ADDENDUM TO: ON A REDUCTION PROCEDURE FOR HORN INEQUALITIES IN FINITE VON NEUMANN ALGEBRAS

BENOÎT COLLINS AND KEN DYKEMA

(Communicated by J. Ball)

Abstract. A proof of the assertion $(XZ)^{\sharp}(p) = X^{\sharp}(Z^{\sharp}(p))$ is provided.

A. Addendum

The assertion contained in equation (11) on page 7 of [1] needs some justification, which was not provided in [1]. In this addendum, we give a proof.

We fix a finite von Nuemann algebra \mathcal{M} acting on a Hilbert space \mathcal{H} and we let $\mathfrak{A}_f(\mathcal{M})$ denote the *-algebra consisting of all closed, possibly unbounded, densely defined operators on \mathcal{H} , that are affiliated with \mathcal{M} . See [2] for a nice exposition of some topics related to $\mathfrak{A}_f(\mathcal{M})$. As is usual, \mathcal{M}' denotes the commutant algebra of \mathcal{M} in $B(\mathcal{H})$.

LEMMA A.1. Suppose $T \in \mathfrak{A}_f(\mathcal{M})$ and that $\mathcal{V} \subseteq \operatorname{dom}(T)$ is a vector subspace that is invariant under the action of \mathcal{M}' and is dense in \mathcal{H} . Then \mathcal{V} is a core of T, namely, T is the closure of the restriction of T to \mathcal{V} .

Proof. Let T' denote the restriction of T to \mathcal{V} . Since T is closed and $T' \subseteq T$, it follows that T' is a closable operator and

$$\overline{T'} \subseteq T. \tag{1}$$

Suppose $\xi \in \mathcal{V}$ and $A \in \mathcal{M}'$. By hypothesis, $A\xi \in \mathcal{V}$. We have

$$T'A\xi = TA\xi = AT\xi = AT'\xi.$$

It follows that the closure $\overline{T'}$ of T' is affiliated to \mathcal{M} . Now using the containment (1) and Proposition 6.7 of [2], we have $\overline{T'} = T$. \Box

© CENN, Zagreb Paper OaM-17-55

Mathematics subject classification (2020): 47C15, 47A11, 47B40.

Keywords and phrases: Finite von Neumann algebra, Haagerup-Schultz projection, spectrality, decomposability, DT-operator.

Given $X \in \mathfrak{A}_f(\mathcal{M})$, then, as in [1], we use the notation kerproj(X), for the projection onto the null space of X, which is the closed subspace

$$N(X) = \{\xi \in \operatorname{dom}(X) \mid X\xi = 0\}$$

of \mathcal{H} , as well as the notations

 $\operatorname{domproj}(X) = 1 - \operatorname{kerproj}(X), \quad \operatorname{ranproj}(X) = \operatorname{domproj}(X^*).$

We have that ranproj(*X*) \mathcal{H} is the closure of ran(*X*) = {*X* $\xi \mid \xi \in \text{dom}(X)$ }.

LEMMA A.2. Let $X, Y \in \mathfrak{A}_f(\mathcal{M})$ and let r = domproj(Y). Then

domproj(YX) = domproj(rX).

Proof. It will suffice to show N(YX) = N(rX). Since Y = Yr, by the definition and associativity of the product in $\mathfrak{A}_f(\mathcal{M})$ (see, for example [2]), we have YX = (Yr)X = Y(rX) and $\operatorname{dom}(YX) \subseteq \operatorname{dom}(rX)$. Since $\operatorname{dom}(YX)$ is an \mathcal{M}' -invariant and dense subspace of \mathcal{H} , it is, by Lemma A.1, a core of rX. Thus, N(rX) is the closure of $N(rX) \cap \operatorname{dom}(YX)$. For $\xi \in \operatorname{dom}(YX)$, we have

$$YX\xi = 0 \quad \Longleftrightarrow \quad \forall \eta \in \mathcal{H}, \ \langle YX\xi, \eta \rangle = 0$$

$$\iff \quad \forall \eta \in \operatorname{dom}(Y^*), \ \langle YX\xi, \eta \rangle = 0 \qquad (2)$$

$$\iff \quad \forall \eta \in \operatorname{dom}(Y^*), \ \langle X\xi, Y^*\eta \rangle = 0$$

$$\iff \quad \forall \zeta \in \mathcal{H}, \ \langle X\xi, r\zeta \rangle = 0 \qquad (3)$$

$$\iff \quad \forall \zeta \in \mathcal{H}, \ \langle rX\xi, \zeta \rangle = 0$$

$$\iff \quad rX\xi = 0,$$

where the equivalence (2) follows because dom(Y^*) is dense in \mathcal{H} , and (3) follows because $r = \operatorname{ranproj}(Y^*)$ and the range of Y^* is dense in $r\mathcal{H}$. We have shown

 $N(YX) = N(rX) \cap \operatorname{dom}(YX).$

Since N(YX) is closed and $N(rX) \cap \text{dom}(YX)$ is dense in N(rX), we have N(YX) = N(rX), as required. \Box

As in [1] for $X \in \mathfrak{A}_f(\mathcal{M})$ and a projection $p \in \mathcal{M}$, we let $X^{\sharp}(p) = \operatorname{ranproj}(Xp)$. The next result is precisely the assertion of equation (11) of [1].

PROPOSITION A.3. Let $X, Z \in \mathfrak{A}_f(\mathcal{M})$ and let p be a projection in \mathcal{M} . Then

$$(XZ)^{\sharp}(p) = X^{\sharp}(Z^{\sharp}(p)).$$

Proof. Let Y = Zp and $r = Z^{\sharp}(p)$. Then $r = \operatorname{ranproj}(Y) = \operatorname{domproj}(Y^*)$ Then we have

$$(XZ)^{\sharp}(p) = \operatorname{ranproj}(XZp) = \operatorname{ranproj}(XY) = \operatorname{domproj}(Y^*X^*)$$

= domproj(rX^*) = ranproj(Xr) = $X^{\sharp}(r)$,

where for the fourth equality we used Lemma A.2. \Box

Addendum

REFERENCES

- [1] B. COLLINS AND K. DYKEMA, On a reduction procedure for Horn inequalities in finite von Neumann algebras, Oper. Matrices **3** (2009), 1–40.
- [2] R. V. KADISON AND Z. LIU, *The Heisenberg relation mathematical formulations*, SIGMA Symmetry Integrability Geom. Methods Appl. **10** (2014), paper 009, 40.

(Received May 5, 2023)

Benoît Collins Department of Mathematics Kyoto University Kyoto, Japan e-mail: collins@math.kyoto-u.ac.jp

Ken Dykema Department of Mathematics Texas A&M University College Station, TX 77843-3368, USA e-mail: kdykema@math.tamu.edu

837

Operators and Matrices www.ele-math.com oam@ele-math.com