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Abstract. In this paper, we characterize bounded linear operators A,B on a complex Hilbert
space such that inf

λ∈C

‖A+B−λ I‖ = inf
λ∈C

‖A−λ I‖+ inf
λ∈C

‖B−λ I‖ , where I is the identity op-

erator. We also establish some inequalities satisfied by the distance from scalar operators for
products of two complex Hilbert space operators.

1. Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉 and ‖ · ‖ denote the
induced norm. Let B(H ) denote the collection of all bounded linear operators acting
on H , the operator norm is also denoted by ‖ · ‖ . For A ∈ B(H ) , the numerical
range of A is given by

W (A) =
{
〈Ax,x〉 : x ∈ H and ‖x‖ = 1

}
.

It is known that W (A) is a nonempty (when H �= {0} ) bounded convex subset (not
necessarily closed) of the complex plane. To measure the location and relative size of
W (A) , one frequently used quantity; numerical radius of A . It is denoted and given by

w(A) = sup
{
|λ | : λ ∈W (A)

}
.

It is well-known that w(·) is a norm on B(H ) and

1
2
‖A‖ � w(A) � ‖A‖ (1)

for all A ∈B(H ) , that is w(·) defines an equivalent norm to ‖ ·‖ on B(H ) . Also, it
is a basic fact that the norm w(·) is self-adjoint

(
i.e., w(A∗) = w(A) for all A ∈B(H )
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where A∗ is the adjoint of A
)
. For more material about the numerical radius and other

information on the basic theory of numerical range, we refer the reader to [10].
In [16], Stampfli introduced the center of mass of A ∈ B(H ) as the (unique)

value λ ∈ C at which the minimum of ‖A−λ I‖ (where I is the identity operator on
H ) is attained, we denote d (A) := inf

λ∈C

‖A−λ I‖ .

In 1963 Björck and Thomée [5] proved, that if A is a normal operator acting on a
Hilbert space, then the radius RA of the smallest circular disc containing the spectrum of
A , σ(A) , is equal to d(A) . Later, in 1980 Garske [8] generalized Björck and Thomée’s
result for an arbitrary operator A∈B(H ) and showed that in the general case we have
only the inequality RA � d(A). In [3], Ando has proved that

LEMMA 1. ([3]) Let A ∈ B(H ) . Then,

(i) d (A) = sup{|〈Ax,y〉| : x,y ∈ H , ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0} ;

(ii) d(A) = sup{‖(I−P)AP‖ : P ∈ B(H ) is an orthogonal projection of rank one}(
P ∈ B(H ) is called an orthogonal projection if P2 = P = P∗) .

Many authors have obtained several refinements and reverses for the inequalities
in (1) see e.g., [7, 9, 14, 15]. It has been shown in [7, 12], that if A ∈ B(H ) , then

‖A‖2 � w2(A)+d2(A),

it is shown in [2] that if A,B ∈ B(H ) , then

w(AB) � w(A)
(
d(B)+‖B‖).

In [11, 13], the authors proved that

w(AB) � w(A)w(B)+d(A)d(B).

The numerical radius equality
(
w(A+B) = w(A)+w(B)

)
, has been discussed in [1],

the authors proved that

THEOREM 1. ([1]) Let A,B ∈ B(H ) , the following conditions are equivalent:

(i) w(A+B) = w(A)+w(B) ;

(ii) there exists a sequence of unit vectors {xn} in H such that

lim
n→+∞

〈A∗xn,xn〉〈Bxn,xn〉 = w(A)w(B) .

The proof of Theorem 1 is similar to that of norm equality
(‖A+B‖= ‖A‖+‖B‖)

which says that ‖A + B‖ = ‖A‖+ ‖B‖ if and only if there exists a sequence {xn} of
unit vectors in H such that limn→∞ 〈A∗Bxn,xn〉 = ‖A‖‖B‖ , see [4].

The purpose of this paper is to characterize operators A,B ∈ B(H ) such that
d (A+B) = d (A) + d (B) . We also establish some inequalities satisfied by d(·) for
products of two complex Hilbert space operators.
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2. Main results

Our first main result in this section reads as follows.

THEOREM 2. Let A,B ∈ B(H ) with A is normaloid
(
i.e., ‖A‖ = w(A)

)
and

w(A+B) = w(A)+w(B) .

Then,
w(A)w(B) � min{w(AB) ,w(BA)} .

Proof. If dim(H ) = 1, then the inequality holds without any hypothesis.
Using Theorem 1, there exists a sequence of unit vectors {xn} in H such that

lim
n→+∞

〈B∗xn,xn〉〈Axn,xn〉 = w(A)w(B) .

Let {yn} ⊂H be a sequence of unit vectors with 〈xn,yn〉= 0 and Axn = 〈Axn,xn〉xn +
〈Axn,yn〉yn, for all n ∈ N , it follows that

〈BAxn,xn〉 = 〈Axn,xn〉〈Bxn,xn〉+ 〈Axn,yn〉 〈Byn,xn〉 , (2)

and

‖Axn‖2 = | 〈Axn,xn〉 |2 + | 〈Axn,yn〉 |2. (3)

Since | 〈Axn,xn〉 〈Bxn,xn〉 | � w(A)w(B) and

lim
n→+∞

|〈Axn,xn〉 〈Bxn,xn〉| = lim
n→+∞

|〈B∗xn,xn〉 〈Axn,xn〉| = w(A)w(B) ,

lim
n→+∞

| 〈Bxn,xn〉 |= w(B) and lim
n→+∞

| 〈Axn,xn〉 |= w(A)= ‖A‖ (because A is normaloid).

From (3), we have

‖Axn‖2 = | 〈Axn,xn〉 |2 + | 〈Axn,yn〉 |2 � | 〈Axn,xn〉 |2

this implies that lim
n→+∞

〈Axn,yn〉 = 0. Now, from (2) we derive that

w(A)w(B) � w(BA) . (4)

Now, we apply the same argument to A∗ and B∗ , we get

w(A∗)w(B∗) � w(B∗A∗) = w(AB) .

So,
w(A)w(B) � w(AB) . (5)

From the inequalities (4) and (5), we get

w(A)w(B) � min{w(AB) ,w(BA)} ,

and this completes the proof. �
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REMARK 1. It is worth mentioning that in the absence of normaloidity, the result
of Theorem 2 need not be true. To see this, consider

A =
[

0 1
0 0

]
,

then w(A) = 1
2 and w

(
A2

)
= 0.

COROLLARY 1. Under the conditions of Theorem 2, if also B is normaloid, then

w(AB) = w(BA) = w(A)w(B) .

In the following theorem, we give a necessary and sufficient condition for the
equality d (A+B) = d (A)+d (B) where A,B ∈ B(H ) .

THEOREM 3. Let A,B ∈ B(H ) with dim(H ) � 2 . The following conditions
are equivalent:

(i) d (A+B) = d (A)+d (B) ;

(ii) there exist two sequences of unit vectors {xn} ,{yn} ⊂ H with 〈xn,yn〉 = 0 , for
all n ∈ N such that

lim
n→+∞

〈A∗yn,xn〉 〈Bxn,yn〉 = d (A)d (B) .

Proof. (i)=⇒(ii) Assume that d (A+B)= d (A)+d (B) . By Lemma 1, there exist
two sequences of unit vectors {xn} ,{yn} ⊂ H with 〈xn,yn〉 = 0, for all n ∈ N such
that

d2 (A+B) = lim
n→+∞

|〈(A+B)xn,yn〉|2

= lim
n→+∞

|〈Axn,yn〉+ 〈Bxn,yn〉|2

= lim
n→+∞

(
|〈Axn,yn〉|2 + |〈Bxn,yn〉|2 +2Re(〈A∗yn,xn〉 〈Bxn,yn〉)

)

� lim
n→+∞

(
|〈Axn,yn〉|2 + |〈Bxn,yn〉|2 +2 |〈A∗yn,xn〉 〈Bxn,yn〉|

)

= lim
n→+∞

(
|〈Axn,yn〉|+ |〈Bxn,yn〉|

)2

�
(
d (A)+d (B)

)2 = d2 (A+B).

This implies that
lim

n→+∞
〈A∗yn,xn〉 〈Bxn,yn〉 = d (A)d (B) .

(ii)=⇒(i) Suppose that there exist two sequences of unit vectors {xn} ,{yn} ⊂ H and
〈xn,yn〉 = 0, for all n ∈ N such that

lim
n→+∞

〈A∗yn,xn〉 〈Bxn,yn〉 = d (A)d (B) .
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Since |〈Axn,yn〉| � d(A) and |〈Bxn,yn〉| � d(B) ,

lim
n→+∞

|〈A∗yn,xn〉| = d (A) and lim
n→+∞

|〈Bxn,yn〉| = d (B) .

Therefore,

lim
n→+∞

|〈(A+B)xn,yn〉|2 = d2 (A)+d2 (B)+2d (A)d (B)

=
(
d (A)+d (B)

)2
.

This implies that
d (A+B) � d (A)+d (B) . (6)

Further, we have

d (A+B) = sup{|〈(A+B)x,y〉| : ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0}
� d (A)+d (B) .

(7)

By (6) and (7), we conclude that

d (A+B) = d (A)+d (B) . �

The following lemma will be useful in the proof of the next result.

LEMMA 2. Let A∈B(H ) with dim(H )� 3 and d (A)= ‖A‖ . Let {xn} ,{yn}⊂
H be two sequences of unit vectors such that lim

n→+∞
|〈Axn,yn〉|= d (A) and 〈xn,yn〉= 0

for all n ∈ N . Let {zn} ⊂ H be a sequence of unit vectors with 〈xn,zn〉 = 〈yn,zn〉 = 0
and Axn = αnxn + βnyn + γnzn, (αn,βn,γn ∈ C) for all n ∈ N . Then

lim
n→+∞

〈Axn,xn〉 = lim
n→+∞

〈Axn,zn〉 = 0.

Proof. The following identity holds true:

‖Axn‖2 = |〈Axn,xn〉|2 + |〈Axn,yn〉|2 + |〈Axn,zn〉|2 .

Since
lim

n→+∞
|〈Axn,yn〉| = d (A) ,

we obtain
lim

n→+∞
|〈Axn,xn〉|2 + |〈Axn,zn〉|2 = 0

thus,
lim

n→+∞
〈Axn,xn〉 = lim

n→+∞
〈Axn,zn〉 = 0. �

An application of Theorem 3 is the following result.
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THEOREM 4. Let A,B ∈ B(H ) with B is self-adjoint. If d (A) = ‖A‖ and

d (A+B) = d (A) + d (B) , then d (A)d (B) ∈ W (BA) , d (A)d (B) ∈ W
(
(AB)∗

)
and

so
d (A)d (B) � min{w(AB) ,w(BA)} .

Proof. If dim(H ) = 1, then the results hold.
Assume that dim(H ) � 3. In view of Theorem 3, there exist two sequences of

unit vectors {xn} ,{yn} ⊂ H with 〈xn,yn〉 = 0, for all n ∈ N such that

lim
n→+∞

〈B∗yn,xn〉 〈Axn,yn〉 = d (A)d (B) .

Let {zn} ⊂ H be a sequence of unit vectors with 〈xn,zn〉 = 〈yn,zn〉 = 0 and Axn =
αnxn + βnyn + γnzn, for all n ∈ N , it follows that

〈BAxn,xn〉 = 〈Axn,xn〉〈Bxn,xn〉+ 〈Byn,xn〉〈Axn,yn〉+ 〈Bzn,xn〉〈Axn,zn〉 .
By Lemma 2, we obtain

lim
n→+∞

〈Axn,xn〉 = lim
n→+∞

〈Axn,zn〉 = 0.

So,

lim
n→+∞

〈BAxn,xn〉 = lim
n→+∞

〈Byn,xn〉 〈Axn,yn〉
= lim

n→+∞
〈B∗yn,xn〉 〈Axn,yn〉 (since B∗ = B)

= d (A)d (B) .

This implies that d (A)d (B) ∈W (BA) . Hence,

d (A)d (B) � w(BA) . (8)

On the other hand, we have d (A∗) = d (A) = ‖A‖ = ‖A∗‖ and

d
(
(A+B)∗

)
= d (A+B) = d (A)+d (B) = d (A∗)+d (B∗) .

Hence,
d (A∗)d (B∗) ∈W (B∗A∗)

thus,
d (A)d (B) ∈W

(
(AB)∗

)
.

Consequently, we obtain
d (A)d (B) � w(AB) . (9)

So, it follows from (8) and (9) that

d (A)d (B) � min{w(AB) ,w(BA)} .

Hence, the desired results are proved.
If dim(H ) = 2, the proof is similar to that in the case dim(H ) � 3; take zn =

0. �
Our next result is stated as follows.
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PROPOSITION 1. Let A,B ∈ B(H ) . Then

d (AB) � w(A)d (B)+‖B‖d (A) .

Proof. If dim(H ) = 1 then the inequality holds.
Let x,y ∈ H such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0. Put Bx = αy+ βy⊥ with

α = 〈Bx,y〉 , β =
〈
Bx,y⊥

〉
and y⊥ is orthogonal to y . Now, it can be observed that

〈ABx,y〉 = α 〈Ay,y〉+ β
〈
Ay⊥,y

〉

= 〈Bx,y〉〈Ay,y〉+
〈
Bx,y⊥

〉〈
Ay⊥,y

〉
.

This implies that

|〈ABx,y〉| � |〈Bx,y〉| |〈Ay,y〉|+
∣∣∣〈Bx,y⊥

〉∣∣∣
∣∣∣〈Ay⊥,y

〉∣∣∣ .
Thus, by taking the supremum in the above inequality over all x,y ∈ H with ‖x‖ =
‖y‖ = 1 and 〈x,y〉 = 0, we get

d (AB) � w(A)d (B)+‖B‖d (A) .

Hence, the proof of the proposition is complete. �
Now, we are in a position to prove the following result.

PROPOSITION 2. Let A,B ∈ B(H ) . If dimH =2 , then

d (AB) � w(A)d (B)+w(B)d (A) .

Proof. Let x,y ∈ H with ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0. Put Bx = αx+ βy with
α = 〈Bx,x〉 and β = 〈Bx,y〉 . It follows that

|〈ABx,y〉| = |α 〈Ax,y〉+ β 〈Ay,y〉|
= |〈Bx,x〉 〈Ax,y〉+ 〈Bx,y〉〈Ay,y〉|
� |〈Bx,x〉 〈Ax,y〉|+ |〈Bx,y〉〈Ay,y〉| .

Taking the supremum in the above inequality over all x,y ∈ H with ‖x‖ = ‖y‖ = 1
and 〈x,y〉 = 0, we get

d (AB) � w(B)d (A)+w(A)d (B) .

This completes the proof. �
Next we need the following inequality, known as Buzano’s inequality [6].

LEMMA 3. ([6]) Let x,y,z ∈ H , then

|〈x,z〉 〈z,y〉| � ‖z‖2

2
(‖x‖‖y‖+ |〈x,y〉|) .
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The following lemma is useful in the proof of the next results.

LEMMA 4. Let A ∈ B(H ) be a positive operator and let x,y ∈ H . Then

|〈Ax,y〉| � ‖A‖
2

(
‖x‖‖y‖+ |〈x,y〉|

)
.

Proof. By using Lemma 3, we obtain

|〈Ax,y〉 〈Ax,x〉| � ‖Ax‖2

2

(
‖x‖‖y‖+ |〈x,y〉|

)
.

If 〈Ax,x〉 �= 0, then

|〈Ax,y〉| � ‖Ax‖2

2〈Ax,x〉 (‖x‖‖y‖+ |〈x,y〉|) .

Therefore,

‖Ax‖2

〈Ax,x〉 =
‖Ax‖2

∥∥∥A
1
2 x

∥∥∥2 �

∥∥∥A
1
2

∥∥∥2 ∥∥∥A
1
2 x

∥∥∥2

∥∥∥A
1
2 x

∥∥∥2

=
∥∥∥A

1
2

∥∥∥2

= ‖A‖ .

If 〈Ax,x〉 = 0, then A
1
2 x = 0 and so Ax = 0. Therefore, we get the desired inequality.

This completes the proof. �
Next, we introduce the following theorem.

THEOREM 5. Let T,S,A ∈ B(H ) be such that A is positive. Then,

d (SAT ) � ‖A‖
2

(
‖T‖‖S‖+d (ST )

)
.

Proof. If dim(H ) = 1, then the inequality holds.
Let x,y ∈ H such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0. By using Lemma 4, it can

be observed that

|〈SATx,y〉| = |〈ATx,S∗y〉|
� ‖A‖

2
(|〈Tx,S∗y〉|+‖Tx‖‖S∗y‖)

� ‖A‖
2

(|〈STx,y〉|+‖T‖‖S‖)

� ‖A‖
2

(
‖T‖‖S‖+d (ST )

)
. �
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As an application of Theorem 5, we derive the following inequality.

COROLLARY 2. Let T,S,A ∈ B(H ) be such that A is positive and let r � 1 .
Then,

dr (SAT ) � ‖A‖r

2

(
‖T‖r ‖S‖r +dr (ST)

)
.

Proof. Since t �→ tr , r � 1 is a convex increasing function on [0,+∞) ,

dr (SAT) � ‖A‖r
(‖T‖‖S‖+d (ST )

2

)r

� ‖A‖r

2

(
‖T‖r ‖S‖r +dr (ST )

)
. �

Our final result is the following

THEOREM 6. Let T ∈ B(H ) with the polar decomposition T = U |T | . Then,

d (T ) � 1
2

(
‖T‖+‖T‖ 1

2 d
(
U |T | 1

2
))

.

Proof. For any x,y ∈ H , we have

|〈Tx,y〉| = |〈U |T |x,y〉|
=

∣∣∣〈|T | 1
2 x, |T | 1

2 U∗y
〉∣∣∣ .

Using Lemma 4, we get

∣∣∣〈|T | 1
2 x, |T | 1

2 U∗y
〉∣∣∣ �

∥∥∥|T | 1
2

∥∥∥
2

(∣∣∣〈x, |T | 1
2 U∗y

〉∣∣∣+‖x‖
∥∥∥|T | 1

2 U∗y
∥∥∥)

� ‖T‖ 1
2

2

(∣∣∣〈U |T | 1
2 x,y

〉∣∣∣+‖x‖‖y‖‖T‖ 1
2 ‖U∗‖

)
.

Since ‖U‖ = ‖U∗‖ = 1 and taking the supremum over all unit vectors x,y ∈ H such
that 〈x,y〉 = 0, we obtain

d (T ) � 1
2

(
‖T‖+‖T‖ 1

2 d
(
U |T | 1

2

))
,

as desired. �
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