendum, we give a proof.

We fix a finite von Nuemann algebra \mathcal{M} acting on a Hilbert space \mathcal{H} and we let $\mathfrak{A}_{f}(\mathcal{M})$ denote the $*$-algebra consisting of all closed, possibly unbounded, densely defined operators on \mathcal{H}, that are affiliated with \mathcal{M}. See [2] for a nice exposition of some topics related to $\mathfrak{A}_{f}(\mathcal{M})$. As is usual, \mathcal{M}^{\prime} denotes the commutant algebra of \mathcal{M} in $B(\mathcal{H})$.

Lemma A.1. Suppose $T \in \mathfrak{A}_{f}(\mathcal{M})$ and that $\mathcal{V} \subseteq \operatorname{dom}(T)$ is a vector subspace that is invariant under the action of \mathcal{M}^{\prime} and is dense in \mathcal{H}. Then \mathcal{V} is a core of T, namely, T is the closure of the restriction of T to \mathcal{V}.

Proof. Let T^{\prime} denote the restriction of T to \mathcal{V}. Since T is closed and $T^{\prime} \subseteq T$, it follows that T^{\prime} is a closable operator and

$$
\begin{equation*}
\overline{T^{\prime}} \subseteq T . \tag{1}
\end{equation*}
$$

Suppose $\xi \in \mathcal{V}$ and $A \in \mathcal{M}^{\prime}$. By hypothesis, $A \xi \in \mathcal{V}$. We have

$$
T^{\prime} A \xi=T A \xi=A T \xi=A T^{\prime} \xi
$$

It follows that the closure $\overline{T^{\prime}}$ of T^{\prime} is affiliated to \mathcal{M}. Now using the containment (1) and Proposition 6.7 of [2], we have $\overline{T^{\prime}}=T$.

Mathematics subject classification (2020): 47C15, 47A11, 47B40.
Keywords and phrases: Finite von Neumann algebra, Haagerup-Schultz projection, spectrality, decomposability, DT-operator.

Given $X \in \mathfrak{A}_{f}(\mathcal{M})$, then, as in [1], we use the notation $\operatorname{kerproj}(X)$, for the projection onto the null space of X, which is the closed subspace

$$
N(X)=\{\xi \in \operatorname{dom}(X) \mid X \xi=0\}
$$

of \mathcal{H}, as well as the notations

$$
\operatorname{domproj}(X)=1-\operatorname{kerproj}(X), \quad \operatorname{ranproj}(X)=\operatorname{domproj}\left(X^{*}\right)
$$

We have that $\operatorname{ranproj}(X) \mathcal{H}$ is the closure of $\operatorname{ran}(X)=\{X \xi \mid \xi \in \operatorname{dom}(X)\}$.
Lemma A.2. Let $X, Y \in \mathfrak{A}_{f}(\mathcal{M})$ and let $r=\operatorname{domproj}(Y)$. Then

$$
\operatorname{domproj}(Y X)=\operatorname{domproj}(r X)
$$

Proof. It will suffice to show $N(Y X)=N(r X)$. Since $Y=Y r$, by the definition and associativity of the product in $\mathfrak{A}_{f}(\mathcal{M})$ (see, for example [2]), we have $Y X=(Y r) X=Y(r X)$ and $\operatorname{dom}(Y X) \subseteq \operatorname{dom}(r X)$. Since $\operatorname{dom}(Y X)$ is an \mathcal{M}^{\prime}-invariant and dense subspace of \mathcal{H}, it is, by Lemma A.1, a core of $r X$. Thus, $N(r X)$ is the closure of $N(r X) \cap \operatorname{dom}(Y X)$. For $\xi \in \operatorname{dom}(Y X)$, we have

$$
\begin{align*}
Y X \xi=0 & \Longleftrightarrow \forall \eta \in \mathcal{H},\langle Y X \xi, \eta\rangle=0 \\
& \Longleftrightarrow \forall \eta \in \operatorname{dom}\left(Y^{*}\right),\langle Y X \xi, \eta\rangle=0 \tag{2}\\
& \Longleftrightarrow \forall \eta \in \operatorname{dom}\left(Y^{*}\right),\left\langle X \xi, Y^{*} \eta\right\rangle=0 \\
& \Longleftrightarrow \forall \zeta \in \mathcal{H},\langle X \xi, r \zeta\rangle=0 \tag{3}\\
& \Longleftrightarrow \forall \zeta \in \mathcal{H},\langle r X \xi, \zeta\rangle=0 \\
& \Longleftrightarrow r X \xi=0,
\end{align*}
$$

where the equivalence (2) follows because $\operatorname{dom}\left(Y^{*}\right)$ is dense in \mathcal{H}, and (3) follows because $r=\operatorname{ranproj}\left(Y^{*}\right)$ and the range of Y^{*} is dense in $r \mathcal{H}$. We have shown

$$
N(Y X)=N(r X) \cap \operatorname{dom}(Y X)
$$

Since $N(Y X)$ is closed and $N(r X) \cap \operatorname{dom}(Y X)$ is dense in $N(r X)$, we have $N(Y X)=$ $N(r X)$, as required.

As in [1] for $X \in \mathfrak{A}_{f}(\mathcal{M})$ and a projection $p \in \mathcal{M}$, we let $X^{\sharp}(p)=\operatorname{ranproj}(X p)$. The next result is precisely the assertion of equation (11) of [1].

Proposition A.3. Let $X, Z \in \mathfrak{A}_{f}(\mathcal{M})$ and let p be a projection in \mathcal{M}. Then

$$
(X Z)^{\sharp}(p)=X^{\sharp}\left(Z^{\sharp}(p)\right) .
$$

Proof. Let $Y=Z p$ and $r=Z^{\sharp}(p)$. Then $r=\operatorname{ranproj}(Y)=\operatorname{domproj}\left(Y^{*}\right)$ Then we have

$$
\begin{aligned}
(X Z)^{\sharp}(p) & =\operatorname{ranproj}(X Z p)=\operatorname{ranproj}(X Y)=\operatorname{domproj}\left(Y^{*} X^{*}\right) \\
& =\operatorname{domproj}\left(r X^{*}\right)=\operatorname{ranproj}(X r)=X^{\sharp}(r),
\end{aligned}
$$

where for the fourth equality we used Lemma A.2.

REFERENCES

[1] B. Collins and K. Dy Kema, On a reduction procedure for Horn inequalities in finite von Neumann algebras, Oper. Matrices 3 (2009), 1-40.
[2] R. V. Kadison and Z. Liu, The Heisenberg relation - mathematical formulations, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), paper 009, 40.
(Received May 5, 2023)
Benoît Collins
Department of Mathematics
Kyoto University
Kyoto, Japan
e-mail: collins@math.kyoto-u.ac.jp
Ken Dykema
Department of Mathematics
Texas A\&M University
College Station, TX 77843-3368, USA
e-mail: kdykema@math.tamu.edu

